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We investigate generalized Navier–Stokes (GNS) equations that couple nonlinear
advection with a generic linear instability. This analytically tractable minimal
model for fluid flows driven by internal active stresses has recently been shown
to permit exact solutions on a stationary two-dimensional sphere. Here, we extend
the analysis to linearly driven flows on rotating spheres. We derive exact solutions
of the GNS equations corresponding to time-independent zonal jets and superposed
westward-propagating Rossby waves, qualitatively similar to those seen in planetary
atmospheres. Direct numerical simulations with large rotation rates obtain statistically
stationary states close to these exact solutions. The measured phase speeds of waves
in the GNS simulations agree with analytical predictions for Rossby waves.
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1. Introduction
Turbulence is often described as the last unsolved problem in classical physics

(Falkovich & Sreenivasan 2006). In recent years, considerable progress has been
made in the modelling of stationary turbulence, which requires a driving force to
continually balance kinetic energy losses due to viscous dissipation (Frisch 1995).
Theoretical and computational studies of turbulence phenomena typically focus on
external driving provided by a random forcing (Boffetta & Ecke 2012), boundary
forcing (Grossmann, Lohse & Sun 2016) or Kolmogorov forcing (Lucas & Kerswell
2014). A fundamentally different class of internal driving mechanism, less widely
explored in the turbulence literature so far, is based on linear instabilities (Rothman
1989; Tribelsky & Tsuboi 1996; Sukoriansky, Galperin & Chekhlov 1999; Rosales
& Meneveau 2005; Słomka & Dunkel 2017b; Słomka, Suwara & Dunkel 2018a;
Linkmann et al. 2019). The profound mathematical differences between external
and internal driving were emphasized by Arnold (1991) in the context of classical
dynamical systems described by ordinary differential equations. Specifically, he
contrasted the externally forced Kolmogorov hydrodynamic system with the internally
forced Lorenz system, the latter providing a simplified model of atmospheric
convection (Lorenz 1963). From the broader fluid-mechanical perspective, Arnold’s
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analysis raises the interesting question of how internally driven flows behave in
rotating frames such as the atmospheres of planets or stars.

To gain insight into this problem, we investigate an analytically tractable minimal
model for linearly forced quasi-two-dimensional flow on a rotating sphere. The
underlying generalized Navier–Stokes (GNS) equations describe internally driven
flows through higher-order hyperviscosity-like terms in the stress tensor (Beresnev &
Nikolaevskiy 1993; Słomka & Dunkel 2017b), and the associated GNS triad dynamics
is structurally similar to the Lorenz system (Słomka et al. 2018a). Generalized Navier–
Stokes-type models have been studied previously as effective phenomenological
descriptions for seismic wave propagation (Beresnev & Nikolaevskiy 1993; Tribelsky
& Tsuboi 1996), magnetohydrodynamic flows (Vasil 2015) and active fluids (Słomka
& Dunkel 2017a,b; James, Bos & Wilczek 2018). A key difference compared with
scale-free classical turbulence is that GNS flows can exhibit characteristic spatial and
temporal scales that reflect the internal forcing mechanisms.

Remarkably, the minimal GNS model studied below permits non-trivial analytical
solutions. Exact stationary solutions reported previously include three-dimensional
Beltrami flows (Słomka & Dunkel 2017b) and two-dimensional (2-D) vortex
lattices (Słomka & Dunkel 2017a). Furthermore, Mickelin et al. (2018) recently
explored GNS flows on 2-D curved surfaces and constructed stationary solutions
for the case of a non-rotating sphere. Here, we generalize their work by deriving
exact time-dependent solutions for GNS flows on rotating spheres, and by comparing
them with direct numerical simulations (figure 1). We shall see that these exact
GNS solutions correspond to Rossby waves propagating along alternating zonal jets,
qualitatively similar to the large-scale flow patterns seen in planetary atmospheres
(Heimpel, Aurnou & Wicht 2005; Schneider & Liu 2008).

Our study complements recent work which showed that non-equilibrium approaches
can provide analytical insights into the dynamics of planetary flows (Delplace,
Marston & Venaille 2017) and atmospheres (Marston 2012). In view of the recent
successful application of phenomenological GNS models to active fluids (Dunkel
et al. 2013; Słomka & Dunkel 2017b), the results below can also help advance the
understanding of active matter propagation on curved surfaces (Sanchez et al. 2012;
Zhang et al. 2016; Henkes, Marchetti & Sknepnek 2018; Nitschke, Reuther & Voigt
2019) and in rotating frames (Löwen 2019).

2. Generalized Navier–Stokes model for linearly driven flow

After briefly reviewing the GNS equations in § 2.1, we derive the corresponding
vorticity-stream function formulation on a rotating sphere in § 2.2.

2.1. Planar geometry
The GNS equations for an incompressible fluid velocity field v(x, t) with pressure field
p(x, t) read (Słomka & Dunkel 2017a,b)

∇ · v = 0, (2.1a)
∂tv + (v · ∇)v =−∇p+∇ · σ , (2.1b)

where the higher-order stress tensor

σ = (Γ0 − Γ2∇
2
+ Γ4∇

4)[∇v + (∇v)>] (2.1c)
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FIGURE 1. Statistically stationary states of the normalized vorticity ζ τ from simulations
(a–i) for κΛ = 1 become more zonal (or banded) as the rotation rate Ωτ increases
(see also supplementary movie 1 available at https://doi.org/10.1017/jfm.2020.205). At the
highest rotation rate Ωτ = 500, the width of the alternating zonal jets is determined by the
parameter R/Λ that represents the ratio of the radius of the sphere and the diameter of
the vortices forced by the GNS dynamics. The main characteristics of these flow patterns
at high rotation rate are captured by spherical harmonics Y0

` (θ, φ) that solve the dynamical
equations. Matching the length scale R/Λ gives `= 6 ( j), `= 11 (k) and `= 21 (l) for
R/Λ= 2, 4 and 8, respectively.

accounts for both viscous damping and linear internal forcing. Transforming to Fourier
space, the divergence of the stress tensor gives the dispersion relation

ξ(k)=−k2(Γ0 + Γ2k2
+ Γ4k4), (2.2)

where k is the magnitude of the wave vector k. Fixing hyperviscosity parameters Γ0>
0, Γ4 > 0 and Γ2 <−2

√
Γ0Γ4, the growth rate ξ(k) is positive between the two real

roots k− and k+. Hence, Fourier modes in the active band k ∈ (k−, k+) are linearly
unstable, corresponding to active energy injection into the fluid. The distance between
the neutral modes k± defines the active bandwidth κ = k+ − k−.

Unstable bands are a universal feature of stress tensors exhibiting positive
dispersion ξ(k) > 0 for some k. Polynomial GNS models of the type (2.1) were
first studied in the context of seismic wave propagation (Beresnev & Nikolaevskiy
1993; Tribelsky & Tsuboi 1996) and can also capture essential statistical properties
of dense microbial suspensions (Dunkel et al. 2013; Słomka & Dunkel 2017b).
Since non-polynomial dispersion relations produce qualitatively similar flows (Słomka
et al. 2018a; Linkmann et al. 2019), we focus here on stress tensors of the generic
polynomial form (2.1c).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

20
5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
8.

22
9.

10
8.

10
8,

 o
n 

06
 A

pr
 2

02
0 

at
 1

5:
14

:5
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.205
https://doi.org/10.1017/jfm.2020.205
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


892 A30-4 R. Supekar, V. Heinonen, K. J. Burns and J. Dunkel

Exact steady-state solutions of (2.1), corresponding to ‘zero-viscosity’ states, can
be written as superpositions of modes k with |k| = k+ or |k| = k− (Słomka & Dunkel
2017b). Simulations of (2.1) with random initial conditions converge to statistically
stationary states with highly dynamical vortical patterns that have a characteristic
diameter ∼Λ = π/k∗, where k∗ is the most unstable wavenumber, corresponding to
the maximum of ξ(k) (Słomka et al. 2018a; Słomka, Townsend & Dunkel 2018b).
Inverse energy transport in 2-D flows can bias the dominant vortex length scale
towards larger values ∼π/k− (James et al. 2018).

2.2. On a rotating sphere
We generalize planar 2-D GNS dynamics (2.1) to a sphere with radius R rotating at
rate Ω . To this end, we adopt a corotating spherical coordinate system (θ, φ) where
θ is the colatitude and φ is the longitude. Following Mickelin et al. (2018), we find
the rotating GNS equations in vorticity-stream function form

∇
2ψ =−ζ , (2.3a)

∂tζ + J(ψ, ζ )= F(∇2
+ 4K)(∇2

+ 2K)ζ + 2ΩK∂φψ, (2.3b)

where ζ is the vorticity in the rotating frame, and K = 1/R2 denotes the Gaussian
curvature of the sphere. The active stress operator F has the polynomial form

F(x)= Γ0 − Γ2x+ Γ4x2. (2.4)

The Laplacian ∇2 on the sphere is defined by ∇2
= K(cot θ∂θ + ∂2

θ + (sin θ)−2∂2
φ)

and J(ψ, ζ ) = K(sin θ)−1(∂φψ∂θζ − ∂θψ∂φζ ) is the determinant of the Jacobian
of the mapping (Rφ sin θ, Rθ) 7→ (ψ, ζ ) from the tangent space of the sphere to
the vectors (ψ, ζ ). The velocity components can be recovered from the stream
function ψ by (vφ, vθ) = (−∂θψ/R, ∂φψ/R sin θ). In the non-rotating limit Ω → 0,
(2.3b) reduces to the model studied by Mickelin et al. (2018). We note that (2.3b)
is an internally forced extension of the unforced barotropic vorticity equation
∂tζ + J(ψ, ζ ) = 2ΩK∂φψ which has been widely studied in the earth sciences
since the pioneering work of Charney, Fjörtoft & Neumann (1950). Below we will
show that the GNS model (2.3b) is analytically tractable, permitting exact travelling
wave solutions that are close to the complex flow states observed in simulations.

2.2.1. Dimensionless parameters
We assess the linear behaviour of (2.3b) using spherical harmonics Ym

` (θ, φ), the
eigenfunctions of the Laplacian operator on the sphere. With δ=K(`(`+ 1)− 4), the
linear growth rate of a spherical harmonic mode due to F is

Ξ(`)=−(δ + 2K)F(−δ)=−(δ + 2K)(Γ0 + Γ2δ + Γ4δ
2), (2.5)

which is the spherical analogue of (2.2). Using this relation, characteristic length
and time scales, Λ and τ , for vortices forced by the GNS dynamics, along with the
bandwidth of the forcing κ , can be expressed in terms of Γ0, Γ2, Γ4 and R (figure 2
and appendix A). We use these scales to define the essential dimensionless parameters:
R/Λ is the ratio between the radius of the sphere and the characteristic vortex scale,
κΛ compares the forcing bandwidth to the characteristic vortex scale, and Ωτ is
dimensionless rotation rate. We note that since Ξ(`= 1)= 0, the GNS dynamics do
not force the `= 1 mode which ensures that the total angular momentum is conserved
(see appendix B). Finally, we define the Rossby number in terms of the characteristic
flow speed U =Λ/τ and the dominant length scale L=Λ as

Ro=
U
ΩL
=

1
Ωτ

. (2.6)
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FIGURE 2. The growth rate Ξ of spherical harmonic modes Ym
` (θ, φ) in (2.5) plotted

as a function of the wavenumber `. The parameters used to make this plot are
((τ/R2)Γ0, (τ/R4)Γ2, (τ/R6)Γ4) ' (1.43 × 10−2, −4.86 × 10−5, 3.72 × 10−8) which
correspond to R/Λ= 8 and κΛ= 1. The grey region indicates the active bandwidth where
Ξ > 0 and energy is injected. Here, Λ is the diameter of the vortices forced by the mode
with the maximum growth rate 1/τ , and κ is the active bandwidth i.e. κ = (`+ − `−)/R
where Ξ(`±)= 0.

2.2.2. β-plane equations
When the vortical patterns are much smaller than the radius of the sphere

(R/Λ � 1), one can linearize around a reference colatitude θ0 to produce a local
model. We define metric coordinates in the directions of increasing φ and decreasing
θ , respectively, by x=R sin(θ0)φ and y=R(θ0− θ). In these coordinates the dynamical
equations are

∇
2
cψ =−ζ , (2.7a)

∂tζ + Jc(ψ, ζ )=∇
2
c F(∇2

c )ζ + β∂xψ, (2.7b)

where Jc(ψ, ζ ) = ∂yψ∂xζ − ∂xψ∂yζ is the Cartesian Jacobian determinant, ∇2
c is the

Cartesian Laplacian and the namesake β parameter is given by β = 2Ω sin θ0/R. The
β-plane equations preserve the effect of a varying Coriolis parameter 2Ω cos θ while
simplifying the spatial operators. Rotational effects are accounted for by the term
proportional to β.

2.2.3. Characteristic length and time scales
The turbulent outer layers of rotating stars and planets ubiquitously contain

east–west (zonal) jets of various scales and strengths. Determining physical processes
that generate and maintain these jets is an important problem in planetary science. A
variety of theories have arisen describing jet formation, particularly on the β-plane,
including the arrest of the inverse cascade in rotating turbulence by nonlinear Rossby
waves (Vallis & Maltrud 1993; Rhines 2006), and as a bifurcation in the statistical
dynamics of the zonal flow as a function of the intensity of background homogeneous
turbulence (Srinivasan & Young 2012; Tobias & Marston 2013). These theories predict
that jet formation may depend on a variety of length and time scales, such as the
Rhines scale LR =

√
U/β, the scale at which small-scale forcing injecting energy at

a rate ε is affected by rotation Lε = (ε/β3)1/5 (Galperin, Sukoriansky & Dikovskaya
2010), and the growth rate of unstable perturbations to the zonal flow in statistical
models (Bakas, Constantinou & Ioannou 2019). The GNS model investigated here
provides a simplified setting for examining the dynamics of jets by parameterizing the
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jet-formation physics, rather than attempting to resolve the details of the underlying
formation processes. If one is interested in matching the effective GNS parameters
to specific length and velocity scales of more detailed models, then guidance can be
drawn from the observation that typical zonal jets in the GNS model have width ∼Λ
and root mean square velocity ∼Λ

√
Ω/τ in the rotation dominated regime Ωτ > 1.

3. Exact time-dependent solutions
Exact solutions can be constructed on the sphere as well as on the local β-plane.

Although not stable, these solutions will provide an intuitive understanding of the
numerical results in § 4, similar to the role of exact coherent structures (Waleffe 2001;
Wedin & Kerswell 2004) in classical turbulence.

3.1. Global solutions
Exact time-dependent solutions to (2.3b) can be constructed as superpositions of
normal spherical harmonic modes Ym

` (θ, φ) as

[ψ(θ, φ, t), ζ (θ, φ, t)] = [1, `±(`± + 1)](ψj(θ)+ψw(θ, φ, t)), (3.1)

with

ψj(θ)=A0Y0
`±
(θ), ψw(θ, φ, t)=Re

[
`±∑

m=1

AmYm
`±
(θ, φ) exp(−iσmt)

]
, (3.2a,b)

where Am for m= 0, 1, . . . are constants, `± are the roots of

F(−`±(`± + 1)+ 4)= 0 (3.3)

and σm satisfies the dispersion relation

cφp =
σm

m
=

−2Ω
`±(`± + 1)

. (3.4)

These solutions to (2.3b) are possible because the Jacobian determinant J vanishes
if the stream function is a superposition of spherical harmonics Ym

` with fixed `.
We choose ` to be one of the roots of the polynomial F given in (3.3). Equation
(3.4) describes the dispersion of normal-mode Rossby–Haurwitz waves (Hoskins
1973; Lynch 2009; Madden 2018). These are well known solutions of the barotropic
vorticity equation (Thompson 1982) and propagate in the direction opposite to the
sphere’s rotation with phase speed cφp . Overall, the exact solutions in (3.1) are a
combination of time-independent zonal jets (ψj) and time-varying Rossby–Haurwitz
waves (ψw). The time-independent zonal jets are spherical harmonics Y0

` (θ) which
consist of alternating crests and troughs. A selection of such modes corresponding to
different `s are shown in figure1( j–l).

3.2. β-plane solutions
Similar to the procedure on the full sphere, exact solutions to (2.7b) can be
constructed by considering superpositions of Fourier modes with wave vectors k
that correspond to the neutral modes of the pattern-forming operator. Hence, the
exact solutions are

[ψ(x, y, t), ζ (x, y, t)] = [1, k2
±
](ψj(y)+ψw(x, y, t)), (3.5)
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Linearly forced rotating flows 892 A30-7

with

ψj(y)=Re[A0 exp(ik±y)], ψw(x, y, t)=Re

[∑
|k|=k±

Ak exp(i(k · x− σkt))

]
, (3.6a,b)

where Ak are constants, k± are the positive roots of F(−k2
±
)= 0, and σk satisfies the

Rossby-wave dispersion relation (Pedlosky 2003)

cx
p =

σk

kx
=
−βkx

|k|2
. (3.7)

Here again, solutions are a combination of a time-independent zonal flow (ψj(y)) and
time-varying Rossby waves (ψw(x, y, t)). For the parameters at which the β-plane
approximation holds, the expression for the phase speed (3.7) provides an explicit
dependence on the colatitude θ through the parameter β = 2Ω sin θ0/R. The dynamics
at the poles are similar to those on a non-rotating flat plane and the non-inertial effects
matter the most at the equator.

4. Simulations
Direct numerical simulations of (2.3b) were performed using a spectral code

based on the open-source Dedalus framework (Burns et al. 2019). The code uses a
pseudo-spectral method with a basis of spin-weighted spherical harmonics (Lecoanet
et al. 2019; Vasil et al. 2019); see the appendix of Mickelin et al. (2018). A spectral
expansion with a cutoff `max = 256 suffices to obtain converged solutions. The
simulations are initialized with a random stream function and evolved from time
t/τ = 0 to t/τ = 50. In all simulations, we vary the parameters R/Λ and Ωτ for
fixed dimensionless bandwidth κΛ = 1. Narrow-band driving with κΛ� 1 leads to
‘burst’ dynamics (Mickelin et al. 2018) whereas broad-band driving κΛ� 1 leads to
classical turbulence (Frisch 1995). The simulations settle onto statistically stationary
flow states after initial relaxation periods during which the active stresses continuously
inject energy until the forcing and dissipation balance. The analysis below focuses
on the statistically stationary states.

Figure 1(a–i) shows snapshots of the dimensionless relative vorticity ζ τ for a range
of R/Λ and Ωτ at t/τ = 15. In the non-rotating case Ωτ = 0, we attain solutions
akin to those obtained by Mickelin et al. (2018). When the dimensionless rotation rate
Ωτ is increased, the flow becomes zonal, that is, the φ-variation in the vorticity field
decreases. At the highest rotation rate Ωτ =500, the vorticity field contains alternating
bands of high and low vorticity with a characteristic width. For comparison, we plot
the steady-state solutions Y0

d`−e
(θ), where d·e is the ceiling function, in figure 1( j–l).

This corresponds to the smallest ` inside the active band. The formation of zonal flows
in our model is consistent with the view (Parker & Krommes 2013; Galperin & Read
2019) that such flow structures can be described within a generic pattern formation
framework.

To better visualize the banded solutions for high rotation rates, we plot Mercator
projections of the vorticity in figure 3(a,e,i). The banded nature of the vorticity is also
reflected in the alternating structure of the mean azimuthal velocity 〈vφ〉φ in figure
3(b, f,j). The predominant scales in the flow field can be measured using the spherical
harmonic decomposition of the relative vorticity. Since ζ τ is a real field, we plot only
the coefficients with positive m in panels (c,g,k). The largest modes have m= 0 with `
values in the active band of the GNS model (indicated in grey). Figure 3(d–l) shows
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FIGURE 3. Data from steady-state solutions at t/τ = 15 for the highest rotation rate Ωτ =
500. The rows correspond to R/Λ = 2 (a–d), 4 (e–h) and 8 (i–l). Panels (a,e,i) show
Mercator projections of the dimensionless vorticity ζ τ . Panels (b, f,j) show the zonal-mean
azimuthal velocities 〈vφ〉φ/(R/τ). Panels (c,g,k) show spherical harmonic decomposition
of dimensionless vorticity ζ τ with marker size indicating amplitude and colour indicating
phase. All plots indicate the existence of dominant zonal jets with m= 0 and `s within the
active band indicated in grey. These modes are close to the exact solutions in figure 1( j–l).
Panels (d,h,l) show time variation of the energy of all the modes (black), active m = 0
modes (red) and all other modes (green); the energy contained in the active m=0 accounts
for most of the total energy in the statistically stationary state. See also supplementary
movie 2.

the total energy and the energy contained in the active m= 0 modes as a function of
time, calculated from the spherical harmonic coefficients as

E(t)
R2/τ 2

=
τ 2

R2

∑
m, 6̀=0

Em,`(t)=
1
2

∑
m, 6̀=0

|τ ζ̂m,`(t)|2

R2`(`+ 1)
. (4.1)

After the initial relaxation phase, when the energy injection balances the energy
dissipation, the total energy in the system fluctuates around a statistical mean. The
active m= 0 modes carry most of the total energy, implying that the bulk dynamics
are dominated by these few modes. This also explains the bandedness of the flow
patterns since spherical harmonics with m= 0 do not vary with the azimuthal angle
φ; see figure 1( j–l). Time-averaged energy spectra of the statistically steady states
are plotted in figure 4. The energy shows a clear peak within the active bandwidth
further suggesting that the active modes carry most of the total energy.
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normalized by the analytical phase speed in (3.4), for Ωτ = 500 and different values of
R/Λ. The dotted line indicates the value 1 for comparison.

Strikingly, the statistically stationary states exhibit Rossby waves. For high rotation
rates, the Rossby number Ro defined by (2.6) is � 1. Thus, we can directly compare
the linear phase speed given by (3.4) with the slopes of the linear least squares fits
to the phase evolution of the coefficients of vorticity ζ̂m,`(t) from the simulations. The
normalized phase speed of the modes for different values of R/Λ and Ωτ = 500 is
shown in figure 5. The plotted modes have ` in the active bandwidth, corresponding to
the grey regions in figure 3(c,g,k). The phase speed of the modes from the simulations
are close to 1 when normalized by the analytical prediction (figure 5), implying that
the linearized theory captures the main characteristics of the nonlinear dynamics.

We also analyse the phase speed of the waves as a function of latitude. According
to the dispersion relation in (3.7), the Rossby-wave phase speed cx

p depends on the
colatitude θ0 through β = 2Ω sin θ0/R. To check this prediction, we examine the local
dynamics at a number of discrete latitudes (π/2 − θ0) shown in figure 6(a–d) for
R/Λ= 8 and Ωτ = 500 (the β-plane approximation is valid for these parameters). We
show the 2-D discrete Fourier transform in time and spatial coordinate x=R(sin θ0)φ
in panels (e–l) for the same northern and southern latitudes. The unstable modes lie
within the forcing bandwidth or when k−< |k|< k+. Hence, we plot the expected wave
dispersion (3.7) making the approximations |k| ' k+ and |k| ' k−. This produces two
analytical curves for σ(kx) which are linear in kx for kx < k+. These curves capture
the spread of the spectral power in the nonlinear dynamics at every latitude; see
the white lines in figure 6(e–l). We subsequently infer that the nonlinear, statistically
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FIGURE 6. (a–d) Time–space diagrams of the deviation of vorticity, ζ − 〈ζ 〉, where 〈·〉 is
the average over time and space, indicate that the phase speed of the westward propagating
Rossby waves in the local β-plane changes with latitude. (e–l) Logarithm of the power
spectral density, S = |τ ζ̂ (kx, σ )|

2, where ζ̂ is the discrete Fourier transform, at different
northern (e–h) and southern (i–l) latitudes. The grey regions indicate the forcing bandwidth
with k− < |kx| < k+ justifying the rapid decay of the power spectral density for |kx| >
k+. The white lines in each panel show the analytical dispersion relation from (3.7) with
|k| = k+ and |k| = k−; the one with the steeper slope corresponds to k−. These predictions
capture the variance of power spectral density.

stationary states contain modes with phase speeds matching those of linear β-plane
Rossby waves.

5. Conclusions
We have presented analytical and numerical solutions of generalized Navier–Stokes

equations on a 2-D rotating sphere. This phenomenological model generalizes the
widely studied barotropic vorticity equation by adding an internal forcing that
injects energy within a fixed spectral bandwidth. We derived a family of exact
time-dependent solutions to the GNS equations on the rotating sphere as well as in
the local β-plane. These solutions correspond to a superposition of zonal jets and
westward-propagating Rossby waves. Simulations at high rotation rates confirm that
the statistically stationary states are close to these exact solutions. We further showed
that the phase speeds of waves in the simulations agree with those predicted for
linear Rossby waves. Our results suggest that the GNS framework can serve as a
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useful minimal model for providing analytical insight into complex flows on rotating
spheres, such as planetary atmospheres. It is possible to extend the GNS approach to
incorporate more than one dominant length scale by modifying the functional form
of the spectral forcing accordingly.
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Appendix A. Formulas for Λ, τ and κ

For a sphere of radius R, (Λ, τ , κ) are related to (Γ0, Γ2, Γ4) by (Mickelin et al.
2018) the following:

Λ=
2πR

2
√

17
4
−
Γ2

2Γ4
R2 − 1

, (A 1a)

τ =

[(
Γ2

2Γ4
−

2
R2

)(
Γ0 −

Γ 2
2

4Γ4

)]−1

, (A 1b)

κ =

 17
2R2
−
Γ2

Γ4
− 2

√
172

16R4
−

17
4R2

Γ2

Γ4
+
Γ0

Γ4

1/2

. (A 1c)

Letting R→∞ in (A 1), one obtains for the planar case (Słomka & Dunkel 2017b)

Λ=π

√
2Γ4

−Γ2
, τ =

[
Γ2

2Γ4

(
Γ0 −

Γ 2
2

4Γ4

)]−1

, κ =

(
−
Γ2

Γ4
− 2

√
Γ0

Γ4

)1/2

. (A 2a−c)

Appendix B. Total angular momentum
Taking the surface mass density to be 1, the total angular momentum is given by

M(t) =
∫ π

0

∫ 2π

0
R sin θvφ dA=

∫ π

0

∫ 2π

0
R3 sin2 θvφ dφ dθ

=

∫ π

0

∫ 2π

0
R3 sin2 θ(−∂θψ/R) dφ dθ =−R2

∫ π

0

∫ 2π

0
sin2 θ∂θψ dφ dθ. (B 1)
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Applying integration by parts for the θ -integral gives

M(t) = −R2
∫ 2π

0

{∫ π

0
sin2 θ∂θψ dθ

}
dφ

= −R2
∫ 2π

0

{
[sin2 θψ]π0 −

∫ π

0
2 sin θ cos θψ dθ

}
dφ

= 2R2
∫ 2π

0

∫ π

0
sin θ cos θ ψ dθ dφ. (B 2)

We may expand the stream function as ψ(θ, φ)=
∑

`,m ψ̂
m
` (t)Y

m
` (θ, φ). The φ-integral

survives only for m = 0 and Y0
` (θ, φ) = P0

`(cos θ) where P represents the associated
Legendre polynomials. Also realizing that P0

1(cos θ)= cos θ , we get

M(t)= 4πR2
∑
`

ψ̂0
` (t)

{∫ π

0
P0

1(cos θ)P0
`(cos θ) sin θ dθ

}
. (B 3)

Finally, using the orthogonality relation∫ π

0
Pm

k (cos θ)Pm
` (cos θ) sin θ dθ =

2(`+m)!
(2`+ 1)(`−m)!

δk,`, (B 4)

we obtain
M(t)=

8π

3
R2ψ̂0

1 (t). (B 5)

Following the results by Lynch (2003), it can be shown that there is no contribution
to ψ̂0

1 (t) from any triad interactions that result from the nonlinear dynamics. To see
this, we let ψ̂mγ

lγ (t)= ψ̂
0
1 (t), which interacts with coefficients ψ̂mα

`α
and ψ̂mβ

`β
. For a non-

vanishing triad interaction, the necessary conditions, |`α − `β | < `γ = 1 and `α 6= `β ,
cannot be simultaneously satisfied for `γ = 1. Additionally, equation (2.5) shows that
the GNS forcing is zero for `= 1. Thus, ψ̂0

1 (t) remains constant and the total angular
momentum is conserved.
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