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Spain, EU
2 Rudolf Peierls Centre for Theoretical Physics, University of Oxford - 1 Keble Road, Oxford OX1 3NP, UK, EU

received 31 March 2009; accepted in final form 24 July 2009
published online 27 August 2009

PACS 02.70.Ns – Molecular dynamics and particle methods
PACS 05.70.-a – Thermodynamics
PACS 03.30.+p – Special relativity

Abstract – Recent molecular-dynamics simulations show that a dilute relativistic gas equilibrates
to a Jüttner velocity distribution if ensemble velocities are measured simultaneously in the
observer frame. The analysis of relativistic Brownian motion processes, on the other hand,
implies that stationary one-particle distributions can differ depending on the underlying time
parameterizations. Using molecular-dynamics simulations, we demonstrate how this relativistic
phenomenon can be understood within a deterministic model system. We show that, depending
on the time parameterization, one can distinguish different types of “soft” ergodicity on the level
of the one-particle distributions. Our analysis further reveals a close connection between time
parameters and entropy in special relativity. A combination of different time parameterizations can
potentially be useful in simulations that combine molecular-dynamics algorithms with randomized
particle creation, annihilation, or decay processes.

Copyright c© EPLA, 2009

Introduction. – Understanding the relation between
ensemble and time averages poses one of the most
fundamental problems in statistical physics. Ergodicity
—the equivalence of the two averaging procedures— is
a commonly employed assumption in statistical mechan-
ics [1], albeit difficult to prove for realistic systems.
During the past decades, the ergodicity hypothesis was
intensely examined for nonrelativistic classical [2–5] and
quantum models [6–8]. However, much less is known
about its meaning and validity in relativistic settings [9],
when even more basic concepts like “stationarity” may
become ambigous as time becomes relative [10–12]. A
clear conception of the interplay between time parameters
and thermostatistical concepts, like entropy [13–15], is
crucial, e.g., if one wishes to generalize non-equilibrium
fluctuation theorems to a relativistic framework [16,17].
Given the rapidly increasing number of applications in
high-energy physics [18,19] and astrophysics [20,21], a
firm conceptual foundation is desirable not only from a
theoretical, but also from a practical perspective.
Ideally, one would like to tackle relativistic many-

particle problems within a quantum field theory frame-
work, as this allows for the consistent treatment of particle
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creation, annihilation, or decay processes [22]. In recent
years, substantial progress has been made towards a
better understanding of both equilibrium [23,24] and non-
equilibrium processes [25–28] in the context of relativistic
field theories. However, while without doubt conceptually
preferable, an exact quantum-theoretical treatment is in
many situations practically unfeasible and, for a consider-
able number of applications (e.g., sufficiently dilute gases
or plasmas), not necessary. With regard to computer
simulations of relativistic systems, suitably adapted
quasi-classical particle models [29] often provide a
more efficient basis for quantitive numerical analysis.
In particular, given the rapid improvement of GPU
programming tools [30–33] over the past two years,
relativistic molecular-dynamics (MD) simulations as well
as other parallelizable approaches, e.g., particle-based
Monte Carlo (MC) algorithms [34], can be expected to
play an increasingly important role in the future. Against
this background, the present paper addresses selected
thermostatistical properties of quasi-classical relativistic
systems.
More precisely, we intend to demonstrate that even

a relatively simple, relativistic model system [35] may
provide insights into basic conceptual questions, such
as: How are observer-time and proper-time averages of
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single-particle trajectories related to each other? How are
the resulting time-averaged distributions linked to station-
ary distributions obtained from simultaneous ensemble
measurements? Is it possible to establish a connection
between time parameters and entropy? As we shall see,
the answers also provide further clarification of results
that were recently obtained in the theory of relativistic
Brownian motions [11,12,36–39]. For example, one can
show that changing the time parameterization of a rela-
tivistic stochastic process (e.g., from coordinate time to
proper time) entails a modification of the correspond-
ing stationary distribution [11]. Below, we will discuss
how this phenomenon can be understood on the basis
of a simple deterministic model system. Furthermore,
we are going to illustrate how thermodynamic state
variables become modified when replacing coordinate-
time through a proper-time parameterization. Generally,
proper-time parameterizations provide a natural frame-
work for including particle decay processes in relativistic
simulations, whereas global coordinate-time parameteriza-
tions are better suited for quantifying the many-particle
dynamics and, in particular, the causal ordering of colli-
sion events [29]. Thus, as briefly outlined in the latter
part of this paper, a combination of different time para-
meterizations may yield useful mixed MD/MC-simulation
schemes.

Time-averaged single-particle distributions. –
Let us start by considering the motion of a specific
particle in an inertial frame Σ0. The velocity V := dX/dt
of the particle can be parameterized in terms of the
Σ-coordinate time t, denoted by V (t), or, alternatively,
by the particle’s proper time (units such that the speed
of light c= 1)

τ(t) =

∫ t
0

dt′
√
1−V (t′)2, (1)

corresponding to a function V̂ (τ) that satisfies V (t) =

V̂ (τ(t)). We may then define the t-averaged velocity
probability density function (PDF) of the particle by

ft(v) =
1

t

∫ t
0

dt′ δ[v−V (t′)], (2a)

and, similarly, the associated τ -averaged PDF by

f̂τ (v) =
1

τ

∫ τ
0

dτ ′ δ[v− V̂ (τ ′)]. (2b)

We would like to understand how the two PDFs ft and
f̂τ are related to each other as t, τ →∞. To this end, we
change the integration variable in eq. (2b) to the lab time,
yielding

f̂τ (v) =
t

τ
(1−v2)1/2 ft(v) =

t

τ

ft(v)

γ(v)
, (3)

where γ(v) = (1−v2)−1/2 is the Lorentz factor. We now
define stationary distributions

f∞(v) = lim
t→∞ ft(v), f̂∞(v) = lim

τ→∞ f̂τ (v). (4a)

Analogously to eq. (3), these equalities are to be under-
stood in a distributional sense, i.e.,

∫
ddv f∞(v) g(v) = lim

t→∞

∫
ddv ft(v) g(v), (4b)

∫
ddv f̂∞(v) g(v) = lim

τ→∞

∫
ddv f̂τ (v) g(v), (4c)

for any sufficiently well-behaved, physically relevant test
function g(v). If the dynamics is such that the limits f∞
and f̂∞ exist, then eq. (3) implies that

f̂∞(v) = α−1 f∞(v)/γ(v), (5a)

where the constant

α=

∫
ddv f∞(v)/γ(v) (5b)

ensures normalization. Equation (5) states that, asymp-
totically, the t-averaged distribution f∞ differs from the
τ -averaged distribution f̂∞ by a factor proportional to
the relativistic particle energy ε=mγ(v), where m is
the rest mass of the particle. We shall return to this
point when discussing the associated entropy functionals
further below. Before doing so, however, let us compare
the time-averaged PDFs with “ensemble-averaged” one-
particle velocity PDFs as recently measured in computer
experiments [35,40–42].

Ensemble-averaged one-particle distributions.
– Molecular-dynamics simulations by different groups
[35,40–42] confirm that the stationary one-particle
velocity PDF of a d-dimensional dilute relativistic gas
in equilibrium is accurately described by the Jüttner
distribution [43,44]

fJ(v) =Z
−1
J m

dγ(v)2+d exp[−βmγ(v)], |v|< 1. (6)

Here, T = (kBβ)
−1 may be interpreted as a (rest) temper-

ature, kB denotes the Boltzmann constant, and ZJ =
ZJ(d,m, β) the normalization constant. It is worthwhile
to take a closer look at how exactly the measurements are
performed in these simulations:
i) Velocities are measured in the rest frame Σ0 of the

boundary in the case of an enclosed system, or the center-
of-mass frame in the case of periodic boundary conditions.
ii) The velocities of all particles are measured
t-simultaneously in Σ0, where t is the coordinate time
of Σ0.
This procedure can be interpreted as constructing the

one-particle velocity PDF via ensemble averaging1. In the
next part, we would like to compare the results of this
method with those obtained by time averaging over a
single-particle trajectory.

1Simultaneous measurements can be easily made in computer
simulations, but are are very difficult to perform in real experiments
due to the finiteness of signal speeds in relativity; see discussion
in [10,42].
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Numerical simulations. – In order to understand
how ensemble-averaged and time-averaged PDFs are
related to each other, we consider the fully relativistic
(1+1)-dimensional two-component gas model studied
in [35]. In this model, the gas consists of classical,
impenetrable point-particles (N1 light particles of rest
mass m1, and N2 heavy particles of rest mass m2 >m1).
Neighboring particles may exchange momentum and
energy in elastic binary collisions, governed by the
relativistic energy-momentum conservation laws,

ε(mA, pA)+ ε(mB , pB) = ε(mA, p̃A)+ ε(mB , p̃B),

pA+ pB = p̃A+ p̃B , (7)

where A, B ∈ {1, 2}, ε(m, p) = (m2+ p2)1/2, p=mvγ(v),
and tilde-symbols indicate quantities after the collision.
Interactions with the boundaries are elastic, i.e., p→−p
in the lab frame Σ0, defined as the rest frame of
the boundaries. The dynamics of this system can be
exactly integrated numerically, and the total energy
E0 =

∑N1
i=1 ε(m1, pi)+

∑N2
j=1 ε(m2, pj) is conserved in the

lab frame Σ0. We distinguish four types of measurements:

(a) t-ensemble average: After a period of equilibration, we
simultaneously measure the velocities of all particles
in Σ0 at a given instant of time t. This procedure is
repeated for energetically equivalent random initial
conditions mimicking a micro-canonical ensemble at
energy E0 [35].

(b) t-trajectory average: We choose a specific particle of
either species and measure their velocities at several
equidistant instants of time t(1), . . . , t(n).

(c) τ -ensemble average: We compute the proper time τi
for each particle during the simulation and measure
their velocities at a fixed proper-time value τ1 = . . .=
τN1+N2 = τ . Again, this procedure is repeated for
energetically equivalent random initial conditions.

(d) τ -trajectory average: We choose a specific particle of
either species and measure their velocities at several
equidistant instants of proper time τ (1), . . . , τ (n).

Results. – Figure 1 depicts the equilibrium distri-
butions computed from one-dimensional simulations as
described above. In the case of the ensemble measure-
ments (a) and (c) we averaged over 50 different, ener-
getically equivalent initial conditions. The single-particle
time averages (b) and (c) were determined by measuring
velocities at 5 · 105 instants using time intervals ∆t=∆τ =
4 · 10−4 L/c, where L is the system’s spatial extension.
Let us first compare the distribution functions obtained

by the two t-averaging methods (a) and (b), respectively.
As evident from the (blue) diamonds and (magenta) cross-
symbols in fig. 1, the two different procedures both yield
a Jüttner distribution with same parameter β for either
species, i.e.,

f∞(v) = fJ(v). (8a)
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Fig. 1: (Color online) Numerically measured one-particle veloc-
ity PDFs using lab time and proper-time parameterizations,
respectively. Symbols/methods: (a) t-ensemble average: blue �;
(b) t-trajectory average: magenta ×; (c) τ -ensemble average:
red �; and (d) τ -trajectory average: green +. The results
are based on simulations with N1 = 5000 light particles of
mass m1 and N2 = 5000 heavy particles with mass m2 = 2m1.
The solid curves correspond to Jüttner functions (6) with
β = 0.709 (m1c

2)−1, but different particle masses, respectively.
The dashed lines show the corresponding modified Jüttner
distribution, eq. (8b), with the same parameter β. As the
distributions are symmetric with respect to the origin, only
the positive velocity axis is shown.

Similarly, upon comparing the histograms obtained by
(c) τ -ensemble averaging, see red triangles, and (d)
τ -trajectory averaging, green plus symbols, we find
that both methods give the same distribution. But this
proper-time equilibrium PDF differs from the Jüttner
function by a factor 1/ε, i.e.,

f̂∞(v) = α−1fJ(v)/γ(v) =: fMJ(v). (8b)

Thus, on the one hand, our simulations confirm the
validity of eq. (5) for the one-dimensional two-component
gas model. One the other hand, eqs. (8) provide two
“soft” ergodicity statements on the level of the one-
particle velocity distributions (we adopt the term “soft”
rather than “weak”, which is already commonly used
in a different context [8]). Evidently, it is necessary to
distinguish different time parameters when discussing
ergodicity in relativistic systems.
The “τ -stationary” modified Jüttner function (8b) was

derived earlier in ref. [45] from a simple collision invariance
criterion. Yet another derivation, based on symmetry and
entropy arguments, was given in ref. [14]. However, at that
time it was not understood that the two distributions fJ
and fMJ refer to different time parameters, respectively.
In fact, combining the above results with the arguments
given in [14] reveals an interesting relation between time
parameters and (relative) entropy in special relativity.

Maximum (relative) entropy principle. – To
establish a connection between t, τ and entropy, let us
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again generalize to the case of d-dimensional gas. We shall
assume that gas consists of N identical particles that are
enclosed by a vessel such that their total energy E0 is
conserved in the rest frame Σ0 of the vessel. For conve-
nience, we rewrite the velocity distributions fJ and fMJ
in terms of the momentum coordinate p=mvγ(v) as

φJ(p;β) =Z
−1
J exp(−βp0), (9a)

φMJ(p;β) =Z
−1
MJφJ(p;β)/p

0, (9b)

where p0 = (m2+p2)1/2 is the relativistic one-particle
energy, and ZMJ = αZJ. Written in this form, it becomes
obvious that the distributions (9) can be obtained by
maximizing the relative entropy functional [14]

S[φ|ρs] =−
∫
ddp φ(p) ln

[
φ(p)

ρs(p)

]
, (10a)

under the constraints

1 =

∫
ddp φ(p), (10b)

Es
N
=

∫
ddp φ(p) p0, (10c)

where Es/N is the specific energy mean value at constant
coordinate time (s≡ t) or proper time (s≡ τ), respec-
tively (cf. discussion below). The function ρs(p)> 0 in
eq. (10a) plays the role of a reference density [46–50] and
ensures that the argument of the logarithm is dimension-
less. In 1911, Jüttner [43] obtained the distribution φJ by
postulating a constant reference density ρt(p) = ρ0, corre-
sponding the translation-invariant Lebesgue measure in
momentum space2. For comparison, the modified distrib-
ution φMJ is obtained by fixing a reference density ρτ (p)∝
1/p0 [14]. It is well known that

dµ=
ddp

p0

defines a unique (up to multiplicative factors) Lorentz-
invariant integration measure in relativistic momentum
space. Since φMJ is related to the Lorentz-invariant time
parameter τ , we may conclude: The symmetry properties
of the reference density ρs, which appears in the relative
entropy functional for the stationary distribution, reflect
the symmetry of the underlying time parameter.
It is worthwhile to briefly comment on the relation

between the two different energy “state variables” Et
and Eτ in eq. (10c). As evident from eqs. (5) and also
illustrated in fig. 1, the inverse temperature parameter
β is the same for both the t-stationary distribution φJ
and the τ -stationary distribution φMJ. If we choose the
maximum (relative) entropy principle as the starting point

2More precisely, Jüttner [43] considered a Lebesgue reference
measure on relativistic one-particle phase space {(x,p)}; however,
we can neglect the trivial spatial part of the distribution in our
discussion.

for deriving φJ and φMJ, the parameter β enters as a
Lagrangian multiplier for the energy constraint (10c). Due
to the elastic collision dynamics, the total initial energy E0
is conserved in the lab frame Σ0, if one measures temporal
evolution in terms of the coordinate time t. This suggests
to identify Et = E0 in the case of the constant reference
density ρt(p) = ρ0, which yields the t-stationary Jüttner
function φJ. Upon inserting φJ into the energy constraint
(10c), one then finds that the parameter β is uniquely
determined by

E0
N
=− ∂
∂β
lnZJ, (11a)

ZJ = 2m
d

(
2π

βm

)(d−1)/2
K(d+1)/2(βm), (11b)

where d= 1, 2, 3 is the space dimension and Kn(z) denotes
the nth modified Bessel function of the second kind [51].
Since, for any given initial energy value E0, the parameter
β is fixed by eq. (11a), it only remains to specify the
corresponding “proper-time state variable” Eτ , which is
to be used in eq. (10c) when considering a Lorentz-
invariant reference density ρτ (p)∝ 1/p0 in the relative
entropy definition (10a). In general, the quantities Eτ and
Et differ from each other, because they correspond to
averages at τ = const and t= const, respectively. Eτ can
be found by inserting the maximizer of S[φ|�τ ], i.e., the
modified Jüttner distribution φMJ(p;β), into the energy
constraint (10b). This leads to3

Eτ
N
=
ZJ

ZMJ
, (11c)

ZMJ = 2m
d−1
(
2π

βm

)(d−1)/2
K(d−1)/2(βm). (11d)

Thus, by virtue of eqs. (11), each energy value Et = E0
corresponds uniquely to a temperature value T = (kBβ)−1
and a “proper-time energy” Eτ . Generally, when using a
maximum (relative) entropy principle based on reference
measures that refer to different time parameters, it is
important to keep in mind that the “left-hand side” of
the energy constraint —in our example, the parameter Es
in eq. (10c)— must be specified in accordance with the
underlying time parameter s.

Outlook: applications and extensions. – At this
point one may well ask whether or not different time
parameterizations and relativistic MD-type algorithms are
relevant in practice. Generally, quasi-classical MD schemes
can be useful for simulating the thermalization of rela-
tivistic gases and plasmas at sufficiently low densities. In
the high-density regime more sophisticated methods are
required that take into account quantum effects [25–28,52]
in a more detailed manner. For space dimensions d> 1,

3In d= 2 space dimensions, eq. (11c) can be rewritten as
Eτ =N(m+1/β) which coincides with the classical non-relativistic
equipartition theorem (unfortunately, this “coincidence” holds only
for d= 2, but not for d= 1, 3).
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classical particle-particle interactions cannot be formu-
lated in a fully relativistic way anymore [53] —unless one
tried to keep track of interaction fields and retardation
effects which is too expensive numerically. However, by
choosing particle collision criteria carefully, e.g., by evalu-
ating collisions in the two-body center-of-mass frame and
using effective cross-sections as obtained from quantum
theories [22], one can achieve an acceptable degree of accu-
racy in low-to-moderate density simulations [42].
When applying MD methods to relativistic problems,

coordinate-time parameterizations provide the more
suitable framework for the causal ordering of collision
events [29]. On the other hand, a proper-time parame-
terization is the more natural choice if one wishes to
model decay processes on a classical particle level. This
suggests to implement hybrid algorithms that combine
deterministic MD schemes for the particle motion with
randomized particle decay, annihilation, or creation. As
a straightforward extension of the above algorithm, one
could account for such events by including chemical reac-
tions that transform one or more particles into another
(set of) particle(s). For example, in the simplest case, the
proper-time intervals between successive decay events can
be sampled from an exponential distribution whose mean
lifetime is determined by quantum field theory. Generally,
the creation, reaction, and decay rules have to be chosen
in agreement with the probabilitities and constraints (i.e.,
conservation laws) derived from the corresponding field
theories [22].
With regard to future investigations, numerical

approaches appear to be particular promising when
combined with novel GPU programming tools [30–33].
Compared with conventional CPU-based computations,
GPU simulations techniques can significantly reduce
computational costs (up to two orders of magnitude)
of parallelizable MD or MC algorithms. An example of
the latter class are relativistic MC simulations similar
to those performed by Peano et al. [34], who generated
the relativistic Jüttner distribution (6) using randomized
collisions. Their algorithm could be easily generalized
to also include quantum phenomena such as, e.g., decay
processes. In this context, it is worth mentioning that the
energy distribution of an unstable particle at the end of
its lifetime (assuming the particle lives long enough to
allow for thermalization) will be described by φMJ rather
than φJ.

Conclusions. – The above discussion shows that,
depending on the application at hand, it may be useful
to distinguish different types of stationarity in relativistic
systems. Our numerical results for the one-dimensional
two-component gas illustrate that the Jüttner distribu-
tion [43] φJ ∝ exp(−βp0) is linked to coordinate time t,
whereas the modified distribution φMJ ∝ exp(−βp0)/p0 is
linked to proper time τ . They further demonstrate that
coordinate-time averaging along a single-particle trajec-
tory is equivalent to t-simultaneous ensemble averaging

over many particles. This may be interpreted as a soft
form of t-ergodicity on the level of the one-particle veloc-
ity PDF in this model. An analogous statement holds
for proper-time parameterizations (soft τ -ergodicity).
Moreover, the deterministic gas model provides a “micro-
scopic” illustration of conceptually similar results that
were recently obtained within the theory of relativistic
Brownian motions [11]. Similar to deterministic processes,
relativistic Brownian motions can either be parameterized
in terms of the coordinate time t or their proper time
τ . The resulting stationary momentum distributions (if
existing) are then connected by a relation equivalent to
eq. (5). This result is, perhaps, more difficult to under-
stand (or accept) when considering stochastic processes
based on postulated random driving processes. The deter-
ministic model system considered here helps to clarify
the microscopic origin of this relativistic effect. Last but
not least, our analysis implies a close connection between
entropy and time parameters, which may be summa-
rized as follows: a Lorentz-invariant time parameter
corresponds to a Lorentz-invariant reference density
(probability measure) in the entropy functional for the
associated stationary distribution.
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