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Abstract

We study a simple microscopic model for the one-dimensional stochastic motion of a (non-)relativistic Brownian

particle, embedded into a heat bath consisting of (non-)relativistic particles. The stationary momentum distributions are

identified self-consistently (for both Brownian and heat bath particles) by means of two coupled integral criteria. The latter

follow directly from the kinematic conservation laws for the microscopic collision processes, provided one additionally

assumes probabilistic independence of the initial momenta. It is shown that, in the non-relativistic case, the integral criteria

do correctly identify the Maxwellian momentum distributions as stationary (invariant) solutions. Subsequently, we apply

the same criteria to the relativistic case. Surprisingly, we find here that the stationary momentum distributions differ

slightly from the standard Jüttner distribution by an additional prefactor proportional to the inverse relativistic kinetic

energy.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The implementation of the Brownian motion concept [1–6] into special relativity [7,8] represents a
longstanding issue in mathematical and statistical physics (classical references are [9–11]; more recent
contributions include [12–22]; for a kinetic theory approach, see Refs. [23–25]). In two recent papers [26,27] we
have discussed in detail how one can construct Langevin equations for relativistic Brownian motions (see
Debbasch et al. [28,29] and Zygadlo [30] for similar approaches, and also Dunkel and Hänggi [31]). Thereby, it
was demonstrated that, in general, the relativistic Langevin equation per se cannot uniquely determine the
corresponding Fokker–Planck equation (FPE). This dilemma is caused by the fact that the relativistic
Langevin equations, e.g., if written in laboratory coordinates, may exhibit a multiplicative coupling between a
function of the momentum coordinate and a Gaussian white noise process (laboratory frame � rest frame of
e front matter r 2006 Elsevier B.V. All rights reserved.
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the heat bath). Thus, depending on the choice of the discretization rule, one obtains different forms of
relativistic FPEs characterized by different stationary solutions.

In Refs. [26,27] we have analyzed the three most popular discretization rules for Langevin equations with
multiplicative noise, namely, Ito’s pre-point discretization rule [32,33], the Fisk–Stratonovich mid-point rule
[34–37], and the Hänggi–Klimontovich (HK) post-point rule [38–41]. As a main result it was found that only
the HK interpretation of the Langevin equation yields a FPE, whose stationary solution coincides with the
one-dimensional relativistic Jüttner–Maxwell distribution, as known from Jüttner’s early work on the
relativistic gas [42,43] and also from the relativistic kinetic theory [23,24]. Thus, in absence of other qualifying
criteria, one may conclude that the post-point discretization rule is favorable. However, it naturally arises the
question, if one can gain additional insights by studying the microscopic collision processes, which cause the
stochastic motion of a Brownian particle.

The present paper intends to partially address this question for the one-dimensional (1D) case; i.e., instead
of focusing on the ‘‘macroscopic’’ Langevin formulation, we will study here Brownian motions by means of a
simple microscopic 1D model. Since, on the level of the Brownian motion approach, the exact nature of the
microscopic interaction forces is usually negligible we shall restrict ourselves to purely elastic collisions
between a Brownian particle and the constituents of a surrounding heat bath. As will be demonstrated below,
this simple model suffices to identify stationary (invariant) momentum distributions for both non-relativistic
and relativistic 1D collision processes.1

The paper is organized as follows: Section 2 is dedicated to the non-relativistic case, serving as the test
example for our approach. After briefly summarizing the basic model assumptions, we will derive two coupled
integral criteria (Section 2.3), which can be used to identify the invariant momentum distributions for the heat
bath particles and the Brownian particles, respectively. It is shown that these integral criteria do indeed yield
the correct stationary momentum distribution of the non-relativistic Brownian motion, namely, the well-
known Maxwellian momentum distribution (Section 2.4). Afterwards, the same method is applied to the
relativistic case (Section 3). Remarkably, we find that, under exactly same preconditions, the invariant
relativistic distributions do not exactly correspond to the standard Jüttner distributions, but rather to modified
Jüttner functions including an additional prefactor 1=E, where E is the relativistic kinetic energy of the particle
under consideration. The paper concludes with a summary and a discussion of the results (Section 4).

2. Non-relativistic Brownian motions

In this part, we review non-relativistic 1D-Brownian motions. Later on, we will pursue an analogous
approach to identify the stationary momentum distribution of a relativistic Brownian particle, embedded into
a relativistic heat bath.

2.1. Basic model assumptions

In the three-dimensional (3D) case a simple idealized model for Brownian motions can be imagined as
follows: Consider a (infinitely heavy) box of volume V, possessing diathermal [44] walls and being at rest in
the inertial laboratory frame S0. Let this box contain a homogeneous, quasi-ideal (weakly interacting) gas,
consisting of approximately point-like particles with identical masses m. Further, assume that the gas (or
liquid) particles—referred to as ‘heat bath’, hereafter—surround a Brownian particle of mass Mbm. Then,
due to frequent elastic collisions with heat bath particles, the Brownian particle performs 3D random motions.
Given the distribution of the heat bath, the stochastic dynamics of the Brownian particle is determined by the
collision kinematics (cross-sections) governing the interaction with the heat bath particles.

If, as in the present paper, one wishes to study the 1D case, slight modifications of the above model are
necessary. The reason is that, typically, two particles cannot simply exchange positions if their motions are
confined to one dimension. To circumvent this problem, we shall therefore imagine the heat bath particles as
having fixed positions on a 1D lattice but non-vanishing momenta. Correspondingly, in this 1D (lattice) model
1More precisely, we shall additionally require the probabilistic independence of the initial momenta during each single collision—but

this is a rather reasonable, weak restriction.
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the Brownian particle may jump from one lattice point to the next during one time step. Additionally, we will
impose that at each lattice point there does indeed occur an elastic interaction in accordance with the laws of
momentum and energy conservation. Mathematically, the latter assumption corresponds to considering
distributions conditional on the event ‘‘a collision has occurred’’.

Based on this idealized 1D (lattice) model, it is our primary objective to determine self-consistently the
invariant (i.e., stationary) momentum distributions for both heat bath and Brownian particles. To this end, we
shall next summarize the simple kinematic equations governing the collisions in this model. By interpreting the
momentum coordinates as coupled random variables, we then derive in Section 2.3 two general integral
criteria which have to be satisfied by the stationary distributions. As shown in Section 2.4, in the non-
relativistic case the stationary solutions are given by the well-known Maxwell distributions. The integral
criteria apply to both non-relativistic and relativistic collisions; hence, we can use them later to also identify
the stationary distributions of the corresponding relativistic model (cf. Section 3).

2.2. Kinematics of single collision events

The momentum and energy balance per (elastic) collision reads

E þ � ¼ Ê þ �̂, (1a)

Pþ p ¼ P̂þ p̂. (1b)

Here and below, capital letters refer to the Brownian particle and small letters to heat bath particles; quantities
without (with) hat-symbols refer to the state before (after) the collision. In the non-relativistic case, we have,
e.g., before the collision

P ¼MV ; p ¼ mv, (2a)

E ¼
P2

2M
; � ¼

p2

2m
, (2b)

where v and V denote the velocities with respect to the laboratory frame S0. Taking into account both
conservation of momentum and (kinetic) energy, one finds for a single collision the elementary results

P̂ðp;PÞ ¼
2M

M þm

� �
pþ

M �m

M þm

� �
P, (3a)

p̂ðP; pÞ ¼
2m

M þm

� �
Pþ

m�M

M þm

� �
p. (3b)

We again stress that Eqs. (3) do implicitly assume that a collision has indeed occurred (otherwise, the
momenta would remain unchanged); i.e., in mathematical terms, any results obtained by employing Eqs. (3)
are valid conditional on the information that a collision event has taken place.

Now let us suppose we know the joint two-particle PDF c2ðp;PÞ for the particle momenta before the
collision. Then, the kinematic laws (3) determine uniquely the marginal momentum PDFs F̂ðP̂Þ and f̂ðp̂Þ after
the collision, formally defined by

F̂ðP̂Þ ¼
Z

dp̂ĉ2ðp̂; P̂Þ, (4a)

f̂ðp̂Þ ¼
Z

dP̂ĉ2ðp̂; P̂Þ, (4b)

where ĉ2ðp̂; P̂Þ is the joint momentum PDF after the collision (here and below integrals with unspecified
boundaries range from �1 to þ1.) Our main objective will be to identify stationary (invariant) momentum
distributions, satisfying by definition

ĉ2ðp̂; P̂Þ � c2ðp̂; P̂Þ. (5)
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The latter condition just means that a stationary PDF must remain invariant in microscopic collisions. In
particular, we shall look for stationary solutions which can be written in the product form

c2ðp;PÞ ¼ fðpÞFðPÞ. (6)

Mathematically, this corresponds to the assumption that, in the stationary state, the momenta P and p can be

considered as independently distributed random variables. For stationary PDFs of form (6) the stationarity
criterion (7) reduces to

F̂ðP̂Þ ¼ FðP̂Þ; f̂ðp̂Þ ¼ fðp̂Þ, (7)

where ĉ2ðp̂; P̂Þ ¼ f̂ðp̂Þ F̂ðP̂Þ is the joint distribution after the collision. From a physical point of view, the
independence assumption for ðp;PÞ or, alternatively, of ðp̂; P̂Þ is guided by the experience that the well-known
equilibrium momentum distributions of quasi-ideal non-relativistic and relativistic N particle gases (i.e., the
Maxwell and Jüttner distributions) can be written as products of one-particle momentum distributions.

In order to be able to determine the stationary PDFs for a given collision kinematics, we next derive general
integral criteria. It comes as no surprise that, in the non-relativistic case, the stationary solutions will be given
by a pair of Maxwellians.
2.3. Integral criteria for stationary momentum distributions

Consider two independently distributed random variables Y and Z, and a derived random variable
X ¼ X ðY ;ZÞ. The corresponding PDFs are denoted by FX ðX Þ, FY ðY Þ and FZðZÞ. The average of some test
function gðX Þ with respect to FX can then be written asZ

dXgðX ÞFX ðX Þ ¼

Z
dY

Z
dZgðX ðY ;ZÞÞFY ðY ÞFZðZÞ. (8)

Assuming that the (partially) inverse transformation Z ¼ ZðY ;X Þ is well-defined (i.e., strictly monotonous for
each fixed Y), and that Fubini’s theorem [45] is applicable, we can rewrite the last equation in the formZ

dXgðX ÞFX ðX Þ ¼

Z
dY

Z
dX

qZ

qX

����
����gðX ÞFY ðY ÞFZðZðY ;X ÞÞ

¼

Z
dXgðX Þ

Z
dY

qZ

qX

����
����FY ðY ÞFZðZðY ;X ÞÞ. ð9Þ

Since the latter equation holds for any test function g, one obtains the well-known transformation law

FX ðX Þ ¼

Z
dY

qZ

qX

����
����FY ðY ÞFZðZðY ;X ÞÞ. (10)

For completeness, we note that Eq. (10) can also be obtained by starting from

FX ðxÞ ¼

Z
dY

Z
dZ dðx� X ðY ;ZÞÞFY ðY ÞFZðZÞ (11)

and performing the Z-integration (with d denoting the Dirac delta-function). We next consider an explicit
example, which will be investigated in detail in the remainder.

Example (P̂ ¼ P̂ðp;PÞ and p̂ ¼ p̂ðP; pÞ). The idea is that we express the final momenta in terms of the initial
momenta, cf. Eq. (3). That is, setting X ¼ P̂, Y ¼ p, Z ¼ P and, correspondingly, FX � F̂, FY � f, FZ � F,
we can write Eq. (10) as

F̂ðP̂Þ ¼
Z

dp
qP

qP̂

����
����fðpÞFðPðp; P̂ÞÞ. (12a)

For a given pair of initial distributions ðF;fÞ, this equation can be used to calculate the PDF of the
Brownian particle after the collision. Analogously, by setting X ¼ p̂, Y ¼ P, Z ¼ p and FX � f̂, FY � F,
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FZ � f, we find for the PDF of the heat bath particles

f̂ðp̂Þ ¼
Z

dP
qp

qp̂

����
����FðPÞfðpðP; p̂ÞÞ. (12b)

In particular, for stationary distributions satisfying Eqs. (7) we have f̂ � f and F̂ � F and, hence, obtain from
Eqs. (12) the integral criteria

FðP̂Þ ¼
Z

dp
qP

qP̂

����
����fðpÞFðPðp; P̂ÞÞ, (13a)

fðp̂Þ ¼
Z

dP
qp

qp̂

����
����FðPÞfðpðP; p̂ÞÞ. (13b)

Given a certain microscopic kinematic law, any pair ðF;fÞ satisfying Eqs. (13) provides a self-consistent
stationary distribution. For completeness we mention that mathematically equivalent criteria are obtained by
exchanging the positions of p and P as functional arguments, i.e., by considering P̂ ¼ P̂ðP; pÞ and/or
p̂ ¼ p̂ðp;PÞ, respectively.

Before discussing solutions of Eqs. (13) for the non-relativistic Brownian motion, it is worthwhile to stress the
following fact: Since the derivation of Eqs. (13) is based on rather general assumptions, these integral equations
can be applied to find the stationary PDF F not only in the non-relativistic but also in the relativistic case (as will
be done in Section 3). The additional mathematical assumption, underlying the derivation of Eqs. (13), is that
the initial momenta P and p can be viewed as independently distributed random variables; i.e., loosely speaking,
this postulate is the only point leaving some freedom for potential modifications, all other parts are dictated by
the physical conservation laws. As stated before, from a physical point of view, the independence assumption for
ðp;PÞ or, alternatively, of ðp̂; P̂Þ is guided by the experience that the well-known equilibrium momentum
distributions of quasi-ideal non-relativistic and relativistic N particle gases (i.e., the Maxwell and Jüttner
distributions) can usually be written as products of one-particle momentum distributions.

2.4. Stationarity of the Maxwell distribution

In the last part of this section, we briefly outline that the integral criteria Eqs. (13) are satisfied by the
normalized Maxwell distributions

FðPÞ ¼
1

2pMkBT

� �1=2

exp �
P2

2MkBT

� �
, (14a)

fðpÞ ¼
1

2pmkBT

� �1=2

exp �
p2

2mkBT

� �
, (14b)

where kB denotes the Boltzmann constant, and T is the temperature parameter.
In order to apply Eqs. (13), we require functions Pðp; P̂Þ and pðP; p̂Þ. From Eqs. (3), we find

Pðp; P̂Þ ¼
M þm

M �m

� �
P̂�

2M

M �m

� �
p, (15a)

pðP; p̂Þ ¼
M þm

m�M

� �
p̂�

2m

m�M

� �
P, (15b)

and, thus, Eqs. (13) take the explicit form

FðP̂Þ ¼
M þm

M �m

����
����
Z

dpfðpÞFðPðp; P̂ÞÞ, (16a)

fðp̂Þ ¼
M þm

m�M

����
����
Z

dPFðPÞfðpðP; p̂ÞÞ. (16b)
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As one can now easily verify by insertion, the Maxwell distributions (14) do indeed satisfy Eqs. (16).
Consequently, Eqs. (14) provide a pair of self-consistent stationary solutions for the non-relativistic collision
kinematics, conditional on the information that a collision has occurred.

3. Relativistic Brownian motions

Since the integral equations (12) and (13) apply to the relativistic case as well, we can, in principle, proceed
exactly analogous to the non-relativistic case. However, some purely technical difficulties arise due to the facts
that: (i) the relativistic collision kinematics is more complex than the non-relativistic one, and (ii) the potential
candidates for stationary distributions do not allow for the solving Eqs. (12) and (13) analytically. Hence, after
having specified all required transformation formulae (Section 3.1), we will evaluate the PDFs on the left-hand
sides of the non-stationary integral equations (12) numerically,2 probing different types of candidate
distributions (Section 3.2).

3.1. Kinematics of a single collision event

In the relativistic case, the momentum and energy balance per (elastic) collision can again be written in the
form

E þ � ¼ Ê þ �̂, (17a)

Pþ p ¼ P̂þ p̂. (17b)

Compared with the non-relativistic case, the only difference is that we now use the relativistic expressions for
momentum and kinetic energy, respectively. Specializing to the laboratory frame S0ð¼ rest frame of the heat bathÞ,
using units such that the speed of light c ¼ 1, we have [compare Eqs. (2)]

P ¼MVgðV Þ; p ¼ mvgðvÞ, (18a)

E ¼ ðM2 þ P2Þ
1=2; � ¼ ðm2 þ p2Þ

1=2, (18b)

where V and v denote the particles’ velocities, and

gðvÞ ¼ ð1� v2Þ�1=2. (18c)

Suppose we are given the information that a single collision has occurred. Then, solving Eqs. (17) for P̂, we find the
explicit representations [compare Eqs. (3)]

P̂ðp;PÞ ¼
2v0E � ð1þ v20ÞP

1� v20
, (19a)

p̂ðP; pÞ ¼
2v0�� ð1þ v20Þp

1� v20
, (19b)

where the velocity

v0 ¼
pþ P

�þ E
¼

p̂þ P̂

�̂þ Ê
¼ v̂0 (19c)

corresponds to the Lorentz boost from S0 to the center-of-mass frame (see Appendix A for details of the calculation).
As one may easily check, in the non-relativistic limit case Eqs. (19) reduce to Eqs. (3).

In order to be able to apply the integral criteria (12), we also need to determine the (partially) inverse
transformations Pðp; P̂Þ and pðP; p̂Þ, respectively. In the non-relativistic case, this task was rather simple, see
2Since integrals (12) are one-dimensional they can be solved numerically with e.g., the software package Mathematica [46].
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Eqs. (15). In the relativistic case, however, a bit of extra care is required. To illustrate this, let us first consider
the momentum equation (19a) for Brownian particle. For any fixed value p with jpjo1, one finds

P̂þðpÞ:¼ lim
P!þ1

P̂ðp;PÞ ¼
ðm2 þM2Þpþ ðM2 �m2Þ�

2m2
, (20a)

P̂�ðpÞ:¼ lim
P!�1

P̂ðp;PÞ ¼
ðm2 þM2Þp� ðM2 �m2Þ�

2m2
. (20b)

Hence, at finite p, the inverse transformation Pðp; P̂Þ has a finite support, corresponding to the interval
(without loss of generality, we will assume here and below that M4m)

IðpÞ ¼ ½P̂�ðpÞ; P̂þðpÞ�.

Hence, we find the following explicit form of the inverse transformation:

Pðp; P̂Þ ¼
Qþ R

S
; P̂ 2 IðpÞ; p 2 ð�1;1Þ, (21a)

with abbreviations

Q ¼ ½m2 �M2 þ 2 ðp� P̂Þ p�½M2p�m2P̂þM2 ðp� P̂Þ�, (21b)

R ¼ 2 ðp� P̂Þðm2 �M2Þ�Ê, (21c)

S ¼ ðm2 �M2Þ
2
� 4ðp� P̂ÞðM2p�m2P̂Þ. (21d)

Note that the limits in Eqs. (20) correspond to the curves S ¼ 0. For later use, we also give the formal
inversion of Eqs. (20):

pþðP̂Þ:¼
ðm2 þM2ÞP̂þ ðM2 �m2ÞÊ

2M2
, (22a)

p�ðP̂Þ:¼
ðm2 þM2ÞP̂� ðM2 �m2ÞÊ

2M2
, (22b)

which allow us to rewrite Eq. (21) equivalently as

Pðp; P̂Þ ¼
Qþ R

S
; P̂ 2 ð�1;1Þ; p 2 ½p�ðP̂Þ; pþðP̂Þ�. (23)

Eq. (23) is in such a form that it can directly be inserted into the integral equation (12a).
Finally, going through an analogous analysis for the heat bath particle yields

pðP; p̂Þ ¼
qþ r

s
; p̂ 2 ½p̂�ðPÞ; p̂þðPÞ�; P 2 ð�1;1Þ, (24a)

where

q ¼ ½M2 �m2 þ 2 ðP� p̂ÞP�½m2P�M2p̂þm2 ðP� p̂Þ�, (24b)

r ¼ 2 ðP� p̂ÞðM2 �m2Þ�̂E, (24c)

s ¼ ðm2 �M2Þ
2
� 4ðP� p̂Þðm2P�M2p̂Þ, (24d)

and

p̂þðPÞ:¼ lim
p!þ1

p̂ðP; pÞ ¼
ðm2 þM2ÞPþ ðM2 �m2ÞE

2M2
, (25a)

p̂�ðPÞ:¼ lim
p!�1

p̂ðP; pÞ ¼
ðm2 þM2ÞP� ðM2 �m2ÞE

2M2
. (25b)
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Note that the limits in Eq. (25) correspond to the curves s ¼ 0, and their formal inversions can be defined by

Pþðp̂Þ:¼
ðm2 þM2Þp̂þ ðM2 �m2Þ�̂

2m2
, (26a)

P�ðp̂Þ:¼
ðm2 þM2Þp̂� ðM2 �m2Þ�̂

2m2
, (26b)

which allows us to rewrite Eq. (21) equivalently as

pðP; p̂Þ ¼
qþ r

s
; p̂ 2 ð�1;1Þ; P 2 ½P�ðp̂Þ;Pþðp̂Þ�. (27)

Eq. (27) is given in such a form that it can directly be inserted into the integral equation (12b).

3.2. Testing the integral criterion

Analogous to the non-relativistic case, we aim to exploit the integral criteria (12) in order to determine the
invariant momentum distributions. To this end, we proceed as follows: For functions Pðp̂; P̂Þ and pðP̂; p̂Þ, given
in Eqs. (23) and (27), we evaluate numerically integrals (12):

F̂ðP̂Þ ¼
Z pþðP̂Þ

p�ðP̂Þ

dp
qP

qP̂

����
����fðpÞFðPðp; P̂ÞÞ, (28a)

f̂ðp̂Þ ¼
Z Pþðp̂Þ

P�ðp̂Þ

dP
qp

qp̂

����
����FðPÞfðpðP; p̂ÞÞ. (28b)

for a number specified grid-points P̂ and p̂, respectively. The boundaries of the integration are chosen in
accordance with the support intervals of the functions Pðp̂; P̂Þ and pðP̂; p̂Þ; cf. Eqs. (23) and (27), respectively.
We use different pairs of initial PDFs ðF;fÞ, and test if

F̂ðP̂Þ � FðP̂Þ; f̂ðp̂Þ � fðp̂Þ (29)

hold simultaneously. If the answer is positive, we conclude that the candidate functions ðF;fÞ fulfill the
stationarity criteria (13) and, thus, are invariant solutions for the relativistic collision process.

We next discuss our choice of the initial PDFs. Guided by the results of Refs. [26,27], we consider

FðPÞ ¼
NZðMÞ

EZ exp �
E

kBT

� �
, (30a)

fðpÞ ¼
NZðmÞ

�Z
exp �

�

kBT

� �
, (30b)

where Z 2 ½0; 1� is a free parameter, and � and E denote the relativistic kinetic energies, respectively. By
choosing the symmetric candidate distributions (30), we automatically specialize to the rest frame of the heat
bath. For a given set of parameters ðm;M ;T ; ZÞ the normalization constants NZðmÞ and NZðMÞ are
determined by the conditions

1 ¼

Z
dPFðPÞ; 1 ¼

Z
dpfðpÞ. (31)

Let us briefly recall how different values of Z may arise in the context of the Langevin description of
relativistic Brownian motions, as developed in Ref. [26]. Specializing to the rest frame of the heat bath, one can
derive the following Langevin equation for the stochastic motion of a relativistic Brownian particle [26]:

dP

dt
¼ �nPþ

EZðPÞ

M

� �1=2
xðtÞ. (32)
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Here, n is the friction parameter and x ordinary Gaussian white noise with amplitude D, i.e., x is characterized
by

hxðtÞi ¼ 0; hxðtÞxðt0Þi ¼ 2Ddðt� t0Þ. (33)

On the rhs of Eq. (32) the noise x couples multiplicatively to (a function of) the momentum coordinate P.
Hence, different discretization rules may yield different stationary momentum distributions [47]. It is
convenient to parameterize discretization rules as follows:

EZðPÞ ¼ E½ZPðtÞ þ ð1� ZÞPðtþ dtÞ�; Z 2 ½0; 1�, (34)

with EðPÞ denoting the relativistic kinetic energy. In this notation, e.g., Z ¼ 0 corresponds to the HK post-
point discretization rule [38–41], Z ¼ 1

2
to the Fisk–Stratonovich mid-point discretization [34–36] and Z ¼ 1 to

Ito’s pre-point discretization [32]. Introducing the temperature via the Einstein relation

kBT ¼
D

mn
, (35)

the candidate PDFs in Eqs. (30) represent the stationary distributions associated with different values of Z [26].
In particular, only for Z ¼ 0 (HK rule) the standard relativistic Jüttner–Maxwell distribution is recovered.

We are now in the position to discuss the numerical results. Figs. 1(a)–(c) and 1(e)–(f) show functions F̂ðP̂Þ
and f̂ðp̂Þ, respectively, as obtained for different values of Z. In each diagram the solid lines correspond to the
initial momentum distributions from Eqs. (30). The triangles indicate the distributions resulting after the
collision, F̂ðP̂Þ and f̂ðp̂Þ, obtained by numerically integrating Eqs. (12) at 50 different values of P̂ and p̂,
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Fig. 1. Initial distributions (solid line) and numerical solutions (triangles) of Eqs. (28) for the momentum PDFs of the Brownian particle

(a)–(c) and the heat bath particles (d)–(f). As one readily observes, see diagrams (c) and (f), only for Z ¼ 1 the initial distributions are left

invariant by the elastic collision process.
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respectively. As one readily observes, for Z ¼ 1, corresponding to diagrams (c) and (f), the initial distributions
remain invariant in the course the elastic collision process. Hence, according to these results, the modified
Jüttner functions (30) with Z ¼ 1 are the relativistic analogs of the non-relativistic Maxwell distribution. For
completeness, we mention that we have tested the integral criteria over a wide range of temperature and mass
parameters and always found that only the distributions with Z ¼ 1 are invariant (all numerical integrations
were performed with the function NIntegrate of the computer algebra program Mathematica [46]).
Furthermore, we note that the normalization was conserved with high accuracy during the numerical
integration, i.e., the numerically found distributions ðF̂; f̂Þ remained normalized to unity with high accuracy.
4. Summary and discussion

We have studied a simple microscopic model for 1D non-relativistic and relativistic Brownian motions. It
was our main objective to identify the (invariant) stationary momentum distributions for both Brownian and
heat bath particles on the basis of the underlying microscopic collision processes. To this end we have
formulated two integral criteria, which relate the initial momentum distributions to the momentum
distributions resulting after an elastic collision of a Brownian particle with a heat bath particle (Section 2.3).
The assumptions (postulates) underlying derivation of the integral criteria can be summarized as follows:
�

3

cha

Z ¼
Ph

4

qua
validity of the standard kinematic conservation laws,

�
 occurrence of the collision event,

�
 independence of the initial momenta.
It was then demonstrated that, under these assumptions, the integral criteria do correctly reproduce the
Maxwellian distributions as the stationary solutions for the non-relativistic Brownian motions (Section 2.4).

Subsequently, the integral criteria were applied to the relativistic case (Section 3.2). Here, we found that the

standard Jüttner distributions, corresponding to Z ¼ 0 in Eqs. (30), are not stationary with respect to the integral

criteria; i.e., given the information that the collision has indeed occurred, the standard Jüttner distributions do
not remain invariant in the course of an elastic relativistic collision. Instead, the invariant distributions are given

by modified Jüttner functions, corresponding to Z ¼ 1 in Eqs. (30). This result is quite surprising, since initially
we had expected that the invariant solutions are given by standard Jüttner functions with Z ¼ 0. However, as
known from earlier work [26], modified Jüttner distributions with Za0 may also appear as stationary
solutions in the 1D relativistic Langevin theory, with the value of Z depending on the discretization scheme
that is used. In this context, we mention a recent paper by Lehmann [48], who argues that Jüttner’s original
approach [42] is non-covariant. Furthermore, we note that the invariant solution with Z ¼ 1 can also be
interpreted as a simple exponential (canonical) distribution with respect to the Lorentz-invariant volume
element of momentum space, dDp=p0 ¼ dDp=ðp2 þm2Þ

1=2, where D is the number of spatial dimensions [49].
Due to the fact that our results are based on only three basic assumptions, there is very little freedom for

modifications such that one could hope to recover the standard Jüttner distributions as invariant solutions.
Hence, according to our opinion, this problem deserves further consideration in the future. For example, as
the next step, it would be desirable to perform similar studies for simple 2D and 3D models.3 Then the
kinematics of a single collision process becomes more complicated, because—even for the simplest hard-sphere
models—momentum may be redistributed in different directions (depending on the impact parameter). Hence,
if one wishes to formulate analogous integral criteria for identifying the stationary (invariant) 2D/3D
momentum distributions, one will have to include additional equations takingg into account the cross-
sections.4 However, if it should turn out that deviations from the standard Jüttner–Maxwell distribution
Very recently, the authors were informed by L.O. Silva that Marti et al. have implemented a 3D relativistic Monte Carlo model for

rged particle collisions, and that their numerically obtained equilibrium solutions correspond to modified Jüttner distributions with

1 as well (conference poster by M. Marti, R.A. Fonseca, L.O. Silva ‘‘A collision module for OSIRIS’’, P5.015, 32nd European

ysical Society Conference on Plasma Physics, Rome, June 2006).

We note, the applicability of simple kinematic models as discussed here is, in principle, limited to situations where high-energies

ntum processes, as e.g., creation and annihilation of particles, can be neglected.
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persist in higher space dimensions as well, then this might be of relevance for calculating relativistic corrections
in high-energy physics [50] and astrophysics (e.g., to the Sunyaev–Zeldovich effect [51,52]).
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Appendix A. Relativistic collisions

Our goal is to validate Eqs. (19). To this end, consider two particles having positions x and X and relativistic
momenta p and P, as defined by Eq. (18), with respect to (wrt.) the 1D inertial lab-frame S0. Assume that the
particles collide at, say, t ¼ 0, which implies that:
(i)
 if vðtÞ4V ðtÞ at to0, then xðtÞpX ðtÞ or, alternatively,

(ii)
 if vðtÞoV ðtÞ at to0, then xðtÞ4X ðtÞ.
In order calculate the momenta after the collision, p̂ and P̂, as functions of the initial momenta, p and P, it is
convenient to perform a Lorentz transformation to the center-of-mass frame. Before doing this, we briefly
establish some notations. We define (1+1)-momenta wrt. S0 by

p ¼ ð�; pÞ; P ¼ ðE;PÞ. (A.1)

Assume that some inertial frame S0 moves with velocity v0 in S0, then the Lorentz transformation matrix Lv0

can be parametrized as follows

Lv0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v20

q 1 �v0

�v0 1

 !
. (A.2)

Its inverse is obtained by replacing v0 with �v0, i.e.,

L�1v0
¼ L�v0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v20

q 1 v0

v0 1

 !
. (A.3)

For example, given P ¼ ðE; pÞ, the corresponding (1+1)-momentum vector wrt. S0, denoted by P0 ¼ ðE0;P0Þ,
is obtained via matrix multiplication

P0 ¼ Lv0 P. (A.4)

Center-of-mass frame. In the following let us assume that S0 is an inertial center-of-mass frame of the
colliding particles; i.e., in S0 we have, by definition,

p0 þ P0 ¼ 0. (A.5)

This condition determines the Lorentz transformation parameter as

v0 ¼
pþ P

�þ E
¼

p̂þ P̂

�̂þ Ê
¼ v̂0. (A.6)

Furthermore, for elastic collisions, the energy and momentum balance become particularly simple in S0:

Ê
0
¼ E 0; �̂0 ¼ �0, (A.7a)

P̂
0
¼ �P0 ¼ p0 ¼ �p̂0, (A.7b)
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where, as before, hat-symbols refer to the momenta after the collision. It is convenient to express Eqs. (A.7) in
matrix form, e.g., writing

P̂
0
¼ s0P0; p̂0 ¼ s0 p0, (A.8a)

where the momentum transfer matrix s0 of the elastic collision is defined by

s0 ¼
1 0

0 �1

� �
¼ s0�1. (A.8b)

Lab frame. It is now straightforward to convert results (A.8) to the laboratory frame by applying the
corresponding Lorentz transformations; e.g., for the Brownian particle we find

P̂ ¼ L�1v0
P̂
0
¼ L�1v0

s0P0 ¼ L�1v0
s0Lv0P ¼ sP, (A.9a)

where

s ¼ L�1v0
s0Lv0 ¼

1

1� v20

1þ v20 �2v0

2v0 �ð1þ v20Þ

 !
. (A.9b)

is the momentum transfer matrix wrt. S0, and v0 is given by Eq. (A.6). Analogously, we find for the heat bath
particle

p̂ ¼ sp. (A.10)

An explicit evaluation of Eqs. (A.9a) and (A.10) yields

Ê

P̂

 !
¼

1

1� v20

ð1þ v20ÞE � 2v0P

2v0E � ð1þ v20ÞP

 !
, (A.11a)

�̂

p̂

 !
¼

1

1� v20

ð1þ v20Þ�� 2v0 p

2v0�� ð1þ v20Þ p

 !
, (A.11b)

which contains the desired result, cf. Eqs. (19).
Finally, we also calculate the inverse momentum transfer matrix

s�1 ¼ ðL�1v0
s0Lv0 Þ

�1
¼ L�1v0

s0�1Lv0 ¼ L�1v0
s0Lv0 ¼ s, (A.12)

allowing us to write

E

P

� �
¼

1

1� v̂20

ð1þ v̂20Þ Ê � 2v̂0 P̂

2v̂0 Ê � ð1þ v̂20Þ P̂

 !
, (A.13a)

�

p

 !
¼

1

1� v̂20

ð1þ v̂20Þ �̂� 2v̂0 p̂

2v̂0 �̂� ð1þ v̂20Þ p̂

 !
. (A.13b)
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[46] Wolfram Research, Inc., Mathematica 5.0.1.0 (2003).

[47] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland Personal Library, Amsterdam, 2003.

[48] E. Lehmann, Covariant equilibrium statistical mechanics, J. Math. Phys. 47 (2006) 023303.

[49] R.U. Sexl, H.K. Urbantke, Relativity, Groups, Particles, Springer Physics, Springer, Wien, 2001.

https://wwwlib.umi.com
http://www.cs.elte.hu/applanal/eng/publ_eng.html
http://www.cs.elte.hu/applanal/eng/publ_eng.html


ARTICLE IN PRESS
J. Dunkel, P. Hänggi / Physica A 374 (2007) 559–572572
[50] H. van Hees, V. Greco, R. Rapp, Heavy-quark probes of the quark–gluon plasma and interpretation of recent data taken at the BNL

relativistic heavy ion collider, Phys. Rev. C 73 (3) (2006) 034913.

[51] R.A. Sunyaev, Y.B. Zeldovich, The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of

galaxies, Comm. Astrophy. Space Phys. 4 (1972) 173.

[52] N. Itoh, Y. Kohyama, S. Nozawa, Relativistic corrections to the Sunyaev–Zeldovich effect for clusters of galaxies, Astrophys. J. 502

(1998) 7–15.


	One-dimensional non-relativistic and relativistic Brownian motions: a microscopic collision model
	Introduction
	Non-relativistic Brownian motions
	Basic model assumptions
	Kinematics of single collision events
	Integral criteria for stationary momentum distributions
	Stationarity of the Maxwell distribution

	Relativistic Brownian motions
	Kinematics of a single collision event
	Testing the integral criterion

	Summary and discussion
	Acknowledgments
	Relativistic collisions
	References


