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Classical turbulence theory assumes that energy transport in a 3D
turbulent flow proceeds through a Richardson cascade whereby
larger vortices successively decay into smaller ones. By contrast,
an additional inverse cascade characterized by vortex growth
exists in 2D fluids and gases, with profound implications for mete-
orological flows and fluid mixing. The possibility of a helicity-
driven inverse cascade in 3D fluids had been rejected in the 1970s
based on equilibrium-thermodynamic arguments. Recently, how-
ever, it was proposed that certain symmetry-breaking processes
could potentially trigger a 3D inverse cascade, but no physical
system exhibiting this phenomenon has been identified to date.
Here, we present analytical and numerical evidence for the exis-
tence of an inverse energy cascade in an experimentally validated
3D active fluid model, describing microbial suspension flows that
spontaneously break mirror symmetry. We show analytically that
self-organized scale selection, a generic feature of many biolog-
ical and engineered nonequilibrium fluids, can generate parity-
violating Beltrami flows. Our simulations further demonstrate
how active scale selection controls mirror-symmetry breaking and
the emergence of a 3D inverse cascade.
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Turbulence, the chaotic motion of liquids and gases, remains
one of the most widely studied phenomena in classical

physics (1, 2). Turbulent flows determine energy transfer and
material mixing over a vast range of scales, from the interstel-
lar medium (3, 4) and solar winds (5) to the Earth’s atmosphere
(6, 7), ocean currents (8), and our morning cup of coffee. Of par-
ticular recent interest is the interplay of turbulence and active
biological matter (9), owing to its relevance for carbon fixa-
tion and nutrient transport in marine ecosystems (10). Although
much has been learned about the statistical and spectral proper-
ties of turbulent flows both experimentally (11–13) and theoreti-
cally (14–21) over the last 75 years, several fundamental physical
and mathematical (22) questions still await their answer. One of
the most important among them, with profound implications for
the limits of hydrodynamic mixing, concerns whether 3D turbu-
lent flows can develop an inverse cascade that transports energy
from smaller to larger scales (19, 23, 24).

Kolmogorov’s 1941 theory of turbulence (14) assumes that tur-
bulent energy transport in 3D proceeds primarily from larger
to smaller scales through the decay of vortices. This forward
(Richardson) cascade is a consequence of the fact that the 3D
inviscid Euler equations conserve energy (1). In 1967, Kraich-
nan (17) realized that the presence of a second conserved quan-
tity, enstrophy, in 2D turbulent flows implies the existence of two
dual cascades (25): a vorticity-induced cascade to smaller scales
and an inverse energy cascade to larger scales (20, 26). Two years
later, Moffatt (27) discovered a new invariant of the 3D Euler
equations, which he termed helicity. Could helicity conservation
generate an inverse turbulent cascade in 3D? Building on ther-
modynamic considerations, Kraichnan (23) argued in 1973 that
this should not be possible, but he also conceded that turbu-
lent flows do not necessarily follow equilibrium statistics. Since
then, insightful theoretical studies (19, 24) have elucidated other
important conditions for the emergence of helicity-driven inverse

cascades in 3D fluids, in particular identifying mirror-symmetry
breaking as a key mechanism (24). However, no natural or arti-
ficially engineered fluid system exhibiting this phenomenon has
been identified to date.

Here, we predict that fluid flows in active nonequilibrium liq-
uids, such as bacterial suspensions, can spontaneously break mir-
ror symmetry, resulting in a 3D inverse cascade. Broken mir-
ror symmetry plays an important role in nature, exemplified
by the parity-violating weak interactions (28) in the standard
model of particle physics, by the helical structure of DNA (29)
or, at the macroscale, by chiral seed pods (30). Another, fluid-
based realization (31) of a spontaneously broken chiral symmetry
was recently observed in confined bacterial suspensions (32, 33),
which form stable vortices of well-defined circulation when the
container dimensions match the correlation scale ⇠70µm of the
collective cell motion in bulk (34, 35). Motivated by these obser-
vations, we investigate a generalized Navier–Stokes model (36,
37) for pattern-forming nonequilibrium fluids that are driven by
an active component, which could be swimming bacteria (34, 35)
or ATP-driven microtubules (38, 39) or artificial microswimmers
(40–42). The theory uses only generic assumptions about the
symmetries and long-wavelength structure of active stress tensors
and captures the experimentally observed bulk vortex dynam-
ics in 3D bacterial suspensions (34, 35) and in flows driven by
isotropic active microtubule networks (38) (Fig. S1).

To demonstrate the existence of a helicity-driven inverse cas-
cade in 3D active bulk fluids, we first verify analytically the exis-
tence of exact parity-violating Beltrami-flow (43–45) solutions.
We then confirm numerically that active bulk flows starting from
random initial conditions approach attractors that spontaneously
break mirror symmetry and are statistically close to Beltrami-
vector fields. Finally, we demonstrate that the broken mirror
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symmetry leads to an inverse cascade with triad interactions as
predicted by Waleffe (19) about 25 years ago.

Results

Theory. We consider pattern-forming nonequilibrium fluids con-
sisting of a passive solvent component, such as water, and a
stress-generating active component, which could be bacteria
(34), ATP-driven microtubules (38), or Janus particles (46, 47).
In contrast to earlier studies, which analyzed the velocity field of
the active matter component (35, 48, 49), we focus here on the
incompressible solvent velocity field v(t , x) described by

r · v = 0, [1a]

@tv + v ·rv = �rp +r · �, [1b]

where p(t , x) is the local pressure. The effective stress tensor
�(t , x) comprises passive contributions from the intrinsic solvent
fluid viscosity and active contributions representing the stresses
exerted by the microswimmers on the fluid (50–53). Experiments
(32, 34, 35, 38, 54, 55) show that active stresses typically lead to
vortex scale selection in the ambient solvent fluid. This mesoscale
pattern formation stands in contrast to the scale-free vortex
structures in externally driven classical turbulence and can be
described phenomenologically through the stress tensor (36, 37)

� = (�0 � �2r2 + �4r4)[rv + (rv)>], [1c]

where the higher-order derivatives r2n ⌘ (r2)
n , n � 2 account

for non-Newtonian effects (56) (Model Justification). Such
higher-order stresses arise naturally from diagrammatic expan-
sions (57). Similar 1D and 2D models have been studied in the
context of soft-mode turbulence and seismic waves (58–60).

The parameters (�0,�2,�4) encode microscopic interac-
tions, thermal and athermal fluctuations, and other nonequi-
librium processes. For �2 =�4 =0, Eq. 1 reduce to the stan-
dard Navier–Stokes equations with kinematic viscosity �0 > 0.
For �0 > 0,�4 > 0 and �2 < 0, Eq. 1c defines the simplest ansatz
for an active stress tensor that is isotropic, selects flow pat-
terns of a characteristic scale (Fig. 1), and yields a stable theory
at small and large wavenumbers (36, 37). The active-to-passive
phase transition corresponds to a sign change from �2 < 0
to �2 > 0, which can be realized experimentally through ATP
or nutrient depletion. The nonnegativity of �0 and �4 follows
from stability considerations. �0 describes the damping of long-
wavelength perturbations on scales much larger than the corre-
lation length of the coherent flow structures, whereas �2 and �4

account for the growth and damping of modes at intermediate

A B C

Fig. 1. Exact Beltrami-flow solutions and spontaneous mirror-symmetry breaking in 3D simulations. (A) Linear stability analysis of Eq. 1 distinguishes three
different regions in Fourier space: Domains I and III are dissipative, whereas domain II represents active modes. The radius of the active shell II corresponds
approximately to the inverse of characteristic pattern formation scale ⇤. The bandwidth  measures the ability of the active fluid component to concentrate
power input in Fourier space. (B) Two examples of exact stationary bulk solutions of Eq. 1 realizing Beltrami vector fields of opposite helicity, obtained from
Eq. 5 by combining modes of the same helicity located on one of the marginally stable gray surfaces in A. (C) Simulations with random initial condition
spontaneously select one of two helicity branches. The histogram represents an average over 150 runs with random initial conditions, sampled over the
statistically stationary state starting at time t = 20⌧ (dashed line). Simulation parameters: ⇤ = 75 µm, U = 72 µm/s, I = 0.9/⇤, L = 8⇤ (see also Fig. 2
and Supporting Information for larger simulations).

and small scales (Fig. 1A). The resulting nonequilibrium flow
structures can be characterized in terms of the typical vortex size
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Specifically, we find ⇤=41µm, U =57µm/s, and =73
mm�1 for flows measured in Bacillus subtilis suspensions (34, 35)
and ⇤=130µm, U =6.5µm/s, and =21 mm�1 for ATP-
driven microtubule–network suspensions (38) (Comparison with

Experiments). We emphasize, however, that truncated polyno-
mial stress tensors of the form 1c can provide useful long-
wavelength approximations for a broad class of pattern-forming
liquids, including magnetically (61), electrically (62), thermally
(46, 63, 64), or chemically (47, 65) driven flows.

Exact Beltrami-Flow Solutions and Broken-Mirror Symmetry. The
higher-order Navier–Stokes equations defined by Eq. 1 are
invariant under the parity transformation x ! �x. Their solu-
tions, however, can spontaneously break this mirror symmetry.
To demonstrate this explicitly, we construct a family of exact
nontrivial stationary solutions in free space by decomposing the
Fourier series v(t , k) of the divergence-free velocity field v(t , x)
into helical modes (19, 24)

v(t , k) = u
+(t , k) h+(k) + u

�(t , k) h�(k), [2]

where h± are the eigenvectors of the curl operator, ik ^ h± =
±kh± with k = |k|. Projecting Eq. 1b onto helicity eigenstates
(19) yields the evolution equation for the mode amplitudes u±,

[@t + ⇠(k)]u±(t , k) =
X

(p,q) : k+p+q=0

f
±(t ; k, p, q), [3]

where ⇠(k)=�0k
2+�2k

4+�4k
6 is the active stress contribution,

and the nonlinear advection is represented by all triadic interac-
tions (19, 24)

f
sk (t ; k, p, q) = �1

4

X

sp ,sq

(spp � sqq)
h
(h

sp ^ h
sq ) · h

sk
i
u
sp
u
sq

[4]
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between helical k modes and p, q modes, where sk , sp , sq 2 {±}
are the corresponding helicity indexes [overbars denote com-
plex conjugates of hsp = hsp (p), etc. (19)]. There are 2 degrees
of freedom per wavevector and hence eight types of interac-
tions for every triple (k, p, q). As evident from Eq. 4, arbitrary
superpositions of modes with identical wavenumber p= q = k⇤
and same helicity index annihilate the advection term, because
spp � sqq =0 in this case. Therefore, by choosing k⇤ to be a root
of the polynomial ⇠(k), corresponding to the gray surfaces in Fig.
1A, we obtain exact stationary solutions

v±(x) =
X

k,k=k⇤

u
±(k)h±(k)e ik·x, [5]

where u
±(�k) = u

±(k) ensures real-valued flow fields. In par-
ticular, these solutions (Eq. 5) correspond to Beltrami flows (43–
45), obeying r^v± =±k⇤v±. Applying the parity operator to any
right-handed solution v+(x) generates the corresponding left-
handed solution v�(x) and vice versa (Fig. 1B).

Although the exact solutions v±(x) describe stationary Bel-
trami fields (43–45) of fixed total helicity H

± =
R
d
3
x v± · !±,

where !=r^ v is the vorticity, it is not yet clear whether parity
violation is a generic feature of arbitrary time-dependent solu-
tions of Eq. 1. As we demonstrate next, simulations with random
initial conditions do indeed converge to statistically stationary
flow states that spontaneously break mirror symmetry and are
close to Beltrami flows.

Spontaneous Mirror-Symmetry Breaking in Time-Dependent Solu-

tions. We simulate the full nonlinear Eq. 1 on a periodic cubic
domain (size L) using a spectral algorithm (Numerical Meth-

ods). Simulations are performed for typical bacterial parame-
ters (�0,�2,�4), keeping the vortex scale ⇤=75µm and cir-
culation speed U =72µm/s fixed (34, 35) and comparing three
spectral bandwidths S =0.63/⇤=8.4 mm�1, I =0.90/⇤=12
mm�1, and W =2.11/⇤ = 28.1 mm�1, corresponding to active
fluids with a small (S), an intermediate (I), and a wide (W)
range of energy injection scales. A small bandwidth means that
the active stresses inject energy into a narrow shell in Fourier
space, whereas a wide bandwidth means energy is pumped into
a wide range of Fourier modes (Fig. 1A). All simulations are
initiated with weak incompressible random flow fields. For all
three values of , we observe spontaneous mirror-symmetry
breaking indicated by the time evolution of the mean helicity
H =(1/L3)

R
d
3
x h , where h = v · ! is the local helicity. Dur-

ing the initial relaxation phase, the flow dynamics are attracted
to states of well-defined total helicity and remain in such a statis-
tically stationary configuration for the rest of the simulation. As

κS
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Fig. 2. Active fluids spontaneously break mirror symmetry by realizing Beltrami-type flows. (A) Snapshot of a representative vorticity component field !x

(Movie S1) for an active fluid with small bandwidth S = 0.63/⇤, as defined in Fig. 1A. (B) The corresponding helicity field signals parity-symmetry breaking,
leading to a positive-helicity flow in this example. (C) Histograms of the angles between velocity v and vorticity ! quantify the alignment between the two
fields for different active bandwidths S<I<W: The smaller the bandwidth is, the stronger the alignment between v and !. (D) Numerically estimated
distributions of the Beltrami measure, �= v ·!/(�|v|2), shown on a log scale. An ideal Beltrami flow with ! = �v produces a delta peak centered at �= 1.
Identifying � with the midpoint of the active shell (� ⇡ ⇡/⇤), which approximately corresponds to the most unstable wavenumber and the characteristic
pattern formation scale, we observe that a smaller active bandwidth leads to a sharper peak and hence more Beltrami-like flows. Data were taken at a
single representative time point long after the characteristic relaxation time. Simulation parameters: ⇤= 75 µm, U = 72 µm/s, L = 32⇤.

an illustration, Fig. 1C shows results from 150 runs for =I and
L=8⇤, with flow settling into a positive (negative) mean helicity
state 72 (78) times. This spontaneous mirror-symmetry break-
ing is robust against variations of the bandwidth and simulation
box size, as evident from the local vorticity and helicity fields for
=S and L = 32⇤ in Fig. 2 A and B.

Beltrami-Flow Attractors. Having confirmed spontaneous parity
violation for the time-dependent solutions of Eq. 1, we next char-
acterize the chaotic flow attractors. To this end, we measure and
compare the histograms of the angles between the local veloc-
ity field v(t , x) and vorticity field !(t , x) for the three bandwidths
S<I<W. Our numerical results reveal that a smaller active
bandwidth, corresponding to a more sharply defined scale selec-
tion, causes astronger alignment of the two fields (Fig. 2C). Recall-
ing that perfect alignment, described by!=�v with eigenvalue�,
is the defining feature of Beltrami flows (43–45), we introduce the
Beltrami measure �= v · !/(�|v|2). For ideal Beltrami fields, the
distribution of� becomes a delta peak centered at�=1. Identify-
ing�withthemidpointof theactiveshell (�⇡⇡/⇤),whichapprox-
imately corresponds to the most dominant pattern formation scale
in Eq. 1, we indeed find that the numerically computed flow fields
exhibit � distributions that are sharply peaked at �=1 (Fig. 2D).
Keeping⇤andU constant, thesharpnessofthepeakincreaseswith
decreasing active bandwidth . These results imply that active flu-
idswithwell-definedintrinsicscaleselectionrealizeflowstructures
thatarestatisticallyclosetoBeltramifields,assuggestedbythepar-
ticular analytical solutions derived earlier.

Discussion

Spontaneous Parity Breaking vs. Surgical Mode Removal. Important
previous studies identified bifurcation mechanisms (66–68) lead-
ing to parity violation in 1D and 2D (69) continuum models
of pattern-forming nonequilibrium systems (70, 71). The above
analytical and numerical results generalize these ideas to 3D
fluid flows, by showing that an active scale selection mecha-
nism can induce spontaneous helical mirror-symmetry breaking.
Such self-organized parity violation can profoundly affect energy
transport and mixing in 3D active fluids, which do not satisfy the
premises of Kraichnan’s thermodynamic no-go argument (23).
An insightful recent study (24), based on the classical Navier–
Stokes equation, found that an ad hoc projection of solutions to
positive or negative helicity subspaces can result in an inverse
cascade but it has remained an open question whether such a
surgical mode removal can be realized experimentally in pas-
sive fluids. By contrast, active fluids spontaneously achieve heli-
cal parity breaking (Fig. 1C) by approaching Beltrami-flow states
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(Fig. 2 C and D), suggesting the possibility of a self-organized
inverse energy cascade even in 3D. Before testing this hypoth-
esis we recall that the model defined by Eq. 1 merely assumes
the existence of linear active stresses to account for pattern scale
selection as observed in a wide range of microbial suspensions
(35, 38, 54, 72), but does not introduce nonlinearities beyond
those already present in the classical Navier–Stokes equations.
That is, energy redistribution in the solvent fluid is governed by
the advective nonlinearities as in conventional passive liquids.

Inverse Cascade in 3D Active Fluids. To quantify how pattern scale
selection controls parity breaking and energy transport in active
fluids, we analyzed large-scale simulations (L=32⇤; Fig. 2 A and
B) for different values of the activity bandwidth  (Fig. 1A) while
keeping the pattern scale ⇤ and the circulation speed U fixed.
The active shell (red domain II in Fig. 1A) corresponds to the
energy injection range in Fourier space and provides a natural
separation between large flow scales (blue domain I) and small
flow scales (blue domain III). Consequently, the forward cas-
cade corresponds to a net energy flux from domain II to domain
III, whereas an inverse cascade transports energy from domain
II to I. We calculate energy spectra e(k)= e

+(k) + e
�(k) and

energy fluxes ⇧(k)=⇧+(k) + ⇧�(k) directly from our simula-
tion data, by decomposing the velocity field into helical modes as
in Eq. 2, which yields a natural splitting into cumulative energy

A B

C

0

0.5

1

-0.5

-1

I
I II III

I II III II IIIIII I II III I II III

II III
I II III I II III

II IIIIII II IIIIII

K
P
Q

+++
++-

+- -
+ -+

 ++-
 + --
-+-
- --

D

u+
P=I u-

P=I

u+
K=II u+

K=II

u+
Q=III u+

Q=III

0
0.5

1

-0.5

E F

G

0

0.5

1

-0.5

-1

I
I II III

I II III II IIIIII I II III I II III

II III
I II III I II III

II IIIIII II IIIIII

K
P
Q

+++
++-

+- -
+ -+

 ++-
 + --
-+-
- --

H

0
0.1

0.5

u+ 
K=III

u+
P=II

u+
Q=II

I IIIII I IIIII I IIIII

E.
 fl

ux
 /(

U
2 
τ-1

)

E.
 fl

ux
 /(

U
2 
τ-1

)

I IIIII

Wavenumber k/( /Λ)
10-1 100

1.5

E.
 s

pe
ct

ru
m

 / 
(U

2 
/λ

)

10-2

10-4

100

e+(k)
e-(k)

(k)
+(k)
-(k)

e+(k)
e-(k)

(k)
+(k)
-(k)

2

-0.1

0.2
0.3
0.4

u+
Q=IIIu- 

P=II

u+
K=II

u- 
Q=IIIu+

P=II

u- 
K=II

+ + + + - + + - + + + + - + -

Wavenumber k/( /Λ)
10-1 100

Wavenumber k/( /Λ)
10-1 100

Wavenumber k/( /Λ)
10-1 100E.

 s
pe

ct
ru

m
 / 

(U
2 

/
)

10-2

10-4

100

λ

Fig. 3. Scale selection controls mirror-symmetry breaking and induces an inverse energy cascade. We demonstrate these effects for active fluids with (A–D)
a small active bandwidth S and (E–H) a wide bandwidth W (Fig. 1A). The intermediate case I is presented in Fig. S3. (A) Energy spectra e±(k) of the
helical velocity-field modes show strong symmetry breaking for small bandwidth parameter S. In this example, the system spontaneously selects positive
helicity modes, such that e+(k) > e�(k) at all dominant wavenumbers. Dashed vertical lines indicate the boundaries of the energy injection domain II. (B)
The resulting energy fluxes ⇧±(k) combine into the total flux ⇧(k), which is negative in region I and positive in region III, signaling inverse and forward
energy transfers, respectively. (C) Contributions to the energy flow hT

sKsPsQ
KPQ i between the three spectral domains I, II, and III (18 possibilities, columns) from

the eight types of triad interactions (rows). In reflection-invariant turbulence, this table remains unchanged under upside-down flipping (+ $ �). Instead,
we observe a strong asymmetry, with two cumulative triads (D) dominating the energy transfer. Red and blue arrows represent transfer toward large and
small scales, respectively, and thickness represents magnitude of energy flow. Green arrows (H) represent transfer within the same spectral domain. The
direction of the energy flow is in agreement with the instability assumption of Waleffe (19). In this case, 18.2% of the injected energy is transferred from
region II to region I and 81.8% is transferred from region II to III. (E–H) The same plots for an active fluid with wide active bandwidth W. (E and F) Energy
spectra show weaker parity breaking (E) and suppression of the inverse energy cascade (F). (G) The energy flow table partially recovers the upside-down
(+ $ �) symmetry. (H) The most active triads now favor the forward cascade, so that only 1.1% of the injected energy flows into region I, whereas 98.9%
is transferred into region III. Data represent averages over single runs (Fig. S2). Simulation parameters are identical to those in Fig. 2.

and flux contributions e
±(k) and ⇧±(k) from helical modes

u
±(k) lying on the wavenumber shell |k|= k (Numerical Meth-

ods). Time-averaged spectra and fluxes are computed for each
simulation run after the system has relaxed to a statistically sta-
tionary state (Fig. S2). For a small injection bandwidth S, the
energy spectra e

±(k) reflect the broken mirror symmetry, with
most of the energy being stored in either the positive-helicity
or the negative-helicity modes (Fig. 3A), depending on the ini-
tial conditions. Moreover, in addition to the expected 3D for-
ward transfer, the simulation data for S also show a significant
inverse transfer, signaled by the negative values of the total flux
⇧(k) (yellow curve in Fig. 3B) in domain I. As evident from the
blue curves in Fig. 3 A and B, this inverse cascade is facilitated
by the helical modes that carry most of the energy. For a large
injection bandwidth W �S, the energy spectra continue to
show signatures of helical symmetry breaking (Fig. 3E), but the
energy transported to larger scales becomes negligible relative
to the forward cascade, as contributions from opposite-helicity
modes approximately cancel in the long-wavelength domain I
(Fig. 3F). Results for the intermediate case M still show a sig-
nificant inverse transfer (Figs. S3 and S4E), demonstrating how
the activity bandwidth—or, equivalently, the pattern selection
range—controls both parity violation and inverse cascade forma-
tion in an active fluid. The upward transfer is noninertial at inter-
mediate scales, as indicated by the wavenumber dependence of
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the energyflux(Fig.3B).Atvery largescales�⇤,however, theflux
approaches an inertial plateau (Cascade Characteristics). In con-
trast to the energy-mediated 2D inverse cascade in passive fluids,
the helicity-driven 3D inverse cascade in active fluids is linked to
the formation of extended vortex chain complexes that move col-
lectively through the fluid (Movie S1 and Cascade Characteristics).

Triad Interactions. Our numerical flux measurements confirm
directly the existence of a self-sustained 3D inverse cascade
induced by spontaneous parity violation, consistent with earlier
projection-based arguments for the classical Navier–Stokes equa-
tions (24). An inverse energy cascade can exist in 3D active flu-
ids because mirror-symmetry breaking favors only a subclass of all
possible triad interactions, which describe advective energy trans-
fer in Fourier space between velocity modes{v(k), v(p), v(q)}with
k + p + q=0 (compare with Eq. 4). To analyze in detail which
triads are spontaneously activated in a pattern-forming nonequi-
librium fluid, we consider combinations K ,P ,Q 2 {I, II, III} of
the spectral domains in Fig. 1A and distinguish modes by their
helicity index sK , sP , sQ 2 {±}. The helicity-resolved integrated
energy flow into the region (K , sK )due to interaction with regions
(P , sP ) and (Q , sQ) is given by (Numerical Methods)

T
sK sP sQ
KPQ =

1
2

�
T̃
sK sP sQ
KPQ + T̃

sK sQsP
KQP

�
, [6]

where the unsymmetrized flows are defined by

T̃
sK sP sQ
KPQ = �

Z
d
3
xvsKK · [(vsPP ·r) vsQQ ], [7]

with vsKK (t , x) denoting the helical Littlewood–Paley velocity
components, obtained by projecting on modes of a given helic-
ity index sK 2 {±} restricted to the Fourier domain K . Entries
of T are large when the corresponding triads are dominant.

For active fluids, Fourier space is naturally partitioned into
three regions (Fig. 1A) and there are 23 = 8 helicity index com-
binations. The triad tensor T is symmetric in the last two indexes,
so that T has 8 ⇥ 18 independent components encoding the fine
structure of the advective energy transport. Stationary time aver-
ages for hTi, measured from our simulations (Numerical Meth-

ods) for small (S) and wide (W) energy injection bandwidths,
are shown in Fig. 3 C and G. For reflection-symmetric turbu-
lent flows, these two tables would remain unchanged under an
upside-down flip (+$�). By contrast, we find a strong asym-
metry for a narrow bandwidth S (Fig. 3C), which persists in
weakened form for W (Fig. 3G). Specifically, we observe for S

two dominant cumulative triads with energy flowing out of the
active spectral range II into the two passive domains I and III
(Fig. 3D). These cumulative triads visualize dominant entries of
the tables in Fig. 3 C and G and represent the total contributions
from all triadic interactions between modes with given helicity
indexes and with “legs” lying in the specified spectral domain.
The observed energy transfer directions, with energy flowing out
of the intermediate domain II when the small-scale modes carry
the same helicity index, are in agreement with a turbulent insta-
bility mechanism proposed by Waleffe (19). Interestingly, how-
ever, our numerical results show that both “R”-interaction chan-
nels +++ and +�+ contribute substantially even in the case of

strong parity breaking (S; Fig. 3D); when one surgically projects
the full dynamics onto states with fixed parity, only the +++
channel remains (24). By contrast, for a wide bandwidth W, the
dominating triad interactions (Fig. 3H) favor the forward cas-
cade. Hence, the inverse energy cascade in 3D active fluids is
possible because only a subset of triadic interactions is active
in the presence of strong mirror-symmetry breaking. This phe-
nomenon is controlled by the spectral bandwidth of the scale
selection mechanism.

Enhanced Mixing. Eq. 1 describe a 3D isotropic fluid capable of
transporting energy from smaller to larger scales. Previously,
self-organized inverse cascades were demonstrated only in effec-
tively 2D flows (6, 18, 20, 25, 73–79). The 2D inverse cascade
has been intensely studied in meteorology (6, 7), a prominent
example being Jovian atmospheric dynamics (80), because of its
importance for the mixing of thin fluid layers (81–83). Analo-
gously, the 3D inverse cascade and the underlying Beltrami-flow
structure are expected to enhance mixing and transport in active
fluids. Arnold (43) showed that steady solutions of the incom-
pressible Euler equations include Beltrami-type ABC flows (44)
characterized by chaotic streamlines. Similarly, the Beltrami
structure of the active-flow attractors of Eq. 1 implies enhanced
local mixing. Combined with the presence of an inverse cascade,
which facilitates additional large-scale mixing through the excita-
tion of long-wavelength modes, these results suggest that active
biological fluids, such as microbial suspensions (35, 54, 72), can
be more efficient at stirring fluids and transporting nutrients than
previously thought.

Conclusions

To detect Beltrami flows in biological or engineered active flu-
ids, one has to construct histograms and spectra as shown in
Figs. 2 C and D and 3 A and E from experimental fluid veloc-
ity and helicity data, which is possible with current fluores-
cence imaging techniques (13, 35). Moreover, helical tracer par-
ticles (84) can help distinguish left-handed and right-handed
flows. The above analysis predicts that Beltrami-flow structures,
mirror-symmetry breaking, and the inverse 3D cascade appear
more pronounced when the pattern selection is focused in a
narrow spectral range. Our simulations further suggest that the
relaxation time required for completion of the mirror-symmetry
breaking process depends on the domain size (Fig. S5). For small
systems, the relaxation is exponentially fast, whereas for large
domains relaxation proceeds in two stages, first exponentially
and then linearly. In practice, it may therefore be advisable to
accelerate relaxation by starting experiments from rotating ini-
tial conditions.

Methods

Eq. 1 was solved numerically in the vorticity-vector potential form with
periodic boundary conditions using a spectral code with 3/2 anti-aliasing
(Numerical Methods). Tables in Fig. 3 were calculated using the Littlewood–
Paley decomposition and collocation.
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91. López HM, Gachelin J, Douarche C, Auradou H, Clément E (2015) Turning bacteria

suspensions into superfluids. Phys Rev Lett 115:028301.
92. Ramaswamy S (2010) The mechanics and statistics of active matter. Annu Rev Cond

Mat Phys 1:323–345.
93. Drescher K, Goldstein RE, Michel N, Polin M, Tuval I (2010) Direct measurement of the

flow field around swimming microorganisms. Phys Rev Lett 105:168101.
94. Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE (2011) Fluid dynamics

and noise in bacterial cell-cell and cell-surface scattering. Proc Natl Acad Sci USA
108(27):10940–10945.

2124 | www.pnas.org/cgi/doi/10.1073/pnas.1614721114 Słomka and Dunkel

http://www.claymath.org/millennium-problems/navier--stokes-equation
http://www.pnas.org/cgi/doi/10.1073/pnas.1614721114


Correction

APPLIED MATHEMATICS
Correction for “Spontaneous mirror-symmetry breaking induces
inverse energy cascade in 3D active fluids,” by Jonasz Słomka
and Jörn Dunkel, which appeared in issue 9, February 28, 2017,
of Proc Natl Acad Sci USA (114:2119–2124; first published
February 13, 2017; 10.1073/pnas.1614721114).

The authors note that, due to a printer’s error, some axis units
in Fig. 3, Fig. S3, and Fig. S5 appeared incorrectly. The corrected
figures and their respective legends appear below. The SI has
been corrected online. The main manuscript itself has not been
updated and remains as originally published.
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Fig. 3. Scale selection controls mirror-symmetry breaking and induces an inverse energy cascade. We demonstrate these effects for active fluids with (A–D ) a
small active bandwidth !S and (E–H ) a wide bandwidth !W (Fig. 1A). The intermediate case !I is presented in Fig. S3. (A) Energy spectra e±ðkÞ of the helical
velocity-field modes show strong symmetry breaking for small bandwidth parameter !S. In this example, the system spontaneously selects positive helicity
modes, such that e+ðkÞ> e−ðkÞ at all dominant wavenumbers. Dashed vertical lines indicate the boundaries of the energy injection domain II. (B) The resulting
energy fluxes Π±ðkÞ combine into the total flux ΠðkÞ, which is negative in region I and positive in region III, signaling inverse and forward energy transfers,
respectively. (C) Contributions to the energy flow hT sK sP sQ

KPQ ibetween the three spectral domains I, II, and III (18 possibilities, columns) from the eight types of
triad interactions (rows). In reflection-invariant turbulence, this table remains unchanged under upside-down flipping (+ ↔ −). Instead, we observe a strong
asymmetry, with two cumulative triads (D ) dominating the energy transfer. Red and blue arrows represent transfer toward large and small scales, re-
spectively, and thickness represents magnitude of energy flow. Green arrows (H ) represent transfer within the same spectral domain. The direction of the
energy flow is in agreement with the instability assumption of Waleffe (19). In this case, 18.2% of the injected energy is transferred from region II to region I
and 81.8% is transferred from region II to III. (E–H ) The same plots for an active fluid with wide active bandwidth !W. (E and F) Energy spectra show weaker
parity breaking (E) and suppression of the inverse energy cascade (F). (G ) The energy flow table partially recovers the upside-down (+ ↔ −) symmetry. (H ) The
most active triads now favor the forward cascade, so that only 1.1% of the injected energy flows into region I, whereas 98.9% is transferred into region III.
Data represent averages over single runs (Fig. S2). Simulation parameters are identical to those in Fig. 2.
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Fig. S3. Mirror-symmetry breaking and inverse energy cascade for an active fluid with the intermediate bandwidth !I, showing the same quantities as in Fig.
3 of the main text. Overall, 15.4% of the injected energy flows into region I, whereas 84.6% flows into region III.
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Fig. S5. (A) Relaxation time for spontaneous symmetry breaking depends on the domain size. (B and C) Kinetic energy (B) and helicity (C) as a function of
time for a very large domain (L = 48Λ). The relaxation proceeds in two stages, the initial stage characterized by a rapid exponential growth rate (t < 20!),
followed by a slower linear growth until full relaxation (t ≈ 100!). (D–F) Energy spectra at various stages of the relaxation process (compare with dashed lines
in B and C) show how the system realizes a state with broken mirror symmetry.
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Comparison with Experiments
The generalized Navier–Stokes equations defined in Eq. 1 of the
main text aim to provide an effective three-parameter descrip-
tion of solvent flows driven by an active component. Although
the flow structures seen in the simulations look visually similar
to those observed in experiments on bacterial and other active
suspensions, a quantitative comparison with experimental data
is needed to evaluate the practical applicability of the theory.⇤
To contribute toward closing the gap between theory and exper-
iments, we performed systematic parameter scans, comparing
fluid flow statistics measured in our simulations with recently
reported experimental data for two different classes of active flu-
ids: (i) concentrated quasi-3D suspensions of swimming B. sub-
tilis bacteria (35) and (ii) ATP-driven microtubule networks (38).
This analysis identified specific parameter values �0, �2, and �4

for these two paradigmatic experimental systems, demonstrat-
ing in both cases good agreement between theory and available
experimental data for velocity distributions and correlation func-
tions (Fig. S1).

Bacterial Suspensions. The experiments reported in ref. 35 stud-
ied dense suspensions of rod-like B. subtilis bacteria swimming
in a quasi-3D microfluidic channel (height ⇠80 µm, radius
⇠750 µm). The bacterial velocity field was reconstructed from
bright-field micoscopy videos using particle imaging velocimetry
(PIV), and the solvent flow dynamics were measured by particle
tracking velocimetry (PTV) using micrometer-sized fluorescent
tracer beads. The experimental setup allowed the observation
of 2D slices through the 3D velocity field, yielding data for
the in-plane velocity components. From these 2D data, velocity
distributions and correlation functions for bacteria and passive
tracer particles were reconstructed, showing close correlations
between bacterial dynamics and solvent flows. To compare the
experimental measurements in ref. 35 with our 3D simulations,
we mimicked the experimental setup by selecting arbitrary 2D
planes in our 3D simulation volume. We then measured the in-
plane velocity components and compared the numerically calcu-
lated velocity statistics with the corresponding experimental data
(Fig. S1 A–C).

Fig. S1A compares the experimentally measured velocity dis-
tribution for bacteria (open circles) and solvent tracer parti-
cles (solid circles) with the statistics of the five-parameter model
for the bacterial velocity field considered in ref. 35 (black line
labeled “theory”) and our generalized Navier–Stokes model
(blue line). As discussed by the authors of ref. 35, their model
for the bacterial dynamics fails to capture the tails of the veloc-
ity distributions as it includes an effective fourth-order velocity
potential (representing steric alignment interactions) that dom-
inates the tails of velocity distributions in their simulations. By
contrast, our generalized Navier–Stokes model accurately cap-
tures the experimentally measured Gaussian velocity probability
distribution functions (PDFs) over the whole range of the avail-
able experimental data (see Fig. S1C legend for a summary of fit
parameters).

Fig. S1B compares the equal-time (in-plane) velocity corre-
lation functions (VCFs) for the bacteria, tracer particles, and
the theories. As mentioned in ref. 35, the VCFs for tracer par-

⇤
We thank an anonymous reviewer for insisting on a detailed comparison with exper-

iments. The comparison presented here benefited from the fact that one of us (J.D.)

was involved in the original analysis of the experimental data in ref. 35.

ticles become unreliable at large distances r > 50µm, due to the
deliberately low seeding densities of the tracer particles in these
experiments. Low tracer densities were required to minimize
feedback from passive tracers on the active suspension dynam-
ics. This meant, however, that tracer particle pairs with large
spatial separation r are significantly less frequently observed.
Notwithstanding such experimental limitations, we find that the
two complementary continuum models for bacterial and solvent
flow yield qualitatively and quantitatively similar VCFs, correctly
reflecting the typical vortex size ⇠50�70 µm in the negative part
of the VCFs.

Fig. S1C compares the simulation results for the velocity auto-
correlation functions (VACFs) with the corresponding experi-
mental results at different bacterial activities (35) due to oxygen
depletion. PTV-based VACFs were not given in ref. 35 as a spe-
cific tracer particle typically spends only a short time in the 2D
field of view of the microscope before diffusing out of view. As
evident from Fig. S1C, our generalized Navier–Stokes model
can correctly reproduce the functional form of the PIV-based
VACFs at high (green), intermediate (blue), and low (magenta)
activities. With regard to a future quantitative characterization
and classification of active fluids, we find it encouraging that a
three-parameter model can account for the key velocity statistics
reported in ref. 35.

Another interesting experimental observation reported but
not rationalized in ref. 35 is the linear scaling of kinetic energy
and enstrophy (figure 2d in ref. 35). We note that such a lin-
ear scaling is consistent with the Beltrami-like flows found in our
simulations, which satisfy v _ ! (Fig. 2 C and D of the main text).
Generally, we hope that the good agreement between the gener-
alized Navier–Stokes model defined in Eqs. 1 of the main text
and the experimental data for B. subtilis will stimulate additional
3D measurements on bacterial suspension in the near future, to
test the Beltrami flow prediction directly and to explore the pos-
sibility of spontaneous mirror-symmetry breaking in detail.

ATP-Driven Microtubule Networks. The generalized Navier–Stokes
equations defined in Eq. 1 of the main text merely assume that
active stresses in an otherwise passive fluid lead to scale selec-
tion. They should therefore also apply to other types of active
fluids, including ATP-driven microtubule suspensions. To test
this hypothesis, we performed additional simulations to compare
our model with experimental data published recently in ref. 38.
The authors of this study report VCF data for tracer particles
diffusing in fluid flows driven by predominantly extensile
microtubule–kinesin bundles that form complex, approximately
isotropic networks. The flows created by these active networks
exhibit turbulent vortices on scales larger than the typical bundle-
bending radii, suggesting that these flows are generated by the
collective extensile dynamics of the bundles. Fig. S1D shows the
experimental VCF data reported in ref. 38 (colored circles and
lines) and a fit (black solid line) obtained from simulations of our
generalized Navier–Stokes model, using the parameters speci-
fied in the legend.† Different ATP-controlled activity levels can
be reproduced in our model through a trivial adjustment of the
velocity scale U . Strikingly, changing the activity does not signifi-
cantly alter the shape of the VCF after rescaling by kinetic energy
for both bacterial and active microtubule suspensions (Fig. S1 B

†
These parameters agree well with the typical velocity, length, and time scales expected

from microbial suspensions.
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and D), corroborating the idea that active suspensions can be
robustly described by the leading-order terms of stress tensor
expansions. More generally, the good agreement between the
generalized Navier–Stokes model and two microscopically dis-
tinct active fluids supports the view that the main results and pre-
dictions of our study apply to a broad range of pattern-forming
nonequilibrium fluids.

Model Justification
The generalized Navier–Stokes model defined in Eq. 1 of the
main text describes the solvent flows in active suspensions
through effective higher-order stresses that account phenomeno-
logically for the experimentally observed flow-pattern scale selec-
tion (35, 38). By contrast, derivations of effective higher-order
continuum models (88) often focus on the complementary prob-
lem of obtaining a higher-order equation for the orientational
order-parameter fields of the active component by ignoring non-
linear inertial effects in the fluid. The generalized Navier–Stokes
Eq. 1 in the main text avoid the latter oversimplification and
assume a linear response between orientational order-parameter
fields and ambient fluid (72).

Inertial Effects. The standard argument for neglecting inertial
terms in the Navier–Stokes equations for dilute microbial sus-
pensions is based on the typical length scale and swimming speed
of a single bacterium and the viscosity of water (89). This argu-
ment is certainly correct for very low bacterial volume fractions
when collective dynamical effects are negligible. The argument
becomes invalid, however, at sufficiently high concentrations
when collective effects dominate the suspension dynamics. There
are three reasons for this: First, collective locomotion speeds of
bacteria at moderate-to-high concentrations (>5% volume frac-
tion) can be more than an order of magnitude larger than the
self-propulsion speed of an individual bacterium (72). Second,
the typical scale of a vortex is one or two magnitudes larger than
the length of an individual cell (34, 35). Third, recent studies (90,
91) show that the collective dynamics can reduce the effective
viscosity of a bacterial suspension by an order of magnitude. The
combination of these three effects means that, in the collective
swimming regime, the effective Reynolds number can approach
1 and, hence, inertial terms cannot a priori be neglected.

Active Stresses. At the fundamental continuum level, the fluid
dynamics of a passive solvent are described by the Navier–Stokes
equations. The effect of the active components on the fluid can
be written as a collection of point forces entering on the right-
hand side (rhs) of the Navier–Stokes equations. An important
feature of intrinsically driven active suspensions (in contrast to
externally forced colloidal suspensions) is given by the experi-
mentally confirmed fact that bacteria and other microbes achieve
locomotion through shape changes that require zero net force
(89, 92–94). Considering, for instance, the simplest force dipole
model, this means that forces can be paired, so that monopole
contributions cancel and the leading-order contributions enter-
ing the Navier–Stokes equations take the form of divergences of
stress tensors (92).

Slaving and Linear Response. In sufficiently dense suspensions, the
net effective stress tensor depends on the collective dynamics,
which are typically characterized through orientational order-
parameter fields. If the fluid flows generated by the collective
action of the active constituents dominate over their individual
swimming dynamics, then one can assume that tensorial order
parameters become “slaved” to the solvent dynamics. In this
case, assuming a linear and isotropic response, one arrives at clo-
sure conditions for polar and nematic order parameters p and Q

of the form

p =
1X

n=1

pnr2n
v, Q =

1X

n=1

qnr2n(rv)+ [S1]

where the superscript “+” denotes the traceless symmetric ten-
sor part. Further assuming that the conventional viscous stresses
and the active stresses are additive, that the leading active
stresses are linear in the order parameters p and Q, and by trun-
cating at order n =3, one is led to a sixth-order stress tensor as in
Eq. 1c of the main text. This reasoning can be formalized system-
atically through diagrammatic expansion techniques (57).‡ The
successful comparison with the experiments above suggests that
such truncated stress tensors can capture essential aspects of the
collective dynamics.

Numerical Methods
Numerical simulations were performed using a Fourier spec-
tral method with a 3/2 rule to avoid aliasing when calculating
the advection term through collocation (85). We typically used
grids of size 2433. Larger resolutions are not necessary, because
the highest-order term in Eq. 1 provides strong damping ⇠k

6

at large wavenumbers k . We find solutions to Eq. 1 by using
the Hodge decomposition (86) and solving the corresponding
vorticity-vector potential problem

@t! +r^ (! ^ v) = �0r2! � �2r4! + �4r6!, [S2a]

r2 = �!, [S2b]

where !=r^ v is the vorticity and is the divergence-free vec-
tor potential related to the velocity field through v=r ^  . Eq.
S2 are evolved in time, using a third-order semiimplicit back-
ward differentiation time-stepping scheme (86), calculating the
nonlinear advection term explicitly while inverting the linear part
implicitly. The discretized Eq. S2 maintain ! and  divergence-
free in exact arithmetic. To avoid slow buildup of nonzero diver-
gence when working in double-precision arithmetic, numerical
solutions are projected onto the divergence-free manifold dur-
ing the time stepping. To calculate the energy transfer tables in
Fig. 3 C and G efficiently, we decompose the velocity field into
Littlewood–Paley components and use collocation.

Vorticity-Vector Potential Formulation. We find the vorticity-
vector potential formulation of the system 1 of the main text on
the three-torus, T3 =S

1 ⇥ S
1 ⇥ S

1. This is a manifold without
boundary, so the usual Hodge decomposition applies (86). For a
vector field v, the decomposition takes the form

v = r�+r^ + H, [S3]

where H is an element of the 3D space of harmonic vector fields,
which implies on a torus that H=Hx x̂+Hy ŷ+Hz ẑ for some con-
stants Hx ,Hy ,Hz . For divergence-free flows, we have r2�=0
and hence �=0 because T3 is compact and without boundary.
In this case, we interpret H as the fluid center of mass motion. By
working in the center of mass frame, we are left with

v = r^ . [S4]

Taking the curl of Eq. 1 of the main text gives

@t! + v ·r! � ! ·rv = L!, [S5]

where !=r^ v and

L = �0r2 � �2r4 + �4r6. [S6]

‡
Structurally similar sixth-order hydrodynamic equations are obtained by systematically

reducing magneto-hydrodynamic models in the vicinity of flow bifurcations (Geoffrey

Vasil, personal communication).
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We can simplify the advection term by using the following stan-
dard identity

r^ (! ^ v) = !(r · v)� v(r · !) + v ·r! � ! ·rv

= v ·r! � ! ·rv, [S7]

because both fields are divergence-free. This identity speeds
up the computational cost of evaluating the advection term,
as it requires fewer applications of the fast Fourier transform.
Because the divergence of  does not affect the decomposi-
tion S3, we fix the gauge and work with a divergence-free vector
potential. In this case, taking the curl of Eq. S4 gives r2 = �!.
In summary, in the vorticity-vector potential formulation, the
equations of motion read

@t! +r^ (! ^ v) = L!, [S8a]

r2 = �!. [S8b]

Characteristic Scales. The linear growth rate associated with the
operator L is �(k)=�k

2(�0 + �2k
2 + �4k

4). For �2 < 0, the
most unstable mode km =argmax�(k) is well approximated by
the maximum kp of the function f (k)=�(k)/k2 =�(�0+�2k

2+
�4k

4), yielding

k
2
p =

��2

2�4
. [S9]

We prefer to express characteristic scales in terms of kp (instead
of km) as this simplifies subsequent formulas, and kp is generally
close to km for sufficiently small injection bandwidths. The asso-
ciated wavelength is �p =2⇡/kp . This wavelength represents two
vortices, one with positive and one with negative vorticity, each
of characteristic diameter

⇤ =
�p

2
= ⇡

r
2�4

��2
. [S10]

The corresponding growth rate is

�(kp) =
�2

2�4

✓
�0 �

�2
2

4�4

◆
,

which defines the time scale

⌧ =
1

�(kp)
. [S11]

⇤ and ⌧ can be used to define a characteristic circulation speed
U =2⇡⇤/⌧ .

Nondimensionalization in Numerical Simulations. For simulation
purposes, we rescale time and space as t =Tt̃ and x=Lx̃,
where L is the domain size. We further introduce  = 0 ̃ and
!=!0!̃. Eqs. S8 then become (after dropping the tildes)

1
T
@t!+

 0

L2
r^ (! ^ v) =

�0

L2


r2!� �2

�0L
2
r4!+

�4

�0L
4
r6!

�
,

[S12a]

 0

L2
r2 = �!0!. [S12b]

Setting !0 = 1
T ,  0 = L2

T , and T = L2

�0
, and defining �2 = �2

�0L2

and �4 = �4
�0L4 , we obtain the nondimensionalized equations

@t! +r^ (! ^ v) = r2! � �2r4! + �4r6!, [S13a]

r2 = �!. [S13b]

Time Discretization. For the time stepping, we use the third-
order semiimplicit backward differentiation scheme introduced
by Ascher et al. (87),
✓
11
6

��tL

◆
!n+1 = 3!n � 3

2
!n�1 +

1
3
!n�2

��t
�
3N

n � 3N
n�1 + N

n�2�, [S14a]
where

L = r2 � �2r4 + �4r6, [S14b]

N( ,!) = r^ (! ^ v), [S14c]
recalling that v=r^ . We then solve for the vector potential

r2 n+1 = �!n+1. [S15]

Space Discretization. We work with a Fourier spectral method. If
we denote the rhs of Eq. S14a by b

n+1, then the update formula
for the Fourier coefficients reads

!n+1(k) =
1

p(k)
b
n+1(k), [S16a]

 n+1(k) =
1
k2
!n+1(k), [S16b]

where p(k)= 11/6+�t(k2+�2k
4+�4k

6). In addition, we always
have !(t , k=0)=0, because the vorticity is defined by taking
the curl of v, and we can set  (t , k=0)=0 by gauge freedom.
Because both ! and  are divergence-free, we have to impose

k · ! = 0, k · = 0. [S17]
If we initiate the simulations with divergence-free fields, then

the update rule S16 preserves this property in exact arithmetic.
Nevertheless, numerical errors will always build up after several
iterations in double-precision arithmetic. We project back onto
the divergence-free manifold every several steps by mimicking
gauge transformation. Suppose ! has small divergence that we
want to remove. We set f =r ·!. We then solve the Poisson
equation,

r2� = f , [S18]
and subsequently remove the divergence from ! according to

! ! ! �r�. [S19]

Calculation of Shell Interactions. We next explain how the energy
spectra, fluxes, and energy flow tables are calculated numerically
(Fig. 3 of the main text and Fig. S3). To establish notation, we
first recall the derivation of the energy balance equation as given
in Waleffe (19). Expanding the velocity and pressure fields in
Fourier series, Eq. 1 of the main text give

ki · vi(t , k) = 0,

[@t + ⇠(k)]vi(t , k) = �ikip(t , k)� i

X

q+p=k

vj (t , p)qj vi(t , q),

where ⇠(k)=�0k
2+�2k

4+�4k
6. By projecting on helical modes

one finds Eq. 3 of the main text. To find the equation for the
energy in mode k we relabel k!�k in the second equation, mul-
tiply by vi(t , k), sum over i , and use the incompressibility condi-
tion to get

vi(k)[@t + ⇠(k)]vi(�k) = �i

X

k+p+q=0

vj (p)qj vi(q)vi(k),

where we dropped the explicit time dependence for ease of nota-
tion. We now add the above equation to its complex conjugate
and use vi(�k)= vi(k),

[@t + 2⇠(k)]|v(k)|2 = �i

X

k+p+q=0

vj (p)qj vi(q)vi(k) + c.c.
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The energy in shell |k|= k is defined as

✏(t , k) =
1
2

X

|k0|=k

|v(t , k
0)|2. [S20]

The corresponding evolution equation is

[@t + 2⇠(k)]✏(t , k) =
X

p

X

q

t̃(t ; k , p, q),

where

t̃(t ; k , p, q) = � i

2

X

shells
k,p,q

�k+p+q,0vj (t , p)qj vi(t , q)vi(t , k) + c.c.

= �i

X

shells
k,p,q

�k+p+q,0vj (t , p)qj vi(t , q)vi(t , k). [S21]

We used the fact that the sum over all modes can be split
into radial and shell parts

P
k
f (k)=

P
k

P
|k0|=k f (k

0) and we
defined X

shells
k,p,q

f (k, q, p) ⌘
X

|k0|=k

X

|p0|=p

X

|q0|=q

f (k0, q
0, p

0).

Symmetrizing as t(t ; k , p, q)= t̃(t ; k , p, q) + t̃(t ; k , q , p) gives
the usual energy balance equation (1, 19)

[@t + 2⇠(k)]✏(t , k) = T (t , k), [S22a]
where

T (t , k) =
1
2

X

p

X

q

t(t ; k , p, q). [S22b]

The quantity t(t ; p, k , q) is the energy transfer into the shell
k due to all triad interactions with shells p and q at time t , and
T (t , k) is the energy transfer into the shell k due to all triad inter-
actions. The energy flux across k is defined as

⇧(t , k) =
X

k0>k

T (t , k 0) [S23]

and represents energy flow from wavenumbers below k to those
above it at time t .

Projecting the velocity field onto the helical modes reveals
additional substructure (19). The energy spectrum splits into two
helical components

✏(t , k) = ✏+(t , k) + ✏�(t , k), ✏±(t , k) =
X

|k0|=k

|u±(t , k
0)|2.

[S24]
The energy flow and energy flux split into eight components,

one for each possible assignment of the helicity index over the
triads

t(t ; k , p, q) =
8X

i=1

t
(i)(t ; k , p, q), T (t ; k) =

8X

i=1

T
(i)(t ; k),

⇧(t , k) =
8X

i=1

⇧(i)(t , k), [S25]

where we follow the binary ordering as in ref. 19 (i =1 corre-
sponds to +++, i =2 to ++�, etc.). The energy conservation
for helical shells becomes

[@t + 2⇠(k)]✏±(t , k) = T
±(t , k), [S26]

where T
+(t , k)=

P4
i=1 T

(i)(t , k) and T
�(t , k)=

P8
i=5

T
(i)(t , k).
We now consider time averages. For a quantity O we define

hOi = lim
R,�!1

1
�

Z R+�

R

dt O(t). [S27]

In practice, R is the relaxation time for the system, and � is the
length of the averaging interval. In the stationary regime, the
averages become time independent, which we denote by

h✏(t , k)i = h✏(k)i, ht(t ; k , p, q)i = ht(k , p, q)i [S28]

and

h@t✏(t , k)i = @th✏(t , k)i = 0. [S29]

Taking averages reduces Eq. S22a to

2⇠(k)h✏(k)i = hT (k)i. [S30]

Thus, in the stationary regime, the energy flux can be derived
from the spectrum according to

h⇧(k)i =
X

k0>k

2⇠(k 0)h✏(k 0)i. [S31]

Similarly, for the helical projections we get

2⇠(k)h✏±(k)i = hT±(k)i, [S32]

and

h⇧±(k)i =
X

k0>k

2⇠(k 0)h✏±(k 0)i. [S33]

We numerically estimate the discrete stationary spectra
h✏±(k)i as follows. At each time step n , we calculate

✏±n (k) =
X

|k0|=k

|u±
n (k0)|2. [S34]

We then apply the discrete version of the formula S27,

h✏±(k)iR,� =
1
�

R+�X

n=R

✏±n (k), [S35]

where we choose R to be the relaxation time of the energy and
helicity time series and the averaging interval � is taken long
enough to ensure convergence of statistical observables (Fig. S2).
We recover the helical flux contributions using formula S32 and
the total flux from h⇧(k)i= h⇧+(k)i+ h⇧�(k)i.

For plotting purposes, we connect the discrete energy spectra
to their continuous definitions. The mean kinetic energy in the
system of size L is

E =
X

k

✏(k) =
X

k̃

P
k02[k̃,k̃+�k) ✏(k

0)

�k
�k , [S36]

where k̃ =n
2⇡
L , n =1, 2, 3, · · · and �k = 2⇡

L . In the limit L!1,
we recover the continuous definition of the energy spectrum

E =

Z 1

0

e(k̃)dk̃ , [S37]

e(k̃) = lim
L!1

X

k02[k̃,k̃+�k)

✏(k 0)
�k

. [S38]

When plotting energy spectra, we thus use the discrete (finite box
size) approximation of the continuous definition

e
±(k̃) =

P
k02[k̃,k̃+�k) h✏

±(k 0)iR,�

�k
. [S39]

The spectral domains I, II, and III in Fig. 1A of the main text
have finite thickness. To calculate the energy flow between the
regions, we have to sum over shells contained in a given region.
For example,

TI,II,III =
1
2

X

k2region I

X

p2region II

X

q2region III

t(k , p, q) [S40]
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is the energy flow into region I due to all triad interactions with
modes supported on regions II and III. To calculate TKPQ , where
K ,P ,Q 2 {I, II, III}, consider the following integral,

T̃KPQ = �
Z

d
3
x vK · [(vP ·r)vQ ], [S41]

where vK is the Littlewood–Paley component corresponding to
region K and similarly for vP and vQ . Specifically, vK is obtained
from v by keeping only the Fourier amplitudes supported on the
region K , etc. In terms of Fourier series, we find that

T̃KPQ =
X

k2region K

X

p2region P

X

q2region Q

t̃(k , p, q), [S42]

where t̃(k , p, q) is given by Eq. S21. We symmetrize in the last to
indexes, by defining

TKPQ =
1
2

�
T̃KPQ + T̃KQP

�
. [S43]

To split TKPQ =
P8

i=1 T
(i)
KPQ into the contributions from the

eight types of helical triad interactions, it is convenient to con-
sider equivalent integral representations of the form

T̃
sK sP sQ
KPQ = �

Z
d
3
x v

sK
K · [(vsPP ·r)v

sQ
Q ], [S44]

where v
sK
K is constructed from vK by projection onto modes with

helicity index sK 2 {±}, etc. The symmetrization

T
sK sP sQ
KPQ =

1
2

�
T̃
sK sP sQ
KPQ + T̃

sK sQsP
KQP

�
, [S45]

represents the energy flow into modes with helicity index sK

lying in region K , due to interactions with modes with helicity
indexes sP and sQ in regions P and Q , respectively. Expressions
of the form S44 are calculated, at a given time step, by collo-
cation: Evaluate the three projections in the physical domain
on an equally spaced grid, perform the point-wise multiplica-
tion, go back to Fourier space, and integrate by reading off
the value of the zeroth Fourier mode. All these operations are
done efficiently using the fast Fourier transform. To calculate
the stationary energy flows hTsK sP sQ

KPQ i shown in the energy flow
tables (Fig. 3 C and G in the main text and Fig. S3C), we
adopt a procedure analogous to that used to estimate the energy
spectra.

Cascade Characteristics
The phenomenology of the inverse cascade in passive 2D tur-
bulent flows is often characterized in terms of vortex mergers.
By contrast, in active fluids with a well-defined vortex scale ⇤
and a small injection bandwidth S, vortex mergers are sup-
pressed by the dominant pattern-scale selection processes. This
raises the question how the inverse cascade, which can trans-
port a considerable fraction of energy to larger scales (Fig. S4E),
manifests itself in the flow-field structure of a 3D active fluid.
Our simulations demonstrate that pattern-forming nonequilib-
rium fluids can achieve energy transport to larger scales by form-
ing chain-like vortex complexes that propagate through the fluid
(Movie S1). To illustrate this phenomenon in more detail, Fig. S4
A–D shows two horizontal 2D (x , y) slices of a large 3D simu-
lation domain (size L=32⇤) at a fixed representative time for
an active fluid with small active bandwidth S (using the same
parameters as in the main text). In Fig. S4 A and B, the flow field
is visualized through the perpendicular z component of the vor-
ticity, !z , and in Fig. S4 C and D through the local helicity h .
The thin black lines in Fig. S4 A and B indicate in-plane por-
tions of filaments consisting of alternating vortices that corre-
spond to 3D filamentous clusters of high helicity in Fig. S4 C and
D. The kinetic energy transported to large scales manifests itself
as the formation and motion of such vortex chains (Movie S1).
These results illustrate that the helicity-driven 3D inverse cas-
cade in active fluids is distinctly different from the energy-driven
2D inverse cascade in passive fluids.

A detailed spectral characterization of this helicity-driven 3D
active turbulence can be obtained by analyzing the upward
energy transfer into region I in Fourier space (defined in Fig. 1A
of the main text). Fig. S4E shows the absolute value of the energy
flux for an active fluid with small bandwidth S for three different
simulation domain sizes. In the case of an inertial energy cascade,
one expects the flux to be independent of the wavenumber k , at
least over some range. In such inertial ranges there is no dissipa-
tion of energy, just purely nonlinear redistribution. In our sim-
ulations, we see that the energy flux, upon entering the spectral
region I from above (i.e., coming from region II), is at first nonin-
ertial with an approximate k

3 scaling, implying that the transfer
is assisted by strong dissipation effects. At very large scales �⇤,
however, the flux develops a plateau, indicating that the transfer
becomes mostly inertial. Increasing the simulation domain size
broadens the plateau and increases the magnitude of the flux that
reaches the plateau. Interestingly, at these very large scales, the
model defined in Eq. 1 of the main text effectively reduces to the
classical Navier–Stokes equations.
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Fig. S1. Fit results for the generalized Navier–Stokes model defined in Eq. 1 of the main text compared with recent experimental data for (A–C) bacterial

suspensions and (D) microtubule networks. (A) PDFs of the Cartesian in-plane velocity components, normalized by their mean values and standard deviations.

The black curve labeled “theory” represents a five-parameter continuum model for the bacterial dynamics described in ref. 35. The blue curve is obtained for

the generalized three-parameter Navier–Stokes model of the solvent flow defined in Eq. 1 of the main text, using the fit parameters listed in the description

of C. Note that only the Navier–Stokes model correctly captures the tails of the velocity distribution. (B) The equal-time VCFs indicate the characteristic pattern

formation scale. The black curve labeled “theory” again represents the continuum model for the bacterial dynamics described in ref. 35. The blue curve is

obtained for the Navier–Stokes model for the solvent flow defined in Eq. 1 of the main text, using the fit parameters listed in the description of C. (C) VACFs
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Fig. S3. Mirror-symmetry breaking and inverse energy cascade for an active fluid with the intermediate bandwidth I, showing the same quantities as in

Fig. 3 of the main text. Overall, 15.4% of the injected energy flows into region I, whereas 84.6% flows into region III.
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Fig. S4. Characterization of the inverse energy cascade. (A and B) Two horizontal cuts through the 3D simulation domain for a small bandwidth S, showing

that the inverse cascade is not characterized by vortex mergers, but rather by chain-like complexes, visible as “dark” structures in Movie S1, Left. (C and D)

Same flow-field snapshots as in A and B but now represented through the local helicity field. The chain-like large-scale structures carry most of the helicity.

They do not merge, but rather form extended filaments and clusters that move throughout the simulation domain (Movie S1). Domain size L = 32⇤. (E) The

proportion of the energy injected by the active component that is transported to region I (corresponding to large scales, compare with Fig. 1A of the main

text) as a function of the active bandwidth . (F) Absolute value of the energy flux for an active fluid with small bandwidth S for different simulation

domain sizes. In region I, corresponding to large scales, the upward transfer is noninertial at intermediate wavenumbers with the flux exhibiting k3
scaling.

For k ! 0, however, the flux approaches a constant plateau value, indicating that inertial effects start dominate at very large scales �⇤.
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Fig. S5. (A) Relaxation time for spontaneous symmetry breaking depends on the domain size. (B and C) Kinetic energy (B) and helicity (C) as a function of

time for a very large domain (L = 48⇤). The relaxation proceeds in two stages, the initial stage characterized by a rapid exponential growth rate (t<20⌧ ),

followed by a slower linear growth until full relaxation (t ⇡ 100⌧ ). (D–F) Energy spectra at various stages of the relaxation process (compare with dashed

lines in B and C) show how the system realizes a state with broken mirror symmetry.
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Movie S1. The turbulent steady-state flow dynamics for an active fluid with small energy injection bandwidth = 0.63/⇤ as typically observed in our 3D

simulations. This simulation was performed in a cubic box of size L = 32⇤, where ⇤ is the typical vortex scale, using unbiased random initial conditions and

periodic boundary conditions. Left shows a component of the vorticity pseudovector and Right shows the corresponding local helicity field. Note that the

measured values of the helicity are predominantly positive everywhere, indicating that the flow has undergone spontaneous mirror-symmetry breaking to

realize a near-Beltrami vector field. Extended chain-like clusters of high vorticity and helicity transport the energy from smaller to larger scales.

Movie S1

Słomka and Dunkel www.pnas.org/cgi/content/short/1614721114 9 of 9


