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Recent advances in microscopy techniques make it possible to study the growth, dynamics, and response
of complex biophysical systems at single-cell resolution, from bacterial communities to tissues and
organoids. In contrast to ordered crystals, it is less obvious how one can reliably distinguish two amorphous
yet structurally different cellular materials. Here, we introduce a topological earth mover’s (TEM) distance
between disordered structures that compares local graph neighborhoods of the microscopic cell-centroid
networks. Leveraging structural information contained in the neighborhood motif distributions, the TEM
metric allows an interpretable reconstruction of equilibrium and nonequilibrium phase spaces and
embedded pathways from static system snapshots alone. Applied to cell-resolution imaging data, the
framework recovers time ordering without prior knowledge about the underlying dynamics, revealing that
fly wing development solves a topological optimal transport problem. Extending our topological analysis
to bacterial swarms, we find a universal neighborhood size distribution consistent with a Tracy-Widom law.
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Discrete particulate objects, from atoms to cells, com-
pose the majority of physical and living systems. Modern
microscopy and simulation techniques enable us to study
the elementary building blocks of solids [1,2], colloidal
and granular materials [3–5], bacterial biofilms [6,7], and
tissues [8] with unprecedented resolution over large
scales. These experimental and computational advances
have highlighted the importance of local spatial organi-
zation [9] and disorder [10] for the global behaviors of
both equilibrium and nonequilibrium materials, spurring
substantial theoretical efforts to link discrete microstruc-
ture with macroscale properties. Prime examples include
the recent successful characterizations of epithelial cell
(EC) layers and other cellular materials through the
geometric [11,12] and topological [13–16] analysis of
Voronoi and Delaunay tessellations [17]. In spite of such
major progress, high-resolution data continue to pose
fundamental conceptual and practical challenges regard-
ing the proper classification of discrete physical and
biological structures. Specifically, it is still unclear
whether one can recover parametric embeddings, phase
space dimensions, and time ordering from a topological
analysis of static snapshots alone and whether such
analysis can help reveal the governing principles of
multicellular development.
To tackle these problems, we introduce here a topo-

logical earth mover’s (TEM) distance by combining ideas
from statistical topology [13–15,18,19] and
optimal transport theory [20,21] with nonequilibrium
statistical mechanics [22]. The TEM metric compares
two discrete material structures by quantifying the

statistical differences in the local network topology of
their Delaunay triangulations (Fig. 1). Unlike purely
entropic measures, the TEM framework leverages infor-
mation contained in the energetic distances between
different network topologies, enabling a finer distinction
and classification. Intuitively, computing TEMðA; BÞ
amounts to estimating the smallest number of edge flips
needed to make the local network topology of material A
statistically indistinguishable from the local network
topology of material B. Physically, this procedure can
be interpreted as finding the average lowest-energy path
connecting two disordered structures, and we provide an
efficient algorithm for realizing this computationally
demanding task for systems with ∼106 particles [23].
To demonstrate the practical potential of this framework

for the analysis of both equilibrium and nonequilibrium
systems, we present a broad set of applications: First, we
show that the TEM metric successfully distinguishes
jammed disordered packings of both mono- and poly-
disperse ellipsoids. Thereafter, we use the TEM frame-
work to reconstruct the nonequilibrium phase diagram of
active Brownian particle (ABP) simulations without
recourse to time-resolved data. Next, by measuring the
pairwise TEM distances between unsorted experimental
images of a developing fruit fly wing, we are able to
reconstruct their temporal ordering and discover that wing
development follows an optimal transport geodesic, sug-
gesting a previously unrecognized optimization principle
in tissue development. Finally, by extending our topo-
logical analysis to single-cell-resolution data from bacte-
rial swarming experiments, we observe a universal
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neighborhood size distribution consistent with a Tracy-
Widom law.
To define the TEM distance, we consider the specific

example of a two-dimensional (2D) cell layer as shown in
Fig. 1(a), although all subsequent definitions generalize to
arbitrary point sets in R2 or R3. Our starting point is the
Delaunay triangulation [17] of the cell-centroid positions
as shown in Fig. 1(a). In practice, it is often sufficient to
take the positions of the EC nuclei as vertices of the
Delaunay network [38]. If two random realizations of
such networks are generated by the same physical or
biological process, they will have different vertex posi-
tions and topology, but their local statistical properties
(local connectivity patterns, etc.) will be identical, pro-
vided the networks are sufficiently large. This fact has
been exploited previously to define entropic [14] and earth
movers’ distances between cell complexes [15], as well as
to classify structure in amorphous materials [39]. Here, we
extend these ideas to define a physically motivated
topological metric that measures statistical differences
in the local Delaunay triangulations around vertices.
Specifically, we define for each vertex a local neighbor-
hood of radius r, which consists of all the vertices that are
not more than r edges away from the central vertex [see
red subgraph corresponding to r ¼ 2 in Fig. 1(a)]. Taking
r ¼ 1 typically results in only Oð10Þ distinguishable
neighborhood motifs, severely constraining possible
forms of the motif distribution [23]. By contrast, we
found that r ¼ 2, which increases the range of observable
motifs to Oð104Þ, suffices for many practical applications
[23]. Although r can, in principle, be chosen arbitrarily
large, TEM computations become expensive for larger
neighborhoods r ≥ 3; we therefore focus on the case r ¼ 2
from now on. The local neighborhoods of two vertices
are of the same topological type i if they are graph
isomorphic. Counting the occurrences of the various
neighborhood types i across all vertices yields a proba-
bility distribution PðiÞ ≥ 0 that characterizes the top-
ostatistical state of the cell network.

To provide an intuitive physical motivation for the TEM
metric, we note that a nondegenerate Delaunay network is
invariant under infinitesimal perturbations and can change
only through a topological T1 transition [Fig. 1(b)].
For EC layers there is an energy barrier to T1 transitions
[40], and so the energy cost to transform from one
neighborhood type to another is directly related to the
number of T1 transitions required. For other packed
systems, there typically exist similar energetic costs
for changing neighbors through T1 transitions.
Motivated by this, we can define the energetic distance
between two neighborhoods as the minimum number of
T1 transitions separating them. This mathematically well-
defined metric [23,41] induces naturally a secondary
graph structure, known as the flip graph [24], where
nodes correspond to neighborhood types i and are linked
with an edge if they are one T1 transition away from each
other [Fig. 1(c)]. The minimum path length between two
nodes on the flip graph is the smallest number of T1
transitions needed to move between the corresponding
neighborhood types. Moreover, the distribution PðiÞ of
neighborhood types in the EC layer can now be viewed
as a distribution on the nodes i of the flip graph [blue box
in Fig. 1(d)].
Armed with this intuition, we can now define the

TEM distance between the Delaunay triangulations of
two materials A and B in a natural manner as the earth
mover’s or, equivalently, Wasserstein distance [20]
between their neighborhood distributions PA and PB over
the flip graph: If PAðiÞ is the probability of neighborhood i
occurring in material A, and PBðjÞ is the probability of
neighborhood j occurring in material B, then a transport
map, γij ≥ 0, from A to B satisfies

P
j γij ¼ PAðiÞ,P

i γij ¼ PBðjÞ, see Fig. 1(d). Then, the TEM distance
between A and B is

TEMðA;BÞ ¼ min
γ

X

ij

γijdði; jÞ; ð1Þ

(a) (c) (d)(b)

FIG. 1. Key conceptual steps for calculating the TEM distance illustrated for an epithelial cell layer. (a) Experimental image of
epithelial cell layer from Drosophila embryo (adapted with permission from Refs. [8,37]) with Delaunay triangulation overlayed (blue,
red). The local neighborhood network of radius r ¼ 2 (red) is shown for a selected vertex (white circle). (b) A topological T1 transition,
corresponding to an exchange of neighbors, is reflected in a change of the local radius-2 neighborhood. Voronoi cells (red, blue) with
Delaunay triangulation overlayed (black, gray) are shown. (c) Nodes of the flip graph correspond to networks and are connected by an
edge if the networks are one T1 transition (or flip) away from each other. (d) The map γij transports the neighborhood motif distribution
of material A to the motif distribution of material B.
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where dði; jÞ is the distance between the neighborhoods i
and j on the flip graph, and the minimum is taken over all
possible transport maps γ ¼ ðγijÞ. We emphasize that,
in contrast to widely used entropic distance measures
between distributions [14], the definition of TEM uses the
physically relevant information encoded in the metric
structure dði; jÞ of the underlying observable space, which
in our case reflects the typical energy cost of a T1
transition between network motifs. As a consequence,
TEM generally outperforms purely entropic Kullback-
Leibler and Jensen-Shannon divergences when one needs
to distinguish complex structures that are characterized by
weakly overlapping distributions; see Ref. [25] and the
Supplemental Material [23] for explicit examples.
For large systems, the minimization problem (1)

becomes computationally challenging. We combined
two algorithmic insights [23] to calculate TEM efficiently
for disordered materials with millions of particles.
After computation of the Delaunay tessellation, which
can be done with high parallel efficiency [42], we utilize a
modification of the Weinberg algorithm [23,26] to
determine the flip-graph distances dði; jÞ of N observed
neighborhood motifs in OðNÞ steps. Given dði; jÞ, the
minimization over the transport maps fγijg can be
recast as an minimum cost flow problem [20,23], which
is efficiently solved with linear programming [43].
To demonstrate the broad applicability of our TEM frame-
work, we focus in the remainder of this Letter on appli-
cations relevant to current major research areas: colloidal
packings, collective far-from-equilibrium dynamics, tissue
development, and spatiotemporally heterogeneous multi-
cellular systems.
Recent advances in the fabrication of geometrically

complex colloids [3,4] and imaging techniques [6] have
led to a renewed practical and theoretical interest in
the characterization of granular [5,44] and biological
materials [6,7]. Of particular importance in this context

are the often fundamentally different behaviors of
monodisperse [45] and polydisperse [46] colloidal sys-
tems. While the former are much better understood
theoretically, the latter are often practically more relevant
to natural systems and processes, such as particle segre-
gation seen in industrial agriculture, cereals, or avalanches
[47]. To demonstrate the usefulness of the TEM frame-
work for capturing the essential topostatistical differences
between and across mono- and polydisperse systems,
we generated jammed disordered packings of 10 000
ellipsoids using an event-driven packing code [48].
Specifically, we were interested in distinguishing two
different pathways for transitioning from a monodisperse
packing of spheres (ellipsoids with aspect ratio 1∶1) to a
monodisperse packing of ellipsoids with aspect ratio 1∶3
[Fig. 2(a)]. The first “monodisperse” transition path was
realized by simulating 12 monodisperse packings of
ellipsoids with aspect ratios varying from 1∶1 to 1∶3
[bottom path in Fig. 2(a)]. The second “polydisperse”
transition path was realized by simulating 12 different
binary mixtures of 1∶1 and 1∶3 ellipsoids [top path in
Fig. 2(a)]. Computing the TEM distances between all
24 × 24 pairs of simulations produces the symmetric TEM
distance matrix shown in Fig. 2(b). Given this matrix, it is
natural to seek a faithful low-dimensional embedding in
Euclidean space Rd that approximately preserves the
TEM distance structure. To construct the embedding we
choose multidimensional scaling (MDS), a generalized
principal component (PC) analysis based on the TEM
distance [49]. Since each pathway corresponds to a 1D
manifold (as only one parameter is varied in each case),
the phase space can be embedded in R2; indeed, the R2

embedding clearly distinguishes the two different path-
ways [Fig. 2(c)]. To find the dimensionality of the phase
space, we calculate the residual variance that plateaus at
the relevant dimension [23,28] and correctly identifies the
ellipsoid embedding as 2D [Fig. 2(d)]. We show in the

(c)(b)(a)

(d)

FIG. 2. Two-dimensional poly- and monodisperse packings are distinguished by the TEM distance. (a) Two alternative paths from
aspect ratio 1∶1 to aspect ratio 1∶3 ellipsoid packings. Top is monodisperse with varying aspect ratios; bottom is polydisperse with a
mixture of 1∶1 and 1∶3 aspect ratios. (b) Distance matrix where each pixel represents the pairwise distance between simulated 2D planar
ellipsoid packings, each containing 10 000 ellipsoids. (c) Simulations are embedded in 2D using MDS, recovering two distinct paths,
one for monodisperse simulations (hexagons) and one for polydisperse simulations (circles). (d) The residual variance plateaus after
embedding dimension 2, correctly identifying the true embedding dimension of the phase space (arrow).
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Supplemental Material [23] that the same approach can be
used to infer the nonequilibrium phase space of ABP
simulations [29] from instantaneous system configura-
tions. More broadly, these examples illustrate how the
TEM metric can discover phase spaces from configura-
tional snapshots alone.
In the remainder, we show that the topological analysis

of data from two recent experiments [8,27] can reveal
previously unrecognized biophysical optimization princi-
ples and universal statistical signatures. We begin by
considering shuffled images [Figs. 3(a)–3(e)] of developing
fruit fly embryo wings [8,37]. Using the Delaunay triangu-
lation of the cell centroids, hierarchical clustering [50] of
the TEM distance matrix of the shuffled images [Fig. 3(f)]
reveals three developmental main phases [Fig. 3(g)]. The
resulting MDS embedding is essentially 1D, with the first
principal component corresponding to time [Fig. 3(h)], and
thus restores the temporal order of the data [Fig. 3(i)]. This
shows how the TEM framework can be used to infer
temporal ordering from ensemble measurements [51].
More importantly, however, the TEM analysis reveals
the developmental trajectory of the fly wing follows a
topological geodesic, a continuous curve that minimizes the
total length with respect to the TEM distance. While earth
movers’ geodesics are in general not unique, a unique path
can be found by additionally minimizing transport
dissipation [21,23]. The data fluctuate closely around this
minimum-dissipation geodesic [red curve in Fig. 3(h)],
meaning that fly wing development approximately solves

a dissipation-constrained topological optimal transport
problem.
Finally, we provide a more detailed characterization of

the neighborhood motif distributions in 2D nonequilibrium
systems. To this end, we analyze recent bacterial swarming
experiments [27] using machine learning [23] to identify
individual cells [Figs. 4(a) and 4(b)]. By determining the
motif size distributions for snapshots taken at different
space-time locations in a growing swarm, we find that both
mean and variance vary systematically with space, time,
and cell density [Figs. 4(c)–4(e)]. Strikingly, after rescaling
to zero mean and unit variance, the combined motif size
distribution closely matches [23] a universal Tracy-Widom
(TW) distribution [Fig. 4(f)]. TW distributions were
recently reported for growing fluctuating fronts [52],
dynamics of self-assembly [53], active particle dynamics
[54,55], and phase transitions between strongly and weakly
coupling regimes [56]. We also find TW motif size
distributions in the ABP and fly wing data when subsam-
pling from the liquid like phase [23], suggesting that TW
distributions play a central role in the topostatistics of
amorphous and nonequilbrium systems.
To conclude, the TEM metric framework will be broadly

applicable, from single-cell RNA sequencing [57], cryoe-
lectron microscopy [58], and organoid characterization [59]
to structural transitions in living [6,11] and nonliving [3]
matter. In particular, it enables a direct comparison of the
topological statistical properties of a wide range of funda-
mentally different systems, the only requirement being that

(a) (b) (c) (d) (e)

(f) (g) (h)

(i)

FIG. 3. Developing Drosophila embryos solve topological optimal transport problem, with MDS embedding recovering temporal
order. (a)–(e) Enlarged images showing epithelial cells at unknown times. Three experiments and 40 time frames per experiment were
used. (f) Matrix of TEM distances between unsorted experimental images has no apparent structure. (g) TEM distance matrix sorted by
hierarchical clustering shows approximately three phases. (h) 2D MDS embedding recovers the temporal order as the principal
component. Included in the embedding are intermediate stages of a dissipation-minimizing [23] geodesic between average start and end
states, which the data fall on. (i) The correct temporal ordering of the image time series is recovered. The white boxes show the source of
images (a)–(e). Data adapted with permission from Refs. [8,37].
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transitions between basic motifs (Delaunay neighborhood
structures, DNA strings, etc.) can be mapped onto a joint
flip-graph structure.
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