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a b s t r a c t 

We introduce spectral Morse–Smale analysis as a robust method to identify topological phase transitions in dis- 
ordered continuous media. Combining microfluidic experiments with large-scale, pore-resolved simulations of 
porous media flow, we demonstrate that invariants of Morse–Smale graphs of flow speed provide a well-defined 
measure of the effects of spatial disorder on fluid transport. By systematically perturbing a microfluidic lattice, the 
fluid flow topology undergoes a phase transition from periodic to filamentous flow structure, which corresponds 
to a change in the spectral density of the Morse–Smale graphs and carries important implications for advective 
transport and front dispersion. Due to its generic formulation, spectral Morse–Smale analysis can be applied to 
detect and characterize topological transformations in a wide range of complex physical, chemical or biological 
fluid systems. 
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. Introduction 

Topology offers a robust framework to characterize complex physi-
al phenomena by focusing on properties that remain invariant under
ontinuous deformation. Topological approaches have proved powerful
ver a wide range of scales, from the detection of dark matter struc-
ures in the universe [1] and force network evolution in granular media
2–4] to the description of topological insulators [5] , quantum comput-
rs [6] and DNA conformations [7,8] . The understanding of complex
etwork structures, in particular, has benefited from such topological
nalyses [9,10] . These systems are effectively classified by their inter-
ction topology and statistics [11–13] , as in scale-free and small-world
etworks [9,14,15] . While topological analysis has been successfully
mployed in discrete settings, its applicability to pattern-formation and
ransport problems in continuous systems and complex fluids has re-
ained relatively unexplored [16–18] . Here, we introduce the concept

f spectral Morse–Smale (MS) analysis to identify topological phase tran-
itions in disordered porous media flows, by merging ideas from spectral
raph theory [19] with topological pattern recognition [20,21] . 

The MS complex [21] dissects a continuous scalar field c ( t , x ), for
xample a concentration or flow-speed field, into domains of constant
lope [20] . The resulting edge-graph encodes important topological in-
ormation about the field configuration, and as we show here, the eigen-
alue spectrum of a suitably weighted adjacency matrix can detect

ritical structural transitions in the network. We demonstrate the broad 
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pplicability of this analysis through both physical experiments and
arge-scale simulations, to show how flow structure evolves in the pres-
nce of increasing disorder within a quasi-2D porous medium. Tradi-
ional correlation measures struggle to disentangle geometric disorder
n the porous matrix from inherent changes in the flow structure [22] .
n contrast, the topological MS approach identifies a disorder-induced
hase transition from localized to filamentous flow patterns through
hanges in the spectral density of the MS graphs. The application of
his framework to polydisperse media with various porosities reveals
hat flow-filament formation relates directly to the anomalous trans-
ort properties of porous media flows [23] . These results illustrate the
ractical potential and broad applicability of spectral MS analysis for
he characterization of emergent flow structures in complex fluids, and
ore generally of pattern formation in physical, chemical and biological

ontinuum systems. 

. Topological Morse–Smale characterization of scalar functions 

We use MS analysis to partition the domain of a given scalar function
 ∶ Ω → ( ℝ ) . Below, 𝜑 is taken to be the flow speed field but in principle

t could be any scalar observable. In theory, 𝜑 has to fulfill certain tech-
ical conditions (see Ref. [20] ); these are however rather lax so that, in
ractice, the MS partitioning can be calculated for most 𝜑 . The first step
n constructing the partitioning is to calculate all the extrema of 𝜑 ; we
enote the minima by 𝐫 min 

𝑖 
, the maxima by 𝐫 max 

𝑗 
, and the saddle points
kel). 
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Fig. 1. Example of an ascending manifold around a single local minimum 𝐫 min 
𝑖 

(indicated by the white triangle) of a function 𝜑 defined on a rectangular domain 
Ω. The white arrows show sample integral lines defined by Eq. (1) for various 
initial points r 0 . The black solid lines enclose the subdomain Ωmin 

𝑖 
consisting 

of all the points that are taken by the gradient flow to the local minimum 𝐫 min 
𝑖 

(white triangle) as 𝜏→∞. The boundary 𝜕Ωmin 
𝑖 

is given by the graph (black solid 
lines) along which the integral lines go from maxima (black triangles) to saddle 
points (gray circles). The whole domain Ω of 𝜑 can be partitioned uniquely in 
this manner, yielding a graph of connected local maxima and saddle points. The 
dashed black lines further partition the ascending manifold into basic cells of 
the Morse–Smale (MS) complex. 
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Fig. 2. Example of a MS complex showing the network encompassing the de- 
scending manifolds for stress chains in a granular medium of photoelastic disks 
with a diameter of 0.8 cm or 0.9 cm detailed in Ref. [24] : (a) shows biaxial com- 
pression while for (b) the compression is uniaxial. The bright areas correspond 
to high stress. 
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. Our goal is to partition the domain Ω of 𝜑 to subdomains Ωmin 
𝑖 

hat constitute the overall domain Ω. This can be achieved by introduc-
ng integral lines r ( t ; r 0 ) of 𝜑 , defined as the paths satisfying the initial
alue problem 

 𝜏𝐫( 𝜏) = −∇ 𝐫 𝜑 ( 𝐫( 𝜏)) , 𝐫(0) = 𝐫 0 , (1)

here 𝜏 ≥ 0 parameterizes each path. Thus, according to Eq. (1) , each
 0 flows to a nearby local minimum 𝐫 min 

𝑖 
by following the gradient of 𝜑 .

e define Ωmin 
𝑖 

as the set of points that are taken to the minimum 𝐫 min 
𝑖 

s 𝜏→∞. Now, each boundary 𝜕Ωmin 
𝑖 

consists of the gradient flows from
he maxima surrounding 𝐫 min 

𝑖 
to the saddle points on the boundary; see

ig. 1 for an example. 
The maxima and the saddle points surrounding each of the minima

efine a graph containing the following information: 

• Locations of the local maxima 𝐫 max 
𝑗 

and the saddle points 𝐫 sp 
𝑘 

. 
• Values of 𝜑 at 𝐫 max 

𝑗 
and 𝐫 sp 

𝑘 
. 

• Connectivity matrix between the nodes 𝐫 max 
𝑗 

and 𝐫 sp 
𝑘 

. 
• Distances between connected pairs of critical nodes 𝐫 max 

𝑗 
and 𝐫 sp 

𝑘 

along the integral lines. 

This approach constitutes a discrete topological description of the
unction 𝜑 on Ω. The partitions Ωmin 

𝑖 
are called the ascending manifolds.

he descending manifolds Ωmax 
𝑗 

can be defined similarly using the max-
ma and gradient ascent or by calculating the descending manifolds for
 𝜑 . The intersection of an ascending manifold Ωmin 

𝑖 
and a neighbor-

ng descending manifold Ωmax 
𝑗 

defines a cell of the MS complex. In the
emainder, we only use the partitioning arising from the ascending man-
folds Ωmin 

𝑖 
, corresponding to the large domain bounded by solid lines

n Fig. 1 , which consists of more than one MS-complex cell (smaller
omains bounded by dashed lines in Fig. 1 ). 

As an illustration, we calculated the MS complex for confined pho-
oelastic disks under stress studied in Ref. [24] ( Fig. 2 ). Photoelastic
isks reveal the stress networks in granular packings, with brighter sec-
ions corresponding to higher stresses. Although the strength of the local
tresses is a highly nonlinear function of brightness [24] , the topological
67 
tructure of the network can be readily extracted since the local max-
ma of the image brightness coincide with the maxima of the stress field.
he system is compressed biaxially in Fig. 2 a and uniaxially in Fig. 2 b.
he overlaid yellow lines indicate the reconstructed MS networks ob-
ained with the DisPerSE [21] algorithm. These MS graphs encapsulate
he relevant topological information [2–4] and structure of the under-
ying stress networks. 

Below, we will apply this framework to identify and characterize
he flow networks in disordered porous media, by studying the spectral
roperties of the associated MS graphs. 

. Experimental and numerical methods 

To realize an experimental model system that exhibits a complex,
ontinuous structure, we examine Stokes flow through a quasi-2D
orous medium, which has applications to transport in biological tissues
25] , filtering and industrial processes, and environmentally-relevant
round water flows [26] . Specifically, we are interested in analyzing
ow disorder in the porous medium affects the flow network topology. 

.1. Experiments 

A series of microfluidic channels (height ℎ = 70 μm, width 𝑊 =
 . 5 mm, length 𝐿 = 6 . 5 mm) containing a 21 ×47 hexagonal array of
ylindrical pillars (diameter 50 μm) were fabricated by soft-lithography
27] enabling precise control over the microstructural disorder of the
uasi-2D porous medium ( Fig. 3 a; Appendix A ). For each microchan-
el, pillar locations were perturbed on computer-generated photomasks
rom hexagonal lattice nodes (spacing 𝓁 = 120 Ȃμm) with random dis-
lacements Δ𝐱 = 𝑟 𝐬 , where the vector s is uniformly sampled from
he unit cell and r ∈ {0, 0.125, 0.25, 0.375, 0.5, 0.75, 1.0} is the dis-
rder amplitude ( 𝑟 = 0 corresponds to a perfect lattice). The porosity
= 𝑉 f luid ∕( 𝑉 f luid + 𝑉 pil ) ≈ 0 . 84 was fixed, with V fluid and V pil denoting

he total volumes of the fluid and pillars, respectively. A syringe pump
upplied a 3 𝜇l/min flow of DI water seeded with fluorescent tracer par-
icles (0.5 μm diameter) through the porous microchannels. Individual
racers were tracked using video microscopy (Nikon Ti-e, 10 × 0.3 NA
bjective; Andor Zyla camera, 10 fps), and velocity fields were recon-
tructed using custom MATLAB codes (see also Appendix A ). 
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Fig. 3. Topological analysis of porous media flows. (a) Experimental and numerical porous microchannel geometry. Simulations use periodic boundary conditions 
in x -direction. (b) Experimental flow fields for a periodic lattice ( 𝑟 = 0 ) agree with 3D and 2D simulations. Only small subdomains are shown; see Appendix C for 
full-size simulations. Scale bar 150 μm. (c) MS-complex analysis on the flow-speed field identifies persistent flow structures by connecting maxima and saddle points 
through integral curves (illustration; black lines separate ascending manifolds). (d) The topological relevance of a connected pair ( i, j ) of critical points is measured 
by its (flow speed) persistence p ij (illustration). (e) Randomized pillar positions ( 𝑟 = 1 ) favor the formation of high-speed flow field filaments. Ascending manifolds 
of the MS complex and extrema are shown for the persistence value v p ≈0.3, corresponding to the black dashed line in (f). Scale bar 150 μm. (f) The number of 
flow speed maxima N max with persistence ≥ v p in units of 𝑢 max = 205 μm/s, normalized by the total number of pillars N pil , indicates a smooth transition in the MS 
complex from unperturbed ( 𝑟 = 0 ) to perturbed flow fields ( 𝑟 = 1 ). Deviations between experiments ( □) and simulations (solid lines) indicate that measurement noise 
dominates below v p ≈0.2. 
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.2. Simulations 

The experiments validate large-scale simulations for pillar geome-
ries identical to the microfluidic channels. We numerically solve the
D Stokes equation [28] for the velocity field u ( x, y, z ) and the pressure
 ( x, y, z ), 

 ⋅ 𝐮 = 0 , 𝜇∇ 

2 𝐮 − ∇ 𝑝 − 𝜂𝜌( 𝑥, 𝑦 ) 𝐮 = 0 (2)

here 𝜇 is the dynamic viscosity of water. No-slip boundary conditions
n the pillar surfaces are enforced through the penalty-term 𝜂𝜌u , with
( 𝑥, 𝑦 ) = 1 inside a pillar and 𝜌 = 0 otherwise. Large values of 𝜂 enforce
 = 0 inside each pillar (in our simulations 𝜂 = 6 . 4 ⋅ 10 5 𝜇∕ ℎ 2 ). We adopt
eriodic boundary conditions along x and a fixed inlet velocity 𝐮 ( 𝑦 =
 ) = (0 , − 𝑢 0 , 0) ( Fig. 3 a). 

Our experiments and 3D simulations focus on shallow channels,
 ≪ W < L , with no-slip boundaries at the top and bottom. In this case,
umerical speed-up and larger simulation domains can be achieved
y simulating an effective 2D model [29,30] , obtained by assuming a
oiseuille flow profile along the z -direction, 

 ( 𝑥, 𝑦, 𝑧 ) = 𝜙( 𝑧 ) 𝐯 ( 𝑥, 𝑦 ) 

ith 

( 𝑧 ) = 6 𝑧 ( ℎ − 𝑧 ) ∕ ℎ 2 . 

nserting this ansatz into Eq. (2) and averaging along the z -direction
ields the 2D Brinkman equations [29,30] 

̄
 ⋅ 𝐯 = 0 , 𝜇

(
∇̄ 

2 − 𝑘 2 
)
𝐯 − ∇̄ ̄𝑝 + 𝜂𝜌𝐯 = 0 , (3)

ith 𝑘 = 

√
12 ∕ ℎ, ∇̄ = ( 𝜕 𝑥 , 𝜕 𝑦 ) and averaged pressure �̄� ( 𝑥, 𝑦 ) . Although the

D description is computationally advantageous, the Poiseuille approx-
mation becomes inaccurate for densely packed pillar configurations.
qs. (2) and (3) were solved using a stabilized finite element scheme
68 
ith local adaptive mesh refinement for improved accuracy [31] , and
ompared to the microfluidic experiments ( Fig. 3 ). For ordered lattices
 𝑟 = 0 ), we find very good agreement between the periodic flow pat-
erns observed in experiments, 3D and 2D simulations ( Fig. 3 b). Hence-
orth, all flow velocities are rescaled by 𝑢 max = max 𝑟 =0 |𝐮 | = 205 μm/s for
he ordered lattice. For strongly disordered systems ( r →1), the veloc-
ty fields become irregular and high-speed filaments emerge ( Fig. 3 e)
22] . The continued agreement between experiments and simulations
uggests that the Brinkman equation remains a useful approximation in
he disordered regime ( Fig. 3 e). 

.3. Computing the Morse–Smale complex of the flow network 

The MS complex of the 2D midplane flow-speed field 𝑣 ( 𝑥, 𝑦 ) =
𝐮 ( 𝑥, 𝑦, ℎ ∕2) | is computed using the DisPerSE [21] algorithm. After deter-
ining all critical points {( x i , y i )} of v (triangles and circles in Fig. 3 c),
eighboring critical points are connected by integral lines defined by
q. (1) . Integral curves separating neighboring ascending manifolds con-
ect the maxima along ridges of v (black curves in Fig. 3 c). The persis-

ence of a pair of critical points ( i, j ) is defined as the absolute difference
f their field values ( Fig. 3 d) 

 𝑖𝑗 = |𝑣 ( 𝑥 𝑖 , 𝑦 𝑖 ) − 𝑣 ( 𝑥 𝑗 , 𝑦 𝑗 ) |. (4)

oise in the experimental data produces artificially low-persistence
airs, which can be removed in a hierarchical manner [21] by fix-
ng a persistence threshold v p . By reconnecting neighboring critical
oints with p ij > v p , one obtains a sparsified MS graph that preserves
he topologically relevant features of v [32] . A detailed error analysis
 Appendix B ) shows that a meaningful topological analysis of the exper-
mental flow fields should be restricted to structures with persistence
 ij > v noise ≈0.2 ( Fig. 3 f). However, the good agreement between exper-
ments and simulations ( Fig. 3 e,f; Fig. C3 ) allows us to focus henceforth
n the ‘noise-free’ 2D simulations. 
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Fig. 4. Spectral properties of the Morse–Smale network ( 𝑣 𝑝 = 0 . 1 ) signal a disorder-induced topological phase transition towards filamentous flow structures in 
2D simulations. (a) The normalized spectral density first approaches and then departs from Wigner’s semi-circle law (black line) with increasing disorder r . Inset: 
L 2 -distance from the Wigner law, minimum occurs at 𝑟 − ≈ 0 . 31 . (b) The normalized quantiles of 𝜎A reveal a transition from short-tailed to long-tailed spectra at 
𝑟 + ≈ 0 . 81 (yellow points); black line is a normal distribution. (c) The chain-link ratio R ≤ 2 of maxima with 2 or less outgoing edges signals persistent flow filaments at 
high disorder r . (d) The persistence-averaged order parameter 𝐼( 𝑟 ) = ⟨𝑅 ≤ 2 ⟩ calculated from (c), indicates the transition to filamentous flow structures with increasing 
r . Dashed vertical lines indicate the transition interval [ 𝑟 − , 𝑟 + ] , where 𝑟 − corresponds to the closest approach to the Wigner law in (a) and 𝑟 + to the Gaussian spectral 
density in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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. Results 

.1. Topological phase transition 

The MS graph encapsulates the physically relevant information to
dentify topological phase transitions in generic pattern-forming sys-
ems. To probe the disorder-induced transition in our porous media
odel system, we perform a spectral analysis of the persistence-
eighted adjacency matrix A ( v p ) of the flow speed MS graph for differ-

nt disorder r. A is an N ×N -matrix, where 𝑁 = 𝑁 𝑚 + 𝑁 𝑠 is the number
f maxima N m 

and saddles N s in the MS complex at persistence level v p .
he elements of A are defined as 𝐴 𝑖𝑗 = 𝑝 𝑖𝑗 if the critical points i and j
re connected, and 𝐴 𝑖𝑗 = 0 otherwise. The MS graph represented by A
s bipartite (maxima only connect to saddles, and vice versa ), so that for
ach eigenvalue 𝜆i > 0 of A , its negative − 𝜆𝑖 is also an eigenvalue and,
ence, the mean 

1 
𝑁 

∑
𝑖 

𝜆𝑖 = 0 . 

he topological phase transition from periodic to filamentous flow pat-
erns is indicated by a departure of the spectrum 𝜎𝐴 = { 𝜆𝑖 } of A from

igner’s semicircle law [33] : For real symmetric N ×N -random matrices
ith independent, identically-distributed entries, the probability distri-
ution function (PDF) of the normalized eigenvalues 𝜆/ 𝜆max approaches
1 
𝜋

√
1 − 𝜆∕𝜆max as N →∞. In contrast, the spectra of the MS adjacency ma-

rix A from the porous media model first approach and then depart from
his semicircle law as the disorder is increased from 𝑟 = 0 to 𝑟 = 1 . 25
 Fig. 4 a). The departure from Wigner’s law indicates that a supercritical
isorder of 𝑟 > 𝑟 − ≈ 0 . 31 leads to correlations in the MS graph that cor-
espond to the emergence of filamentous flow structures in the porous
edium. A quantile analysis of the rescaled 2 spectral density of A shows

n evolution from a short-tailed distribution for 𝑟 < 𝑟 + ≈ 0 . 81 to a long-
ailed distribution for 𝑟 > 𝑟 + ( Fig. 4 b). This qualitative change of the
pectral density reflects the topological transition of the MS complex
rom a highly connected network with nearest-neighbor couplings to a
parser network with long filamentous paths. 

.2. Chain links & filaments 

The development of filamentous flow structures during the topolog-
cal phase transition is also evident in the ‘chain-link’ ratio R ≤ 2 defined
s the number of maxima with two or fewer outgoing edges in the MS
2 All spectra were rescaled to match the ± 3 quantiles of a standard normal 
istribution, so that a Gaussian normal distribution corresponds to a line of slope 
 in Fig. 4 (b). 

t  

t  

i

𝜎

69 
omplex divided by the total number of maxima. If R ≤ 2 is large, then the
etwork consists of many successively linked maxima and saddles, indi-
ating that fluid transport is dominated by fluid filaments ( Fig. 3 e). Our
umerical results for R ≤ 2 confirm that filamentous structures become
ore persistent with increasing disorder r ( Fig. 4 c). The transition can

e described in terms of the order parameter 𝐼( 𝑟 ) = ⟨𝑅 ≤ 2 ⟩, where the
verage is taken over persistence-values 0 ≤ 𝑣 𝑝 ≤ 𝑣 ∗ 

𝑝 
, with 𝑣 ∗ 

𝑝 
denoting

he maximum persistence above which the graph cannot be further sim-
lified. That is, I ( r ) corresponds to the average height of the curves in
ig. 4 (c). The order parameter I sharply increases in the interval [ 𝑟 − , 𝑟 + ] ,
emonstrating ( i ) that the onset of filament formation coincides with the
eparture from Wigner’s law and ( ii ) that the transition is “complete ”
hen the spectral density of the MS adjacency matrix has become long-

ailed ( Fig. 4 b,d). 

.3. Polydisperse media 

Pore geometry dictates anomalous transport through the formation
f filamentous flow structures, which we elucidate through topological
S analysis. Simulated flow structures are compared for different pillar

eometries: 

(MR) mono-disperse random with 𝑟 = 1 . 0 ; 
(PO) polydisperse ordered hexagonal lattice with normally distributed

pillar diameters (mean ⟨𝑑⟩ = 50 μm; variance 𝜎 = 𝓁∕2 ) permitting
for a small obstacle-overlap probability; 

(PR) polydisperse-random with same pillar size distribution as PO but
randomized positions with 𝑟 = 1 . 0 ; 

(PR 

∗ ) polydisperse-random with 𝑟 = 1 . 0 but large pillar size variation
( ⟨𝑑⟩ = 50 μm; 𝜎 = 2 𝓁). 

Simulations were performed for porosities 𝜙1 = 0 . 84 (MR, PO, PR)
nd 𝜙2 = 0 . 65 (MR, PO, PR, PR 

∗ ); see Appendix C for details. The struc-
ure of the simulated fluid velocity fields suggests that filament forma-
ion is more pronounced in low porosity media compared to higher
orosities ( Figs. 5 a,b and D1 ), which is confirmed quantitatively by
easuring the chain length R ≤ 2 as a function of persistence ( Figs. 5 c

nd D2 a). Accordingly, the order parameter values for low porosity
 . 6 ≤ 𝐼 ϕ2 ≤ 0 . 66 are significantly larger than for high porosity 0 . 47 ≤
 ϕ1 ≤ 0 . 52 ( Fig. 5 c). The MS graph structures become more complex at
ower porosity, which is evident from the persistence-averaged number
f maxima in chains ⟨𝑁 

max ≤ 2 ⟩ ( Figs. 5 c and D2 b). 
Consistent with traditional correlation-based approaches [34–36] ,

he filamentous character of porous media flows directly affects the
ransport properties of these systems. By constructing the streamlines
n each medium, we calculated the front dispersion 

2 
𝑌 
= ⟨[ 𝑌 ( 𝑡 ∕ 𝑡 pil ) − ⟨𝑌 ( 𝑡 ∕ 𝑡 pil ) ⟩] 2 ⟩∕ ⟨𝑑⟩2 , 
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Fig. 5. Simulated flow through a polydisperse, ordered lattice at porosity 𝜙1 = 
0 . 84 (a) and porosity 𝜙2 = 0 . 65 (b). Scale bar 300 μm. MS complex persistence 
is 𝑣 𝑝 ∕ 𝑣 ∗ 𝑝 = 1∕3 . Colorbars are capped at 3 ⟨u ⟩ to visualize flow channels. (c) The 
filament order parameter 𝐼 = ⟨𝑅 ≤ 2 ⟩ confirms that low porosity geometries ( ◊) 
provide more filamentous flows independent of the type of spatial disorder. 
(d) Front dispersion is affected by filamentous flow structures, with almost bal- 
listic transport for low porosities, and smaller exponents ∼ t 3/2 for equally sized 
media at higher porosities. Diffusive transport ( ∼ t ) shown for reference. 

Fig. 6. Morse–Smale (MS) complex and ‘pruned’ resistor network (RN) with 
equivalent number of links share similar graph structure. (a) Complete RN ap- 
proximation to a monodisperse porous medium. Line thickness is proportional 
to conductance. (b) Pruned RN with MS complex overlaid. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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here Y ( t ) is the y -position of a fluid particle at time t, t pil is the aver-
ge time to advect a distance ⟨d ⟩, and ⟨ · ⟩ denotes the average over 1000
andomly chosen streamlines. After initial transients, when spatial dis-
rder becomes relevant, the less filamentous flows at high porosities

1 exhibit smaller transport exponents, 𝜎2 
𝑌 
∼ ( 𝑡 ∕ 𝑡 pil ) 3∕2 consistent with

andom walk models in stratified fluids [37] , whereas front-diffusion
n low porosity media is asymptotically ballistic even at a large times
 Fig. 5 d). Thus, flow filament distributions dictate the transport proper-
ies of porous media [38–42] . 

The MS complex is representative of the dominant fluid flow path-
ays through the porous medium, explaining the strong correlation with

he physical transport properties. We consider a simplified resistor net-
ork model of the porous medium ( Fig. 6 a). The boundaries of the
oronoi cells around the pillars define a network approximation of the
ore-links, and the nodes correspond to the pores 𝑖 = 1 , … , 𝑁 𝑝 . Trans-
70 
ort between nodes i and j is represented by the flux matrix element
 ij and the pore pressure at i by P i . Incompressible flow through the
etwork is governed by Kirchhoff’s rule ∑
∈ ( 𝑖 ) 

𝑄 𝑖𝑗 = 0 , 

here  ( 𝑖 ) denotes the neighbors of i , and Ohm’s law 

 𝑖𝑗 = 𝐶 𝑖𝑗 ( 𝑃 𝑖 − 𝑃 𝑗 ) . 

dopting a Poiseuille approximation and assuming a rectangular pore-
ink geometry (length l ij ∼ d , width w ij , height h ), the conductances are
43] 

 𝑖𝑗 = 

min ( ℎ, 𝑤 𝑖𝑗 ) 2 

4 𝜇𝑑 

[ 
1 
3 
− 

64 𝜖𝑖𝑗 
𝜋5 tanh 

( 

2 𝜋
𝜖𝑖𝑗 

) ] 
(5)

here 𝜖𝑖𝑗 = min ( ℎ ∕ 𝑤 𝑖𝑗 , 𝑤 𝑖𝑗 ∕ ℎ ) and solutions are obtained through ma-
rix inversion. To compare directly the fluid pathways between the sim-
lified network model and the MS complex for a given persistence v p ,
e iteratively ‘prune’ the network by first deleting the link carrying the

owest flux and subsequently recomputing the flow through the reduced
etwork. Fig. 6 b shows a pruned resistor network (red) with 28% of the
inks removed to match approximately the number of links in the corre-
ponding MS network, which is overlaid (blue). The agreement between
he two networks illustrates that the MS complex captures the primary
ransport routes through the medium. 

. Discussion and conclusions 

We have introduced spectral Morse–Smale (MS) analysis to identify
opological transitions in porous media flows. The underlying method-
logy can be straightforwardly applied to time-dependent and multi-
pecies flows in 2D and 3D, and could offer new insights into the effects
f flow network topology on Taylor–Aris dispersion [44–46] . While we
ocused here on the MS transport graph of the flow speed field, topolog-
cal networks of other observables, including pressure, concentration,
nd more, can be constructed in an analogous manner. Their associated
eighted-graph spectra will typically carry useful information about the
istribution of dissipative or diffusive fluxes. To illustrate this briefly
or an idealized scenario, let us consider a 3D porous media flow u with
iscosity 𝜇 and slip boundary conditions, so that gradients transverse to
ow channel directions can be neglected. In this case, the spectrum of
he persistence-weighted adjacency matrix can be linked to dissipation
s follows: the dissipated power  𝑖𝑗 of the flow between vertices i and j
f the MS graph connecting maxima and saddles can be expressed as 

 𝑖𝑗 = 𝜇 ∫Ω𝑖𝑗 

d 𝐫 ‖∇ 𝐮 ‖2 , 
here Ωij is a fluid cell enclosing the MS path ( ij ) between vertices i
nd j , and ‖∇ u ‖ is the Frobenius norm of the flow gradient tensor. Let
 Ωij | be the volume of the cell Ωij and l ij the distance between i and j .
ssuming that the velocity field in Ωij is aligned with ( ij ) and neglecting

ransverse gradients, we may approximate 

 𝑖𝑗 ≈ 𝜇|Ω𝑖𝑗 | |𝐮 𝑖 − 𝐮 𝑗 |2 
𝑙 2 
𝑖𝑗 

≈ 𝜇|Ω𝑖𝑗 | |𝑢 𝑖 − 𝑢 𝑗 |2 
𝑙 2 
𝑖𝑗 

, 

here 𝑢 𝑖 = |𝐮 𝑖 | denotes the flow speed at the location of vertex i of the
S graph. Note that |𝐮 𝑖 − 𝐮 𝑗 | ≈ |𝑢 𝑖 − 𝑢 𝑗 | because an ( ij )-aligned veloc-

ty field cannot reverse its direction between a speed maximum i and
djacent saddles j . The geometric factor 𝑤 𝑖𝑗 = |Ω𝑖𝑗 |∕ 𝑙 2 𝑖𝑗 defines an ef-
ective transverse length scale of the flow channel enclosing the MS
ath ( ij ). Given the actual diameters w i and w j of the flow channels at
he MS vertex positions i and j , we can approximate w ij by the geomet-
ic mean 𝑤 𝑖𝑗 ≈ min ( 𝑤 𝑖 , 𝑤 𝑗 ) ≈

√
𝑤 𝑖 𝑤 𝑗 . Abbreviating 

√
𝑤 𝑖 = 𝜓 𝑖 , the total

issipation power can be written as the sum over all branches ( ij ) as 

( 𝑖𝑗) 
 𝑖𝑗 ≈ 𝜇

∑
( 𝑖𝑗) 

𝜓 𝑖 |𝑢 𝑖 − 𝑢 𝑗 |2 𝜓 𝑗 =∶  . 
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Fig. A1. Experimental setup (top) and microfluidic device (bottom). For scale, 
the microfluidic device is fabricated on a standard 25 mm × 75 mm microscope 
slide. 

Fig. A2. Representative examples of flow speed fields measured in our ex- 
periments for different values of the disorder parameter r . Color bar: 𝑢 max = 
205 μm/s. Flow direction: from top to bottom. Scale bars 150 μm. 
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oting that 

 𝑝 ≤ |𝑢 𝑖 − 𝑢 𝑗 | ≤ 𝑢 max 

here u p is the persistence speed (level) and u max the flow speed maxi-
um, we can bound  by 

 𝑝 

∑
( 𝑖𝑗) 

𝜓 𝑖 |𝑢 𝑖 − 𝑢 𝑗 |𝜓 𝑗 ≤ 

 

𝜇
≤ 𝑢 max 

∑
( 𝑖𝑗) 

𝜓 𝑖 |𝑢 𝑖 − 𝑢 𝑗 |𝜓 𝑗 . 

n terms of the persistence-weighted adjacency matrix A ij as defined
bove, this inequality can be rewritten as 
𝑢 𝑝 

2 
∑
𝑖,𝑗 

𝜓 𝑖 𝐴 𝑖𝑗 𝜓 𝑗 ≤ 

 

𝜇
≤ 

𝑢 max 
2 

∑
𝑖,𝑗 

𝜓 𝑖 𝐴 𝑖𝑗 𝜓 𝑗 . 

he matrix A ij is real and symmetric, implying that its eigenvalues 𝜆n are
eal and that the eigenvectors 𝜓 

( n ) can be chosen orthonormal. Expand-
ng 𝜓 𝑖 = 

∑
𝑛 𝑐 𝑛 𝜓 

( 𝑛 ) 
𝑖 
, with the system-dependent coefficients c n describing

he channel (pore) widths, the upper and lower dissipation bounds be-
ome 
1 
2 
𝑢 𝑝 

∑
𝑛 

𝑐 2 
𝑛 
𝜆𝑛 ≤ 

 

𝜇
≤ 

1 
2 
𝑢 max 

∑
𝑛 

𝑐 2 
𝑛 
𝜆𝑛 . 

hus, in this setting, a spectrum { 𝜆n } peaked around zero corresponds
o a system in which the majority of flow channels exhibit small dissipa-
ion. Analogous physical interpretations may be achievable in other ap-
lications depending on the observable chosen to construct the Morse–
male complex. 

In conclusion, the underlying mathematical framework renders the
echniques introduced here broadly applicable to study topological tran-
itions in a wide range of equilibrium and non-equilibrium systems, in-
luding non-Newtonian and unsteady fluid flows. The above discussion
emonstrates that the Morse–Smale complex robustly captures the un-
erlying flow structure in ordered and disordered porous media, provid-
ng a new methodology to understand transport in these systems. More
enerally, the spectral analysis of Morse–Smale complex networks has
he potential to yield new insights into stress propagation in active gels
47] and granular media [2–4,48,49] , to identify morphological changes
n biological tissues [50] , and to characterize pattern-formation transi-
ions in reacting chemical systems [51] and complex fluids [52] . 
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ppendix A. Experiments 

The setup of our microfluidics experiments is shown in Fig. A1 . Poly-
imethylsiloxane (PDMS) channels were fabricated using soft lithog-
aphy [27] , where each channel has a height ℎ = 70 μm, width 𝑊 =
 . 5 mm and length 𝐿 = 6 . 5 mm, and contains an array of 21 ×47 cylin-
rical pillars (diameter 50 μm) in their central region ( Fig. 3 a). The pil-
ars form a randomized hexagonal lattice in the ( x, y )-plane (lattice spac-
ng 𝓁 = 120 Ȃμm, porosity 𝜙 = 0 . 84 ). Pillar positions are determined by
dding random displacements Δ𝐱 = 𝑟 𝐬 to the nodes of a perfect hexag-
nal lattice. The random vectors s are uniformly distributed in the unit
ell. The parameter 𝑟 ∈ {0 , 0 . 125 , … , 1} determines the degree of disor-
er: 𝑟 = 0 corresponds to a perfectly ordered lattice, whereas for 𝑟 = 1
illar centers can be placed everywhere within a unit cell around the lat-
ice nodes. Photolithography is used to create PDMS molds using high
esolution photomasks from the computer-generated pillar geometry.
DMS microchannels are initially filled with alcohol to avoid bubble
ormation. A syringe pump (Harvard Apparatus, PHD Ultra) drives a
uspension of fluorescent tracer particles (0.5 μm diameter; Invitrogen),
71 
hich are suspended in DI water (0.16 𝜇l of 2% v/v tracer particle so-
ution per ml of water) with 0.1% bovine serum albumen to prevent
article adhesion to the microchannel surfaces. Particle suspensions are
riven at a flow rate of 3 𝜇l /min and the tracer motion is recorded us-
ng an epifluorescence microscope (Nikon Ti-e; 10 × 0.3 NA objective)
t 10 fps (Andor Zyla camera). The focal depth of the imaging system
as ≈7.5 μm and the field of view was 1664 μm × 1404 μm. Individual

racers were tracked and the velocity fields reconstructed using custom
ATLAB algorithms ( Fig. A2 ). 

ppendix B. Estimating noise in experimental data 

Spectral MS analysis can be used to determine noise levels in the
xperimental data. To demonstrate this, we compare basic properties
f the MS complexes for experimental and numerical speeds v , varying

https://doi.org/10.13039/501100001711
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000001
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 ∈ [0, 1]. In the ordered limit case 𝑟 = 0 , N pil pillars cause 𝑁 max = 𝑁 pil 
axima in v ( Fig. 3 f). This suggests that we may study the normalized
ensity of maxima 𝜌max = 𝑁 max ∕ 𝑁 pil as a domain-size-independent or-
er parameter. Plotting 𝜌max as function of the persistence cutoff v p 
hows good agreement between experiments and 2D simulations for
 p ≳0.2 ( Fig. 3 f). We therefore conclude that the measurement noise
n the experiments falls below the persistence threshold v noise ≈0.2, im-
lying that a meaningful MS analysis of the experimental data should
e restricted to topological structures of persistence p ij > v noise . 

ppendix C. Experiments vs. simulations 

Spectral MS analysis detects topological differences between ex-
erimental and numerical data, when other standard measures be-
ome insensitive. To illustrate this, we consider the relative local er-
or 𝜀 ( 𝑥, 𝑦 ) = ( 𝑣 sim − 𝑣 exp )∕ 𝑣 exp between flow speeds measured in experi-
ents and simulations. For both 3D simulations ( Fig. C1 ) and 2D sim-
lations ( Fig. C2 ), we find that 𝜀 is dominated by deviations near pil-
ar boundaries ( Fig. C3 a,b), masking systematic differences between the
ig. C1. Result of a 3D simulation with disorder parameter 𝑟 = 1 using a local 
daptive mesh (black grid lines). Scale bar 150 μm. 

ig. C2. Representative examples of flow fields obtained in our 2D simulations 
f the Brinkman model for different values of the disorder parameter r . The white 
ectangle indicates the subdomain shown in Fig. 1 e of the Main Text. Color bar: 
 max = 205 μm/s. Flow direction: from top to bottom. Scale bar 300 μm. 

Fig. C3. Topological error estimation using Morse–Smale analysis. (a,b) The lo- 
cal relative error 𝜀 = ( 𝑣 exp − 𝑣 sim )∕ 𝑣 exp between experimentally and numerically 
obtained flow speeds is dominated by deviations near pillar boundaries for both 
3D and 2D simulations. (c) The distribution of 𝜀 provides little insight into the 
quality of either simulation type. (d,e) Small but persistent deviations in the flow 

field (in units of 𝑢 max = 205 μm) are made apparent by comparing the Morse–
Smale graph of experiments and 2D simulations. (f) The spectral error 𝜀 𝜎 defined 
in the text indicates that 3D simulations reproduce experimentally observed flow 

structures consistently better than 2D simulations. Scale bar: 150 μm. 
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72 
D and the 3D model, as evident from the nearly identical probabil-
ty density functions (PDFs) in Fig. C3 c. To obtain a more sensitive
opological similarity measure, we compare the MS complex for flow-
peed data from experiments with 3D and 2D simulations at various
ersistence levels 𝑣 𝑝 ∈ [0 , 𝑣 ∗ 

𝑝 
] , where 𝑣 ∗ 

𝑝 
≈ 1 . 21 is the maximum persis-

ent speed beyond which the descending manifold complex cannot be
implified further. Visual inspection reveals that, in contrast to the local
rror measure 𝜀 , the descending manifolds reflect local deviations be-
ween experiments and 2D simulations already at intermediate persis-
ence levels v p ∼0.5 ( Fig. C3 d,e). These differences are encoded in the
igenvalue spectrum 𝜎𝐴 = { 𝜆𝑖 } of the persistence-weighted adjacency
atrix A of the underlying MS graph structures. A is an N ×N -matrix,
here 𝑁 = 𝑁 𝑚 + 𝑁 𝑠 is the total number of maxima N m 

and saddles N s 

n the MS complex at persistence level v p . We define 𝐴 𝑖𝑗 = 𝑝 𝑖𝑗 if the
ritical points i and j are connected, and 𝐴 𝑖𝑗 = 0 otherwise. The graph
epresented by A is bipartite (maxima only connect to saddles, and vice

ersa ), so that for each eigenvalue 𝜆i > 0 of A , − 𝜆𝑖 is also an eigenvalue
nd, hence, the mean ⟨𝜎𝐴 ⟩ = 0 . We therefore consider the variance ⟨𝜎2 

𝐴 
⟩

o define the relative spectral error between experiment and simulation
s 𝜀 𝜎 = 1 − ⟨𝜎2 

𝐴 sim 
⟩∕ ⟨𝜎2 

𝐴 exp 
⟩. Plotting 𝜀 𝜎 for 2D and 3D simulations demon-

trates that the 3D model better reproduces the experimentally mea-
ured flow topology over the entire persistence range [0 , 𝑣 ∗ 

𝑝 
] . However,

espite significant deviations at high persistence levels, the 2D simula-
ions still provide a reasonable approximation to the 3D flow topology
t intermediate values of 𝑣 𝑝 ∕ 𝑣 ∗ 𝑝 ≤ 0 . 7 . In the remainder, we will focus
n the 2D model which makes it possible to simulate macroscale media
fficiently. 

ppendix D. Porosity affects filament formation 

To study the effect of porosity and disorder on filament formation in
orous media flows, we compare the 𝑟 = 1 . 0 medium at porosity 𝜙1 =
 . 84 (MD, 𝜙1 ) to an equivalent medium with 𝑟 = 1 . 0 , pillar diameter
 = 50 μm, but lower average pillar spacing, resulting in lower porosity
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Fig. D1. Simulated flow through porous media at porosities 𝜙1 = 0 . 84 and 
𝜙2 = 0 . 65 for polydisperse ordered (PO), polydisperse random (PR, PR ∗ ) and 
monodisperse media with 𝑟 = 1 . 0 (MR). Lower porosities ( 𝜙2 , higher pillar den- 
sity) favor the formation of filaments and dead zones for all randomizations con- 
sidered. For improved visualization of channels, colorbars are capped at 3 ⟨u ⟩, 
where ⟨u ⟩ is the average fluid speed in the fluid domain. Scale bar 300 μm. 
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Fig. D2. (a) Flow through porous media at low porosities ( 𝜙2 ) leads to larger 
filament chain ratios R ≤ 2 , with small dependence on the type of random media 
(MR: monodisperse random, PO: polydisperse ordered, PR: polydisperse ran- 
dom, PR ∗ polydisperse random with larger pillar size fluctuations). (b) The 
graph complexity, measured by the number of maxima forming filament chains, 
𝑁 

max ≤ 2 for a given persistence v p , generally increases with lower porosity, as in- 
dicated by the averages ⟨𝑁 

max ≤ 2 ⟩ over 0 ≤ 𝑣 𝑝 ≤ 𝑣 ∗ 𝑝 (horizontal lines). 
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2 = 0 . 65 (MR, 𝜙2 ). We further consider media of the same porosity but
ith different types of disorder. 

Polydisperse-ordered media (PO) Starting from an ordered hexagonal
attice with pillar diameter 𝑑 = 50 μm and porosities 𝜙1 or 𝜙2 , the pil-
ar diameters are drawn from a Gaussian distribution with ⟨𝑑⟩ = 50 μm
nd variance 𝜎 = 𝓁∕2 . To correct for slight changes in the porosity after
andomization of the pillar diameters, all pillars are uniformly rescaled
n diameter to match either porosity 𝜙1 or 𝜙2 . This rescaling is typically
ssociated with changing the pillar diameter by less than 3% and hence,
o good approximation, does not change the average pillar diameter. 

Polydisperse-random media (PR) Random-polydisperse media with
he same pillar diameter distributions as in the PO media are generated
y randomly placing the pillars of a PO medium of porosity 𝜙1 or 𝜙2 
n sequential order. A position in the channel is chosen from a uniform
andom distribution and a pillar is placed if there is no overlap with
reviously placed pillars. To guarantee packing of all pillars even at low
orosities, pillars are placed in descending order of their diameters. 

Polydisperse random media with large pillar fluctuations (PR 

∗ ) To study
he effects of larger fluctuations in the pillar diameters, we addition-
lly consider pillars with ⟨𝑑⟩ = 50 μm and variance 𝜎 = 2 𝓁, placed in se-
uential order as in PR media. After each pillar placement, the current
orosity is calculated and placement of new pillars stops once the target
orosity is reached. Due to the large pillar size fluctuations, PR 

∗ media
t high porosities 𝜙1 contain only a few pillars. Considerably larger sys-
em sizes would thus be needed to study their transport behavior. We
herefore only consider PR 

∗ at low porosity 𝜙2 = 0 . 65 . 
The numerically computed flow fields suggest lower porosities in-

rease channel formation in porous media flows for all considered ran-
om porous media ( Fig. D1 ). This feature is confirmed quantitatively by
he chain-link ratio R ≤ 2 and its average 𝐼 = ⟨𝑅 ≤ 2 ⟩ ( Fig. D2 ), showing
enerally higher values of I for low porosity media, irrespective of the
ype of disorder. To study how the type of disorder affects the MS com-
lex within all media of same porosity, we consider the total number
73 
f maxima being part of chain-like filaments, 𝑁 

max ≤ 2 , i.e. maxima with
nly two or less connected neighbors, as function of the persistence v p 
 Fig. D2 b). Its average over all persistences, ⟨𝑁 

max ≤ 2 ⟩ (horizontal lines in
ig. D2 b) indicates that for either porosity 𝜙1 and 𝜙2 , monodisperse
andom media (MR) result in the most complex filament structures, fol-
owed by polydisperse random (PR) and polydisperse ordered media
PO), which have similar complexities for given porosity. PR 

∗ has lowest
raph complexity of all media, despite its low porosity. When comparing
ow fields of the entire simulation domain ( Fig. D1 ), the PO 

∗ flow field
ppears to be considerably less isotropic than those of the other media,
uggesting that the MS graph complexity could provide an alternative
easure of the homogeneity of porous media flows at different length

cales. 
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