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1. Introduction
The reliable measurement of financial risk is one of the key
issues for financial institutions and regulatory authorities.
Distributions of profits and losses (P&L) are very complex,
and risk measures are needed to conveniently summarize
the most important properties of the lower tail of a P&L
distribution. Although very popular and widely used in
practice, the industry standard Value-at-Risk (VaR) suffers
from severe deficiencies if considered as a measure of the
downside risk: First, VaR penalizes diversification in many
situations; second, VaR does not take into account the struc-
ture of the P&L distribution beyond the VaR. These seri-
ous shortcomings stimulated intense research on alternative
risk measures. The axiomatic theory of risk measures, ini-
tiated by the seminal paper of Artzner et al. (1999), has
matured during the past 10 years. Various improved risk
measures have been designed, including the risk measure
Utility-Based Shortfall Risk (SR) considered in this paper.
An excellent survey on the mathematical theory of risk
measures is given by Föllmer and Schied (2004).
The axiomatic framework of risk measurement is already

well developed. This paper considers computational aspects.
The practical implementation of improved risk measures
relies on the availability of efficient algorithms for their
estimation. P&L distributions of realistic portfolio models
are typically highly complex, and thus require Monte Carlo

simulations when functionals of the P&L (like its mean,
moments, or downside risk quantified by a risk measure)
need to be computed. We introduce efficient algorithms for
the direct estimation of SR. SR is a convex risk measure
that does not share the deficiencies of VaR. Our method for
estimating SR relies on a recursive stochastic approximation
scheme.
The underlying ideas can be summarized as follows: The

risk measure SR can be characterized as the unique root
of a decreasing function g� � → � that typically needs to
be computed by Monte Carlo simulation. A straightforward
approach suggests splitting the problem into two parts; see
Dunkel and Weber (2007):
(1) the design of a deterministic root-finding procedure

that would converge to the sought-after root if g were known;
(2) the construction of efficient Monte Carlo algorithms

that enable the estimation of g�s� for each given argument
s ∈� with sufficient precision.
Variance reduction techniques can be used to accel-

erate the estimation of the function g�s� at each given
argument s ∈�. This approach is closely related to sam-
ple average methods in stochastic programming; see, for
example, Kleywegt et al. (2001), Linderoth et al. (2006),
Mak et al. (1999), Shapiro (2003), Shapiro and Nemirovski
(2005), Verweij et al. (2003), and Shapiro et al. (2009).
An alternative to a combination of Monte Carlo esti-

mators and deterministic root-finding schemes is provided
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by integrated stochastic approximation algorithms that are
presented in this paper. These exploit the whole structure
of the root-finding problem by combining variance reduc-
tion techniques with stochastic root finding. Thereby, they
take advantage of cross-averaging of errors for different
arguments of the function g—an effect that is neglected
whenever deterministic root-finding schemes are applied.
Although we consider a one-dimensional stochastic root-
finding problem, stochastic approximation schemes are also
efficient tools for the solution of multidimensional opti-
mization problems in stochastic programming whenever the
objective function is given in terms of an expectation; cf.
Nemirovski et al. (2009).
In this paper, we will concentrate on the estimation of

the improved, convex risk measure SR. Our strategy, how-
ever, can easily be extended to the efficient estimation of
the industry standard VaR. The recent literature on VaR
focusses mostly on the efficient estimation of the proba-
bility of large losses; see, e.g., Glasserman (2004), Kang
and Shahabuddin (2005), and Glasserman et al. (2008).
VaR can indeed be determined by inverting the distribu-
tion function, i.e., by solving a deterministic root-finding
problem. Clearly, this standard approach for the estimation
of VaR does not exploit any cross-averaging effects. More
efficient, direct VaR estimators can be constructed by com-
bining the various variance reduction techniques for VaR
with stochastic root-finding procedures analogous to those
discussed below.1

This paper is organized as follows. Section 2 reviews the
definitions and properties of VaR and SR. In §3, we present
stochastic approximation algorithms for the estimation of
SR. In §§3.1 and 3.2, we analyze these algorithms for SR.
We show that the estimators are consistent and approxi-
mately normal, and we provide formulas for their rate of
convergence and their asymptotic variance. We numerically
investigate the performance of the proposed stochastic root-
finding algorithms for various stylized P&L distributions in
§4. In §5, we demonstrate that the algorithms can success-
fully be implemented for credit portfolio models that are
used in practice. For simplicity, we focus on the Normal
Copula Model and show how the algorithms can be com-
bined with variance reduction techniques as discussed in
Dunkel and Weber (2007). However, the proposed methods
can easily be extended to more complex models like the t-
copula model; see Kang and Shahabuddin (2005). Section 6
contains concluding remarks.

2. Value-at-Risk vs. Utility-Based
Shortfall Risk

In §2.1, we recall the definition and basic properties of
VaR. Subsequently, the convex risk measure SR, a useful
alternative to VaR, will be defined and discussed in §2.2.

2.1. Value-at-Risk

We denote by X the overall P&L distribution of a financial
position over a fixed time horizon T . Assuming that X is a

random variable on some probability space ���� � P�, the
risk measure VaR at level � ∈ �0�1� can be defined as

VaR��X� �= inf�c ∈� � P	X + c < 0
� ���

VaR corresponds to a quantile of the distribution of X.
Equivalently, for any given level � ∈ �0�1�, the VaR of a
position is the smallest monetary amount that needs to be
added to the position such that the probability of a loss
does not exceed �. Typical values for � that are used in
practice are �= 0�05 or �= 0�01.
VaR has become very popular and is widely used in

practice nowadays; cf. Jorion (2007). In particular, consid-
erable effort has been devoted towards developing efficient
Monte Carlo (MC) methods for estimating VaR in realistic
credit risk and market models; see, e.g., Glasserman (2004),
Glasserman et al. (2008), and the references therein. Unfor-
tunately, VaR suffers from two drawbacks. First, it does not
assess portfolio diversification as being beneficial. Mathe-
matically, this is due to the fact that VaR is a nonconvex
risk measure. Second, VaR does not take into account the
size of very large losses that might occur in the case of
a severe default event. The latter aspect can be illustrated
by the following simple example. Consider two portfolios
modeled by the random variables X1 and X2, respectively,
where

X1 =
⎧⎨
⎩

+1$� with probability 99%,

−1$� with probability 1%,

and

X2 =
⎧⎨
⎩

+1$� with probability 99%,

−1010$� with probability 1%.

A value Xi � 0 corresponds to the event “no loss,” whereas
Xi < 0 means “loss,” i = 1�2. Setting �= 0�01, one finds

VaR��X1�=VaR��X2�= −1� 0�

Hence, according to this VaR, both portfolios would be
equally acceptable.2 In this example, however, the first port-
folio is clearly preferable. For more-complicated models,
the amplitude of losses is usually much less obvious. There-
fore, risk allocation based on VaR criteria may result in
a concentration in the portfolio position with the smallest
loss probability, even if the potential loss associated with
this position is extremely large. The severe drawbacks of
VaR have stimulated intense research on alternative risk
measures, leading, among others, to the definition of con-
vex SR as a useful alternative to VaR; see, e.g., Föllmer
and Schied (2004), Weber (2006), Giesecke et al. (2008),
and Föllmer et al. (2009).
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2.2. Utility-Based Shortfall Risk

A useful alternative to VaR is provided by the convex risk
measure SR. To define SR, we recall that an increasing,
nonconstant function l� �→� is called a loss function.

Definition 2.1. Let ���� � P� be a probability space, l a
convex loss function, and � a point in the interior of the
range of l. We define an acceptance set by

� �= �X ∈ L� � E	l�−X�
� ���

The corresponding risk measure

SRl� ��X� �= inf�m ∈� � m+X ∈��� X ∈ L��

is called Utility-Based Shortfall Risk with loss function l
and threshold level �.

Let us recall some properties of SR. For a more detailed
discussion, we refer the reader to Föllmer and Schied
(2004), Weber (2006), Giesecke et al. (2008), and Föllmer
et al. (2009).

Remark 2.2. (1) Utility-Based Shortfall Risk is closely
related to the expected utility theory of von Neumann and
Morgenstern, and Savage. Setting u�x� = −l�−x�, we can
define the von Neumann and Morgenstern expected utility
of X ∈ L� by U�X� �= E	u�X�
. Acceptability of a posi-
tion X in terms of the risk measure SRl� � in Definition 2.1
amounts to requiring that the utility U�X� is at least −�.
(2) Utility-Based Shortfall Risk is a distribution-based

convex risk measure that is continuous from above and
below, see Föllmer and Schied (2004).
(3) If  is Utility-Based Shortfall Risk associated with

the convex loss function l and threshold level �, i.e.,
 = SRl� �, then  admits a robust representation in terms
of the family �1�P� of all probability measures that are
absolutely continuous with respect to P ,

SRl� ��X�= max
Q∈�1�P�

�EQ�−X�−�min �Q��� X ∈ L��

with minimal penalty function

�min �Q�= inf
z>0

1
z

(
�+E

[
l∗
(
z
dQ

dP

)])
� Q ∈�1�P��

where l∗�y�= supx∈��yx− l�x�� is the convex conjugate of
l. Compared to the general case of convex risk measures,
the calculation of the penalty function is substantially sim-
plified.
(4) Utility-Based Shortfall Risk is invariant under ran-

domization, which formalizes the following idea. Suppose
that the financial positions X1�X2 ∈ L� are acceptable with
respect to a given risk measure , i.e., �X1� � 0 and
�X2� � 0. Let Y be an independent Bernoulli random
variable that takes the value 0 with probability � and the

value 1 with probability 1−� for � ∈ �0�1�. Consider the
randomized position or compound lottery X given by

X���=
⎧⎨
⎩
X1��� if Y ���= 0�

X2��� if Y ���= 1�
�� ∈���

If  = SRl� � is Utility-Based Shortfall Risk, then �X�� 0,
i.e., X is acceptable if X1 and X2 are acceptable. This impli-
cation might be economically plausible in many situations.
An analogous statement holds also if X1 and X2 are

both not acceptable, i.e., �X1� > 0 and �X2� > 0. In this
case, �X� > 0 and the compound lottery X is also not
acceptable.
It turns out that invariance under randomization is

closely related to the weak dynamic consistency of risk
measurements; see Weber (2006).
(5) The domain of SR does not have to be restricted to

L�, but can be extended to larger spaces, as long as suitable
integrability conditions are satisfied.
The following implicit characterization of Utility-Based

Shortfall Risk as the root of a function is particularly
useful for the numerical estimation of the downside risk,
cf. Föllmer and Schied (2004).

Proposition 2.3. Let SRl� � be Utility-Based Shortfall Risk
associated with the convex loss function l and the threshold
level �. Suppose that X ∈ L�. Then, the following state-
ments are equivalent:
(1) SRl� ��X�= s∗,
(2) E	l�−X − s∗�
= �.

Proposition 2.3 is the basis for the estimation algorithm
that we propose in §3. SRl� ��X� is the unique zero s∗ of
the function

g�s� �=E	l�−X − s�
−�� (1)

A stochastic approximation method for determining s∗ can
be subdivided into two partial tasks:
(1) Use a stochastic approximation algorithm that pro-

duces a random sequence �sk�k∈� which converges almost
surely to the root s∗. The value sk+1 will be recursively
chosen given sk. This requires an estimator of g�sk�. This
estimator should have small variance.
(2) Given a model or certain statistics for X, find an esti-

mator for g�s� at any given point s that has small variance.
In many cases, variance reduction techniques can be used
to improve the estimator’s efficiency. So far, almost all of
the literature has focused on variance reduction techniques
for VaR. We will, however, show in §5 how these methods
can be adopted for the superior risk measure SR, see also
Dunkel and Weber (2007).

3. Stochastic Approximation Algorithms
The aim of this section is to construct an algorithm that
converges rapidly to the root s∗ of the function g defined in
(1). In contrast to the preceding section, we do not have to
restrict attention to X ∈ L�, but can allow for more general
spaces of random variables.3
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We analyze properties of two stochastic approximation
algorithms: the standard Robbins-Monro algorithm and
the Polyak-Ruppert algorithm, which averages the slowed
iterates.

3.1. The Robbins-Monro Algorithm

We denote by ���� � P� some sufficiently rich probability
space.4 For s ∈ 	a� b
, we will simulate random variables
with expectation g�s� to construct the sequence �sn�n∈� that
converges to the unique zero s∗ of the function g. A generic
Robbins-Monro algorithm can be described as follows.

3.1.1. The Algorithm. For s ∈ 	a� b
, we denote by
�Ys� 	0�1
→� a measurable function such that

g�s�=E	 �Ys�U�
 (2)

for any on 	0�1
 uniformly distributed random vari-
able U . The functions �Ys can be chosen appropriately
to increase the efficiency of the stochastic root-finding
scheme. A simple, but often not very efficient, choice
is �Ys�·�= l�−q�·�− s�−�, where q denotes the quantile
function of X. We will discuss in §3.1.2 how importance
sampling techniques can be incorporated in the definition
of �Ys and discuss consistency and asymptotic normality for
this case.
For practical and mathematical reasons, we construct

algorithms that are restricted to a bounded domain. Letting
−� < a < s∗ < b < �, we define for x ∈ � a projection
�� �→ 	a� b
 onto the interval 	a� b
 by

��x�=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a� x� a�

x� a < x < b�

b� b� x�

A Robbins-Monro algorithm for s∗ can now be constructed
as follows:

• Choose a constant � ∈ � 1
2 �1
, c > 0 and a starting

value s1 ∈ 	a� b
.
• For n ∈�, we define recursively

sn+1 =�

[
sn + c

n�
· Yn

]
(3)

with

Yn = �Ysn
�Un� (4)

for a sequence �Un� of independent, unif[0,1]-distributed
random variables.

Remark 3.1. Defining the corresponding filtration

�n = ��Yi� i < n�� n ∈�� (5)

we can rewrite the algorithm as

sn+1 = sn + c

n�
g�sn�+ c

n�
�Mn + c

n�
Zn� (6)

where �Mn = Yn − g�sn�, and Zn is the correction term
defined according to (3) and (6). Observe that g�sn� =
E	Yn � �n
 implies that ��Mn�n is a martingale difference
sequence.

The analysis of the consistency and asymptotic optimal-
ity of the Robbins-Monro algorithm above requires certain
moment conditions. For this reason, we define the follow-
ing quantities:

Definition 3.2. For s ∈ 	a� b
, let �Ys� 	0�1
 → � be
defined as in (2), and let U be a random variable that is
uniformly distributed on 	0�1
. We denote the variance of
�Ys�U� by

�2�s�= var� �Ys�U��� (7)

For p > 0, we also define the higher centered moments

m2+p�s�=E�� �Ys�U�− g�s��2+p�� (8)

3.1.2. Importance Sampling. To improve the speed of
the stochastic approximation algorithm, the functions �Ys ,
s ∈ 	a� b
, in (2) are constructed from the distribution of
X + s by applying suitable variance reduction techniques.
In this current paper, we focus on the case of importance
sampling.
Denote by q the quantile function of X. Then,

g�s�=E	l�−q�U�− s�
−�

for any on 	0�1
 uniformly distributed random variable. To
define an equivalent importance-sampling measure change,
we let hs� �→� be a measurable function such that hs > 0
P -almost surely and E	hs�q�U� + s�
 = 1. hs defines an
equivalent measure change by setting

dP̂s

dP
= hs�q�U�+ s��

We denote expectation and variance under P̂s by Ês and
�vars , respectively.
Definition 3.3. Denote the distribution function of
q�U� + s under P̂s by F̂s and its right-continuous inverse
by q̂s . We define

�Ys�·� �=
l�−q̂s�·��−�

hs�q̂s�·��
� (9)

Notation 3.4. Observe that we defined F̂s and q̂s as the
distribution and quantile function of

q�U�+ s

under P̂s . These are not the distribution and quantile func-
tions of q�U� under P̂s , which are given by F̂s�· + s� and
q̂s − s, respectively.

Remark 3.5. Defining

Vn = q̂sn
�Un�� (10)

we can rewrite Equation (4) in the definition of the
Robbins-Monro algorithm as Yn = l�−Vn�−�/�hs�Vn���
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Remark 3.6. Letting p > 0, it follows that for any random
variable U that is uniformly distributed on 	0�1
 under the
measure P ,

g�s�=E	l�−q�U�− s�−�
=E
[ �Ys�U�

]

= Ês

[
l�−q�U�− s�−�

hs�q�U�+ s�

]
�

�2�s�= var
( �Ys�U�

)= �vars
(
l�−q�U�− s�−�

hs�q�U�+ s�

)
�

m2+p�s�=E�� �Ys�U�− g�s��2+p�

= Ês

(∣∣∣∣ l�−q�U�− s�−�

hs�q�U�+ s�
− g�s�

∣∣∣∣
2+p)

�

3.1.3. Consistency. In this section, we prove the con-
sistency of the algorithm when the functions �Ys are defined
according to (9). We make the following weak assumption.

Assumption 3.7. (1) g�s� is well-defined and finite for all
s ∈ 	a� b
;
(2) sups∈	a� b
 �

2�s� <�.

Theorem 3.8. Assume that �Ys , s ∈ 	a� b
, is given accord-
ing to Definition 3.3, and suppose that Assumption 3.7
holds. Then, sn → s∗ P -almost surely.

Proof. g is decreasing, with s∗ being its only zero. Thus,
the only limiting point of the ordinary differential equation
ṡ = g�s� is s∗. Theorem 5.2.1 in Kushner and Yin (2003)
implies that sn → s∗ as n → � P -almost surely if we can
verify their conditions (A2.1)–(A2.5). (A2.1) is guaranteed
by Assumption 3.7(2). (A2.2), (A2.4), and (A2.5) are obvi-
ous. Because l is convex, the function

	a� b
→�� s 	→ l�−q�U�− s�−�

is continuous. Moreover, for s ∈ 	a� b
, we have

l�−q�U�− b�−�� l�−q�U�− s�−�

� l�−q�U�− a�−�� (11)

By Assumption 3.7(2), we have that l�−q�U� − b� − ��
l�−q�U� − a� − � ∈ L1�P�. Thus, g�·� is continuous on
	a� b
 by Lebesgue’s Dominated Convergence Theorem. �

Remark 3.9. The consistency of the Robbins-Monro algo-
rithm does not rely on the fact that we defined �Ys ,
s ∈ 	a� b
, by an importance-sampling procedure. Other
variance reduction techniques can be used instead. We refer
to Theorem 5.2.1. in Kushner and Yin (2003) for general
sufficient conditions for consistency.

3.1.4. Asymptotic Normality. Under stronger condi-
tions, it can also be shown that the sequence �sn�n∈� is
asymptotically normal. If X ∈ L�, then the following sim-
ple conditions suffice, which can easily be verified.

Assumption 3.10. (1) The functions �hs�s∈ 	a� b
 are uni-
formly bounded away from zero on any compact set.
(2) l is continuously differentiable.
(3) hs is continuous for any s ∈ 	a� b
.
(4) c > �−2g′�s∗��−1�

In the general case where X ∈ L� is not necessarily sat-
isfied, the following slightly more complicated condition
replaces Assumption 3.10. Assumption 3.11 follows from
Assumption 3.10 if X ∈ L�.

Assumption 3.11. (1) g is continuously differentiable.
(2) �2�·� is continuous at s∗.
(3) c > �−2g′�s∗��−1.
(4) For some p > 0 and �> 0, we have

sup
�s−s∗�<�

m2+p�s� <��

(5) For some � > 0, the family �Yn1��sn−s∗�<���n is uni-
formly integrable.

Proposition 3.12. If X ∈ L�, then Assumption 3.10
implies Assumptions 3.7 and 3.11.

Proof. Assumption 3.7(1) is immediate. Also observe
that g is continuous by Lebesgue’s dominated con-
vergence theorem because l is continuous. Because l
is continuously differentiable and �l′�−q�U� − s� ��
sup�x���X��� s∈	a� b
 �l′�−x − s�� < � for s ∈ 	a� b
, Assump-
tion 3.11(1) holds.
Observe further that for p� 0,

Ês

(∣∣∣∣ l�−q�U�− s�−�

hs�q�U�+ s�
− g�s�

∣∣∣∣
2+p)

� sup
�x���X��� s∈	a� b


(∣∣∣∣ l�−x− s�−�

hs�x+ s�

∣∣∣∣+ �g�s��
)2+p

<��

because l and g are continuous and bounded on compacts,
and the functions �hs�s∈	a� b
 are uniformly bounded away
from zero on any compact set. This implies that Assump-
tions 3.11(2) and (4) hold. Analogously, the estimate

�Yn�� sup
�x���X��� s∈	a� b


∣∣∣∣ l�−x− s�−�

hs�x+ s�

∣∣∣∣<�

implies Assumption 3.11(5). �

Theorem 3.13. Assume that �Ys , s ∈ 	a� b
, is given accord-
ing to Definition 3.3, and suppose that Assumptions 3.7 and
3.11 hold.
If � = 1, then

√
n · �sn − s∗�→�

(
0�

−c2�2�s∗�
2cg′�s∗�+ 1

)
�

If � ∈ � 1
2 �1�, then

√
n� · �sn − s∗�→�

(
0�

−c�2�s∗�
2g′�s∗�

)
�
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Proof. We first verify that (A2.0)–(A2.7) on page 329
in Kushner and Yin (2003) hold. (A2.1) is sat-
isfied by Assumption 3.11(5). (A2.2) is a conse-
quence of Theorem 3.8. (A2.4) follows from Taylor’s
Theorem and Assumption 3.11(1). (A2.5) follows from
the fact that g�s∗� = 0. For (A2.6), observe that A =
cg′�s∗�. By Assumption 3.11(3), we have A + 1/2 =
�2cg′�s∗� + 1�/2 < 0 because g′�s∗� < 0. Thus, A and
A+ 1/2 are negative. The first part of (A2.7) follows
from Assumption 3.11(4), and the second part from
Assumption 3.11(2). (A2.3) follows easily from Theo-
rem 10.4.1 in Kushner and Yin (2003) because their
Assumptions (A4.1)–(A4.5) are satisfied.
In summary, we have shown that Theorem 10.2.1 in

Kushner and Yin (2003) applies, which implies the asymp-
totic normality. We finally need to verify the formula for
the asymptotic variance. If � = 1, the stationary variance
of the process U in Theorem 10.2.1 in Kushner and Yin
(2003) is

∫ �

0
exp��2cg′�s∗�+ 1�t� · c2�2�s∗�dt = −c2�2�s∗�

2cg′�s∗�+ 1
�

If � ∈ � 1
2 �1�, the stationary variance of the process U in

Theorem 10.2.1 in Kushner and Yin (2003) is

∫ �

0
exp�2cg′�s∗�t� · c2�2�s∗�dt = −c�2�s∗�

2g′�s∗�
� �

Remark 3.14. (1) Note that the previous proof actually
demonstrates that Theorem 10.2.1 in Kushner and Yin
(2003) applies, if Assumptions 3.7 and 3.11 are satisfied.
For practical applications we will not need this result in
full generality. We will, however, need a similar result for
the proof of Theorem 3.16 below.
(2) The asymptotic normality of the Robbins-Monro

algorithm does not rely on the fact that we defined �Ys ,
s ∈ 	a� b
, by an importance-sampling procedure. Other
variance reduction techniques can be used instead. We refer
to Theorem 10.2.1. in Kushner and Yin (2003) for general
sufficient conditions.

Remark 3.15. (1) Asymptotically, the choice � = 1 gives
the best rate of convergence. However, if the step size
decreases too quickly, convergence might be slow in prac-
tice for finite time horizons.
(2) The asymptotic variance in Theorem 3.13 involves

an unknown constant c. For example, the optimal choice
for the exponent � = 1 is c = −�2g′�s∗�+1�/g′�s∗�2, which
depends on the unknown constant g′�s∗�. Adaptive proce-
dures that choose the constant c dynamically by estimating
g′�s∗� adaptively have been suggested in the literature; see,
e.g., Ruppert (1991), but are generally not as efficient as
the Polyak-Ruppert averaging estimators discussed in §3.2.

3.2. Polyak-Ruppert Averaging

The optimal asymptotic variance of the Robbins-Monro
algorithm relies on the choice of the constant c in (3),
which is not known a priori. Ruppert (1988), Ruppert
(1991), Polyak (1990), and Polyak and Juditsky (1992)
suggest as an alternative estimation procedure the averag-
ing of the results of the slowed Robbins-Monro algorithm.
We next discuss a Polyak-Ruppert algorithm for Utility-
Based Shortfall Risk and compare the Robbins-Monro
algorithm and the Polyak-Ruppert algorithm in numerical
case studies.
We will restrict our attention to the case where the

value of the considered portfolio is a random variable
in L�. This allows us to prove the asymptotic normality
of a Polyak-Ruppert estimator that uses a maximum win-
dow of averaging; see Kushner and Yang (1995). How-
ever, the asymptotic properties of the estimator can also
be studied if the boundedness assumption on the portfolio
is dropped. For estimators that use a minimal window of
averaging of fixed size, asymptotic normality holds under
weaker conditions; see Theorem 11.1. in Kushner and Yin
(2003). For estimators that use a maximal window of aver-
aging, the asymptotic variance can still be identified; see,
Theorem 11.3.1 in Kushner and Yin (2003).
The following theorem describes the Polyak-Ruppert

algorithm for Utility-Based Shortfall Risk and states its
consistency and asymptotic normality:

Theorem 3.16. Suppose that X ∈ L�, � ∈ � 1
2 �1�, and that

Assumption 3.10 holds. Assume that �sn� is given according
to (3). For arbitrary t > 0, we define

s̄n = 1
t · n

�t+1�n∑
i=n

si� (12)

where any upper summation index u ∈ �+ is interpreted
as the largest natural number that does not exceed u. For
every � > 0, there exists another process s̆ such that P�s̄n =
s̆n ∀n�� 1− � and

√
tn · �s̆n − s∗�→�

(
0�

�2�s∗�
�g′�s∗��2

)
� (13)

Proof. The convergence s̄n → s∗ P -almost surely follows
from the convergence of the sequence �sn�.
The process s̆ is constructed as follows. Choose N large

enough such that

P��sn − s∗��max��s∗ − a�� �s∗ − b�� ∀n�N�� 1− ��

Set

s̃n+1 =

⎧⎪⎨
⎪⎩
sn+1� n < N�

s̃n + c

n�
· �Ys̃n

�Un�� n�N�

We define s̆n = �1/t · n�∑�t+1�·n
i=n s̃i. By construction, P�s̄n =

s̃n ∀n�� 1− �. To prove the asymptotic normality (13), it
suffices to verify (13) for N = 1 and s1 ∈ 	a� b
.
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This is a consequence of Theorem 4.2 in Kushner
and Yang (1995). We need to verify their Assump-
tions (A4.1)–(A4.5). (A2.1) follows from Theorem 4.5.13
in Benveniste et al. (1990). (A4.1) is satisfied with
qn = n, an = n−� , and � ∈ �1/2�1�. (A4.2) follows
with g�s� u� = Ys�u� and ḡ�s� �= g�s� for s ∈ 	a� b
,
g�s� u� �= ḡ�s� �= g′�a��s − a�+ g�a� for s < a, and
g�s� u� �= ḡ�s� �= g′�b��s − b� + g�b� for s > b. This
implies that �j�s�= 0 for all j ∈� and s ∈�. The first part
of (A4.4) is, thus, also obvious. The second part follows
from our definition of g�·� ·�. �

Remark 3.17. The Polyak-Ruppert algorithm as described
in Theorem 3.16 averages over slowed Robbins-Monro iter-
ates with � < 1. Apart from an additional factor of 1/t,
this Polyak-Ruppert algorithm achieves the asymptotically
best convergence rate, corresponding to that of a Robbins-
Monro algorithm with � = 1. The asymptotic variance of
the Polyak-Ruppert algorithm with � < 1 equals the best-
possible variance of the Robbins-Monro algorithm with
� = 1; see Theorem 3.13 and Remark 3.15. In particu-
lar, this optimal variance is independent of the parameter
c. However, due to the convexity of the loss function l,
the Polyak-Ruppert algorithm usually exhibits more bias
towards values larger than s∗ if c and t are chosen too
large. The reason for this is as follows: The convexity of
l implies that �g�s − ��� > �g�s + ��� for � > 0. Hence, on
average, the step sizes �sn+1 − sn� of the slowed Robbins-
Monro algorithm is larger for values sn < s∗ than for sn > s∗.
This effect induces a bias of the Robbins-Monro estima-
tor toward values that are larger than s∗. However, this bias
quickly vanishes in the case of the “pure” Robbins-Monro
algorithm. By contrast, due to the additional averaging pro-
cedure, the nth iterate s̄n of the Polyak-Ruppert algorithms
will typically be more biased than the last iterate s�t+1�n

of the Robbins-Monro algorithm that was used to compute
s̄n. A possible remedy might be to employ regression-based
root-finding schemes, as suggested in Ruppert (1991). In
practice, numerical case studies for typical portfolio distri-
butions can be used to choose reasonable parameters and
to construct an efficient algorithm. The resulting numeri-
cal scheme can afterwards be applied to practically relevant
portfolio distributions. The case studies in §4 consider, for
example, a value of t on the order of 10%.

3.3. Estimator of the Asymptotic Variance

The asymptotic variance in (13) is given by the unknown
quantity �2�s∗�/�g′�s∗��2. In this section, we will discuss
how �2�s∗� and g′�s∗� can be estimated based on the data
that have already been generated in the Robbins-Monro
algorithm (3). Except for the computation of the estima-
tors, this procedure does not require any additional effort
because the simulation results can be recycled for this pur-
pose after s∗ has been estimated. The proofs of the consis-
tency of the estimators rely on a law of large numbers for
martingale difference sequences or, more generally, mixin-
gales; see McLeish (1975) and Chow (1967).

3.3.1. Confidence Intervals. Before we discuss these
estimators, let us briefly recall how confidence intervals
can be determined if �2�s∗� and g′�s∗� are known. In prac-
tice, these quantities are replaced by their estimators and
s̆n is replaced by s̄n. For � ∈ �0�1�, let q �= inf�x� ��x��
1 − �/2� be the �1 − �/2�-quantile where � denotes the
cumulative Gaussian distribution function. Then, −q is the
�/2-quantile, and

[
s̆n −

∣∣∣∣ ��s∗�
g′�s∗�

√
tn

∣∣∣∣ · q� s̆n +
∣∣∣∣ ��s∗�
g′�s∗�

√
tn

∣∣∣∣ · q
]

is an approximate confidence interval for s∗ with confi-
dence coefficient 1−�.

3.3.2. Estimation.

Theorem 3.18. Suppose that X ∈ L�, t > 0, and that
Assumption 3.10 holds. Then, we have

�2�s∗�= lim
n→�

1
tn

�t+1�n∑
i=n

Y 2
i � (14)

g�s�= lim
n→�

1
n

n∑
i=1

l�−Vi + si − s�−�

hsi
�Vi�

� (15)

g′�s�= lim
�→0

lim
n→�

1
�n

·
n∑

i=1

l�−Vi + si − s − ��− l�−Vi + si − s�

hsi
�Vi�

� (16)

where �Yn�n∈� and �Vn�n∈� are defined according to (4) and
(10), respectively, and convergence holds P -almost surely.

Remark 3.19. For the definitions of �Yn�n∈� and �Vn�n∈�
in (4) and (10), observe that q̂s the quantile function of
q�U�+ s under the measure P̂s; see Definition 3.3.

Proof. To prove (14), observe that for i ∈� we have that

E	Y 2
i ��i
− g�si�

2 = �2�si��

Thus, Mi �= Y 2
i − g�si�

2 − �2�si�, i ∈ �, defines a
martingale difference sequence. X ∈ L� together with
Assumption 3.10 imply that supi∈� �Mi�� < �. In par-
ticular, �Mi�i∈� is a square-integrable martingale differ-
ence sequence and

∑
i E	M2

i 
/i
2 < �. By Corollary 1.9 in

McLeish (1975),

lim
n→�

1
n

n∑
i=1

M2
i = 0�

Hence, limn→��1/tn�
∑�t+1�n

i=n M2
i = 0. Observe that

lim
n→�

1
tn

�t+1�n∑
i=n

�g�si�
2 +�2�si��= �2�s∗�
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because g and � are continuous, g�s∗�= 0, and limn sn = s∗

P-almost surely. Thus,

lim
n→�

1
tn

·
�t+1�n∑
i=n

Y 2
i

= lim
n→�

1
tn

·
�t+1�n∑
i=n

�Y 2
i − g�si�

2 −�2�si��

+ lim
n→�

1
tn

·
�t+1�n∑
i=n

�g�si�
2 +�2�si��= �2�s∗��

For the proof of (15), observe that

E

[
l�−Vi + si − s�−�

hsi
�Vi�

∣∣∣∣�i

]
= g�s��

Thus, ��l�−Vi + si − s�−��/�hsi
�Vi��− g�s��i∈� is a mar-

tingale difference sequence that is uniformly bounded in
L� because of X ∈ L� and Assumption 3.10. Similar argu-
ments to the above imply (15).
Finally, (16) is an immediate consequence of (15). �

4. Numerical Case Studies
In both this section and §5 below, we test the performance
of the proposed simulation scheme for SR. First, we will
analyze the stochastic approximation of SR for specific
distributions without importance sampling. This will illus-
trate the key factors that determine the performance of the
scheme. Later on, in §5 we will focus on the estimation
of SR in a more realistic credit portfolio model. There, we
will investigate the effects of importance sampling. As it
turns out, variance reduction is often important to ensure a
good performance of the stochastic approximation scheme.

4.1. Notation

The number of steps in one simulation run will be denoted
by n′. Letting � ∈ �0�1� be a constant, we will compare
simulation results sn′ for the Robbins-Monro algorithm (3),
and

s̄′
n′ = 1

n′�

n′∑
i=n′�1−��

si (17)

for the Polyak-Ruppert algorithm. The defining Equa-
tion (12) of the Polyak-Ruppert scheme is recovered from
the latter Equation (17) by setting n �= n′�1 − �� and
t = �/�1−��. Accordingly, we set

Sn′ �=
√
n′��sn′ − s∗� (18)

and

S̄ ′
n′ �=

√
n′��s̄′

n′ − s∗�� (19)

Under suitable conditions, Sn′ and S̄ ′
n′ are asymptotically

normal; see Theorems 3.13 and 3.16. The asymptotic vari-
ance of Sn′ is given by

�=
⎧⎨
⎩
	−c�2�s∗�
/	2g′�s∗�
� � ∈ �1/2�1��

	−c2�2�s∗�
/	2cg′�s∗�+ 1
� � = 1�
(20)

We estimate this quantity according to Theorem 3.18, using
one simulation run with n′ steps.5 The corresponding esti-
mator is denoted by �n′ . The asymptotic variance of S̄ ′

n′ ,
given by

��= �2�s∗�/	g′�s∗�
2� (21)

is estimated analogously. We denote the corresponding esti-
mator by ��n′ .

4.2. Simulations

In applications, the loss amount L is often used as a starting
point rather than the portfolio value X. L is simply the
negative of X, i.e., X = −L. Positive (negative) values of
L correspond to losses (gains).
As the first simple example, we consider an exponential

loss function

l�−x�= exp�−�x�� �> 0� (22)

and Gaussian loss distribution, i.e., X �= −L where L ∼
� ��0��

2
0 �. In this case, SRl� � can be calculated in closed

form:

SRl� ��−L�= s∗ =�0 + ��2
0

2
− log�

�
� (23)

which is useful for testing the algorithms. With � = 0�5,
� = 0�05, and L ∼ � ��0��

2
0 � with �0 = 0, �0 = 1, we

obtain the exact value SRl� � = 6�24146=� s∗. For constant
n′, empirical means, variances, and histograms are based on
N = 10�000 simulation runs. At the beginning of each run,
the initial value s1 is uniformly sampled from the interval
	a� b
 �= 	s∗ − 10� s∗ + 10
. We simulate and compare the
Robbins-Monro (RM) algorithms with � = 1�0 and � = 0�7,
respectively, and the Polyak-Ruppert (PR) algorithm with
� = 0�7 and � = 0�1. If � is too large, the performance of
the PR algorithm decreases. We set c = 100 which is close
to the optimal choice for the RM algorithm. We increased
the maximum number of steps n′ = 20 per run to n′ = 105.
Figures 1 and 2 illustrate that Sn′ = √

n′��sn′ − s∗� and
S̄ ′
n′ = √

�n′�s̄′
n′ − s∗� with s∗ = 6�24146 quickly converge

to a Gaussian distribution, as predicted by Theorems 3.13
and 3.16.
The construction of confidence intervals requires esti-

mates of the asymptotic variances � and ��. Figure 3 shows
the corresponding numerically obtained histograms for the
estimators �n′ and ��n′ . This demonstrates that a reasonable
confidence interval can be obtained for n′ = 104.
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Figure 1. Gaussian loss distribution and exponential loss function.
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Note. Asymptotically, the rescaled quantities Sn′ = √
n′��sn′ − s∗� and S̄ ′

n′ = √
�n′�s̄′

n′ − s∗� approach Gaussian distributions (cf. Theorems 3.13 and 3.16).
The numerical results agree with the theoretical prediction (solid lines).

As a second example, we consider L ∼ � ��0��
2
0 � with

(piecewise) polynomial loss function

l��L− s�= �−1�L− s��1�L>s�

= �−1

⎧⎨
⎩
L− s��� L� s�

0� L < s�
(24)

Setting � = 2, �0 = 0, �0 = 1, and � = 0�05, the numer-
ically obtained SR value is given by s∗ = 0�86937. We
compare the same algorithms as before, but with c > 15
and 	a� b
 = 	s∗ − 5� s∗ + 5
. The starting point s1 of the
simulation is uniformly sampled from this interval. The

Figure 2. Gaussian loss distribution and exponential loss function.
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Note. Empirical mean values and variances of the rescaled quantities Sn′ = √
n′��sn′ − s∗� and S̄ ′

n′ = √
�n′�s̄′

n′ − s∗�, corresponding to the histograms from
Figure 1. For large enough n′, the variances converge to the values predicted by Theorems 3.13 and 3.16 (dotted lines).

algorithms again show good convergence properties; cf.
Figure 4. The PR algorithm shows better finite sample
properties in this case than the RM algorithm with � = 1.
For the case � = 0�7, numerical simulations show that

Sn′ and S̄ ′
n′ are very close to normal for n′ = 105, but also

for smaller values of n′, deviations from normality are not
too large. Reasonable estimators �n′ and ��n′ of the asymp-
totic variances can be obtained for n′ = 105.
As a third example, we consider a heavy-tailed loss dis-

tribution of the Frechet type, defined by the cumulative
distribution function

P	L< x
= exp
[−�1+ �0x�

−1/�0
]
� �0 > 0� (25)
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Figure 3. Gaussian loss distribution and exponential loss function.
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Figure 4. Gaussian loss distribution and (piecewise) polynomial SR with � = 2.
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and, again, SR with polynomial loss function (24). For
� = 2, � = 0�05, and �0 = 0�1, the SR value can be esti-
mated numerically as s∗ = 5�1486; cf. Figure 5. Choosing
c = 100 > �−2g′�s∗��−1 and 	a� b
 = 	s∗ − 5� s∗ + 5
, the
convergence of the algorithms is much slower than in the
other two cases; cf. Figures 4 and 5. The distributions of Sn′

in the case of the RM algorithms and S̄ ′
n′ become reason-

ably close to normal for n′ = 106. However, convergence

Figure 5. Heavy-tailed Frechet-type loss distribution (25) and (piecewise) polynomial SR with �= 0�05.
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convergence is considerably slower than in the case of light-tailed Gaussian loss distributions; cf. Figure 4.

of the estimators �n′ and ��n′ of the asymptotic variances
is extremely slow.
The examples illustrate that, without importance sam-

pling, the algorithms work efficiently for P&L dis-
tributions that are close to a normal, whereas their
performance decreases significantly for heavy-tailed dis-
tributions. In general, model-specific variance reduc-
tion techniques can be used to ensure a good
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performance of the algorithms even for heavy-tailed
distributions.

5. Application: Credit Portfolio Models
A standard example of a credit portfolio model is the
Normal Copula Model (NCM), which was introduced
in Gupton et al. (1997) and presents the foundation of
CreditMetrics. Although frequently used in practice, the
NCM should, of course, not be considered as a realistic
model. The purpose of the this section is to illustrate how
the proposed stochastic approximation techniques, when
combined with importance sampling, can be used to com-
pute the downside risk for models that are more complex
than the simple examples in §4. Generally, our methods can
be used in more general models like the t-copula model that
exhibits tail dependence. The importance-sampling estima-
tors for loss probabilities in Kang and Shahabuddin (2005)
can be extended to the case of SR.
The basic equations and properties of the NCM are

briefly reviewed in §5.1. Subsequently, we discuss the esti-
mation of SR in the NCM and provide numerical examples.

5.1. Basic Equations

We consider a portfolio withm positions (or obligors) over a
fixed time horizon T . Each position is subject to default risk.
For each obligor i = 1�2� � � � �m, a random variable Di with
values in �0�1� indicates whether or not i has defaulted at
horizon T . Di = 1 corresponds to a default of position i. The
partial net loss associated with a default of the obligor i is
given by a positive constant vi > 0. Assuming no recovery,
the overall loss L � 0 of the portfolio over the horizon T
can be written in the standard form

L=
m∑
i=1

viDi� (26)

Note that these models typically count losses as positive.
If portfolio gains are not neglected, profits and losses are
given by X = −L. If downside risk is measured by a risk
measure , then the risk of L is given by �−L�.
The NCM is a threshold model describing a credit port-

folio with m obligors, i.e., there exists an m-dimensional
random vector R = �R1�R2� � � � �Rm� and threshold levels
r1� r2� � � � � rm ∈� such that

Di = 1�Ri>ri�
�

In the NCM it is specifically assumed that R is an
m-dimensional normal random vector with standardized
one-dimensional marginals. Denoting by pi = P�Di = 1�
the marginal default probability of the obligor i, we obtain
that

ri =�−1�1−pi�� (27)

where � is the cumulative distribution function of the stan-
dard normal distribution � �0�1�. Thus, instead of directly

choosing ri, one could also specify the marginal default
probabilities p1� � � � � pm and determine the threshold values
r1� � � � � rm from Equation (27). In industry applications of
the NCM, the covariance matrix of the Gaussian vector R
is often specified through a factor model of the form

Ri =Ai0�i +
d∑

j=1

AijZj� i = 1� � � � �m�d <m� (28)

1=A2
i0 +A2

i1 + · · · +A2
id� Ai0 > 0� Aij � 0� (29)

The systematic risk variables Z1� � � � �Zd and the idiosyn-
cratic risks variables �1� � � � � �m are chosen as independent
standard normal random variables. The parameters �Aij�
determine the cross-coupling as well as the relative size
(influence) of the different risk factors on the latent vari-
ables R1� � � � �Rm. The additional constraint (29) ensures
that Ri ∼� �0�1� holds.
If R1� � � � �Rm are specified through the factor model

above, the NCM obeys the following conditional inde-
pendence structure. Conditionally on the common factors
Z = �Z1� � � � �Zd�, the default indicators Di are indepen-
dently distributed. Conditional on the vector of systematic
factors Z, the default events �Di = 1� occur with probability

pi�Z� �= P	Di = 1 �Z
=�

(∑d
j=1AijZj − ri

Ai0

)
� (30)

In principle, it is straightforward to perform numerical MC
studies on the basis of Equations (26)–(30). The NCM
model is uniquely determined by the parameter vector

�m�d�p1� � � � � pm� v1� � � � � vm�A11� � � � �Amd��

In a naive MC simulation, one first draws the d independent
random numbers �Zj�j=1�����d from a standard normal distri-
bution and then calculates L according to (26). Repeating
this procedure several times, one can obtain estimators for
functionals of L, e.g., the moments E	Ln
 of the loss dis-
tribution or the loss probabilities

P	L> c
=E	1�L>c�
 ∈ 	0�1
� (31)

In the NCM, the total portfolio loss is bounded from
above, that is, 0 � L � L+, L+ �= ∑m

i=1 vi; and it suffices
therefore to consider c ∈ 	0�L+
. When measuring down-
side risk, one is typically interested in estimating rather
rare events. In this case, the MC method outlined above
becomes computationally expensive because the default
events become very rare. Thus, naive MC estimators often
do not provide good estimates unless very large sample
sizes are considered. Accordingly, variance reduction tech-
niques become very important in practical applications. For
example, Glasserman (2004) and Glasserman et al. (2008)
discuss efficient estimators for loss probabilities by apply-
ing the importance-sampling method exponential twisting.
An analogous approach can be used to obtain numeri-
cally efficient MC estimators for SR if variance reduc-
tion techniques are combined with stochastic approxima-
tion techniques. We consider as an example the piecewise
polynomial loss function

l��x�= �−1x�1�x�0��x�� � > 1�
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5.1.1. Independent Default Events: Exponential
Twisting. An intermediate step in the design of
efficient stochastic approximation algorithms is the
construction of importance-sampling estimators for
EP 	l�L − s�
. If P̂s is another probability measure
that is equivalent to P with dP̂s/dP = hs�L − s�, then
EP 	l�L − s�
 = EP̂s

	l�L− s�/hs�L− s�
. It follows that
J hs
n = n−1∑n

k=1�l�Lk − s�/hs�Lk − s�� is an unbiased,
consistent estimator of EP 	l�L− s�
 if the random variables
Lk are sampled independently from the distribution of
L under P̂s . Because the estimator is unbiased, its mean
square error can be expressed as the square root of its
variance. Thus, the mean square error becomes small if
and only if the variance varP̂s

	l�L− s�/hs�L− s�
 is small.
In the present case, we are primarily interested in events
that correspond to large L. To reduce the variance of the
estimator, we need to transfer mass to these events. An
exponential twist refers to a density g, which is exponential
in L; i.e., we consider a class of measures P̂ �

s , �� 0� with

dP̂ �
s

dP
= exp��L�

exp	����

�

where

���� �= logE	exp��L�
=
m∑
i=1

log
[
1+pi

(
e�vi − 1

)]
(32)

is the cumulant generating function of the loss variable L,
and exp	����
 is a normalizing constant. The twist parame-
ter � has to be determined such that a good variance reduc-
tion is achieved (see the discussion below).
For the NCM with independent default events, the dis-

cussed measure change is equivalent to a change of the
individual default probabilities. The defaults are still inde-
pendent under P̂ �

s . For the individual default probabilities
under P̂ �

s , we obtain that

p̂i��� �= P̂ �
s 	Di = 1
 �= pie

�vi

1+pi�e
�vi − 1�

� (33)

As evident from Equation (33), the new default probabili-
ties p̂i not only depend on the original default probabilities
pi, but also on the partial losses vi. In general, for � > 0 the
default probability of the ith portfolio position is increased
(in particular, we have p̂i�0� = pi). Hence, under the new
measure P̂ �

s default events are more likely to occur. The
inverse likelihood ratio for the change from P to P̂ �

s can be
written as

dP

dP̂ �
s

=
m∏
i=1

(
pi

p̂i���

)Di
(

1−pi

1− p̂i���

)1−Di

= exp	−�L+����
� (34)

Denoting by E and Ês�s the expectations under P and P̂ �
s ,

respectively, we can write

E	l�L− s�
= Ê�
s 	l�L− s� exp	−�L+����

� (35)

Hence, in the case of the piecewise polynomial loss func-
tion, importance sampling for

E	l�L− s�
=E	�−1�L− s��1�L�s�


corresponds to generating samples of the quantity

�−1�L− s��1�L�s� exp	−�L+����
 (36)

under the measure P̂ �
s . The implementation of the sampling

procedure is straightforward because of Equation (33). The
probability distributions of the default indicators under P̂ �

s

are known, which implies that L can easily be sampled.
It thus remains to discuss how the parameter � can be

determined such that the variance of the estimator based on
Equation (36) is significantly smaller than the variance of
the corresponding naive estimator for the left-hand side of
(35). Because the estimator is unbiased, it is equivalent to
consider the second moment,

M2�s� �� �=
1
�2

Ê�
s

[
�L− s�2�12�L�s� exp	−2�L+ 2����


]

= 1
�2

E
[
�L− s�2�1�L�s� exp	−�L+����


]

� M2�s�0� exp	−�s +����
� (37)

Here, M2�s�0� = E	�L− s�2�1�L�s�
 is the second moment
“without” exponential twisting. Consequently, instead of
directly minimizing M2�s� ��, which is very difficult or
even impossible in general, one can at least minimize the
upper bound on the right-hand side of inequality (37). A
promising choice for the twisting parameter is thus given by

�s =
⎧⎨
⎩
u. s. of �′���= s� s > �′�0��

0� s � �′�0��
(38)

where the abbreviation “u. s.” stands for “unique solution.”
As discussed in the next section, this approach is directly
transferable to the case of nonindependent defaults.

5.1.2. Dependent Default Events: Conditional Expo-
nential Twisting. Let us now return to the general case,
where the default events of different portfolio positions may
be coupled. In this case, exponential twisting can be applied
to the conditional distribution P	· �Z
 of the indicator vari-
ables Di. Conditional on Z, we are in the situation of the
preceding section because defaults are conditionally inde-
pendent given Z.
The basic idea of conditional exponential twisting is thus

to replace in the formulae of §5.1.1 the default probabilities
pi by the conditional default probabilities

pi�Z� �= P	Di = 1 �Z
=�

(∑d
j=1AijZj − xi

Ai0

)
� (39)
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Analogous to Equation (32), we define the conditional
cumulant generating function by

����Z� �= logE	exp��L� �Z


=
m∑
i=1

log
[
1+pi�Z�

(
e�vi − 1

)]
� (40)

As in Equation (38), the parameter � that governs the
measure change can be determined. In the current case, �
depends on the factor Z, i.e.,

�s�Z�=
⎧⎨
⎩
u. s. of �′���Z�= s� s > �′�0�Z��

0� s � �′�0�Z��
(41)

where

�′��� z� �=  

 �
���� z��

�′�0�Z�=E	L �Z
=
m∑
i=1

vipi�Z��

(42)

With these definitions, the corresponding MC algorithm
reads as follows:
(1) Generate a d-dimensional Gaussian random vector

of factor variables, Z ∼ � �0�1d�, where 1d denotes the
d ×d-unity matrix.
(2) Calculate

p̂i��s�Z��Z� �= pi�Z�evi�s�Z�

1+pi�Z�
(
evi�s�Z� − 1

) (43)

with �s�Z� given by Equation (41) and pi�Z� given by
Equation (39).
(3) Generate m Bernoulli-random numbers Di ∈ �0�1�,

such that Di = 1 with probability p̂i��s�Z��Z�.
(4) Calculate ���s�Z��Z� from Equation (40) and

L=∑m
i=1 viDi, and return the estimator

l�L− s� exp	−L�s�Z�+���s�Z��Z�
� (44)

Figure 6. NCM and polynomial SR with �= 0�05 (without importance sampling).
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Note. Left: The different algorithms converge slowly to the same SR value s∗ = 5�11 (determined from IS). Right: Sample variances of the SR estimates
in the left diagram. As is evident from the diagrams, without IS the convergence is very slow. The results are qualitatively similar to those obtained for
the Frechet-type heavy-tail distribution; cf. Figure 5.

Here, the exponential factor corresponds to the conditional
likelihood ratio; cf. Equation (34).
As in the case of VaR, this algorithm yields a significant

variance reduction provided the default events are not too
strongly correlated, i.e., if Aij � 1 holds for i � 1. Other-
wise, additional importance sampling of the factor variables
Z may turn out to be helpful; cf. Glasserman et al. (2008).

5.2. Numerical Results

For a numerical case study, we consider a portfolio with
m= 25 portfolio positions that are subdivided into 5 classes
with partial losses v1 = · · · = v5 = 1�00, v6 = · · · = v10 =
1�25, v11 = · · · = v15 = 1�50, v16 = · · · = v20 = 1�75, and
v21 = · · · = v25 = 2�00. The corresponding maximal loss
is given by L+ = 37�5. We assume that the marginal
default probabilities are pi = 0�05, corresponding to thresh-
old values xi = 1�64488. The number of common factors
is given by d = 6. The coupling parameters Aij = A�i� j�
are given by A�1�1� = A�2�1� = A�3�1� = A�4�1� =
A�5�1� = 0�1, A�6�2� = A�7�2� = A�8�2� = A�9�2� =
A�10�2� = 0�1, A�11�3� = A�12�3� = A�13�3� = A�14�3�
= A�15�3� = 0�1, A�16�4� = A�17�4� = A�18�4� =
A�19�4� = A�20�4� = 0�1, A�21�5� = A�22�5� =
A�23�5� = A�24�5� = A�25�5� = 0�1, A�i�6� = 0�1, for
i = 1� � � � �m and A�i� j� = 0 otherwise. That is, positions
within the same class j are coupled with each other by
means of the risk factor Zj , where j = 1� � � � �5, and all posi-
tions are coupled by the common risk factor Z6. SR will be
defined in terms of a polynomial loss function with expo-
nent � = 2 and threshold level �= 0�05. The search interval
is given by 	a� b
 = 	s∗ − 5� s∗ + 5
, and we used c = 100.
For constant n′, empirical means, variances, and histograms
are based on N = 10�000 simulation runs. The initial value
s1 is chosen according to a uniform distribution on 	a� b
.

5.2.1. Case Studies Without Importance Sampling.
Without importance sampling, the stochastic approximation
algorithms are slow. Figure 6 shows the empirical mean and
variance of the Robbins-Monro algorithms with � = 1 and
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Figure 7. NCM and polynomial SR with � = 2�0 and �= 0�05 (without importance sampling).
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Note. Asymptotically, the rescaled quantities Sn′ = √
n′��sn′ − s∗� and S̄ ′
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n′ − s∗� approach Gaussian distributions (cf. Theorems 3.13 and
3.16). For large n′, the numerical results approach the theoretical prediction (solid lines, obtained by using the estimators from Theorem 3.18), but again
convergence is very slow.

� = 0�7, and the Polyak-Ruppert algorithm with � = 0�7
and � = 0�1. Figure 7 illustrates that Sn′ = √

n′��sn′ − s∗�
and S̄ ′

n′ = √
�n′�s̄′

n′ − s∗� converge to a Gaussian dis-
tribution, as predicted by Theorems 3.13 and 3.16, but
convergence is not particularly fast. The construction of
confidence intervals relies on estimates of the asymptotic
variances � and ��. Figure 8 shows the corresponding
numerically obtained histograms for the estimators �n′

and ��n′ . The convergence is poor, and the construction of
reasonable confidence intervals requires more than n′ = 104

steps.

Figure 8. NCM model and polynomial loss function (without importance sampling).
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5.2.2. Case Studies with Importance Sampling.
With importance sampling (IS), the stochastic approxima-
tion algorithms perform very well. We do not modify the
distribution of the factor Z, but use importance sampling
only conditional on Z. To reduce the numerical effort that is
required to calculate the “optimal” value �s , we calculated
�s when the IS criterion (38) was met for the first time; sub-
sequently, the value of �s was repeatedly updated only after
0�1×n′

max performed IS steps, where n′
max is the fixed maxi-

mum value n′ per simulation run. Figure 9 shows the empir-
ical mean and variance of the Robbins-Monro algorithms
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Figure 9. NCM, polynomial SR (� = 2�0, �= 0�05), and exponential twisting.
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Note. Left: The different algorithms converge to the same SR value s∗ = 5�11. Right: Sample variances of the SR estimates in the right diagram.
Convergence has considerably improved; cf. Figure 6.

with � = 1 and � = 0�7, and the Polyak-Ruppert algorithm
with � = 0�7 and � = 0�1. Figure 10 illustrates that Sn′ =√
n′��sn′ −s∗� and S̄ ′

n′ = √
�n′�s̄′

n′ −s∗� converge to a Gaus-
sian distribution, as predicted by Theorems 3.13 and 3.16.
The approximation is excellent for n′ = 104. The empiri-
cal means and variances of Sn′ = √

n′��sn′ − s∗� and S̄ ′
n′ =√

�n′�s̄′
n′ − s∗� are shown in Figure 11. The construction of

confidence intervals relies on estimates of the asymptotic
variances � and ��. Figure 12 shows that the construction
of reasonable confidence intervals requires not more than
n′ = 104 steps.

Figure 10. NCM, polynomial SR (� = 2�0, �= 0�05), and exponential twisting.
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Note. Asymptotically, the rescaled quantities Sn′ = √
n′��sn′ − s∗� and S̄ ′

n′ = √
�n′�s̄′

n′ − s∗� approach Gaussian distributions (cf. Theorems 3.13 and 3.16).
For large n′, the numerical results approach the theoretical prediction (solid lines, obtained by using the estimators from Theorem 3.18).

6. Concluding Remarks
The proposed root-finding algorithms present an efficient
tool for the numerical computation of the risk measure
Utility-Based Shortfall Risk. We proved their consistency
and asymptotic normality and provided estimators for con-
fidence intervals. Our numerical case studies demonstrate
that the stochastic approximation algorithms exhibit good
finite sample properties if they are combined with impor-
tance sampling. The techniques were successfully imple-
mented to estimate shortfall risk in the Normal Copula
Model, which underlies the industry model CreditMetrics.
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Figure 11. NCM, polynomial SR(� = 2�0, �= 0�05), and exponential twisting.
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Note. Empirical mean values and variances of the rescaled quantities Sn′=√
n′��sn′ − s∗� and S̄ ′
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n′ − s∗�, corresponding to the histograms from
Figure 11. For large enough n′, the variances converge to the values predicted by Theorems 3.13 and 3.16 (dotted lines, obtained by using the estimators
from Theorem 3.18).

Figure 12. NCM, polynomial SR (� = 2�0, �= 0�05), and exponential twisting.

Robbins-Monro

0

0.1

0.2

0.3

PD
F

0 10 20 30 40

Polyak-Ruppert

0

0.25

0.5

0.75

PD
F

0 5 10 15

N = 10,000
c = 100
� = 0.7

�n′

n′ = 3 × 103
n′ = 103

n′ = 104
N = 10,000
c = 100
� = 0.7
� = 0.1

n′ = 3 × 103
n′ = 103

n′ = 104

�n′
–

Note. Illustration of Theorem 3.18; histogram of the variances �n′ and ��n′ , using the estimators from Theorem 3.18, respectively. Importance sampling
has led to a considerable variance reduction; cf. Figure 8.

In numerical simulations, neither the Robbins-Monro algo-
rithm nor the Polyak-Ruppert algorithm were clearly supe-
rior. Generally, our approach can easily be applied to more
realistic models like the t-copula model. For future appli-
cations in practice, it is important to adapt and optimize
the algorithms for typical portfolio distributions. The latter
part is conceptually straightforward because the underlying
root-finding schemes can be combined with various, model-
specific variance reduction techniques. This enables the
design of algorithms that provide an efficient tool for the
fast measurement of the downside risk of real portfolios.

Endnotes
1. A similar approach has independently been taken in an
interesting paper by Bardou et al. (2009). This working
paper became available online at the end of December 2008
after the original submission of our manuscript.
2. Generally, a position is considered acceptable if its risk
measure is negative.
3. However, if X ∈ L� is satisfied, the conditions for
asymptotic normality can substantially be simplified.
4. The assumption that the true probability measure P is
precisely known is, of course, an idealization. Real appli-

cations typically involve model uncertainty. The measure
P should be interpreted as a probability measure that has
been chosen for modeling purposes.
5. �2�s∗� can be estimated according to Equation (14) with
n = n′�1 − �� and t = �/�1−��. g′�s∗� can be estimated
according to Equation (16) with n= n′.
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