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ABSTRACT

Numerous astrophysical observations have shown that classical Newtonian dynamics fails on galactic scales
and beyond, if only visible matter is taken into account. The two most popular theoretical concepts dealing with
this problem are dark matter (DM) and modified Newtonian dynamics (MOND). In the first part of this Letter
it is demonstrated that a generalized MOND equation can be derived in the framework of Newtonian DM theory.
For systems satisfying a fixed relationship between the gravitational fields caused by DM and visible matter, this
generalized MOND equation reduces to the traditional MOND law, first postulated by Milgrom. Therefore, we
come to the conclusion that traditional MOND can be also interpreted as a special limit case of DM theory. In
the second part of this Letter, a formal derivation of the Tully-Fisher relation is discussed.

Subject headings: dark matter — galaxies: kinematics and dynamics

1. INTRODUCTION

Seventy years ago, Zwicky (1933, 1937) was the first to note
that the speed of galaxies in large clusters is much too great
to keep them gravitationally bound together, unless they are
much heavier than one would estimate on the basis of visible
matter. Since those days numerous further astrophysical ob-
servations, e.g., Doppler measurements of rotation velocities
in disk galaxies, have confirmed the failure of the classical
Newtonian theory, if only visible matter is taken into account
(Combes et al. 1995; Bertin & Lin 1996; Field 1999; Sanders
& McGaugh 2002). Historically, theoretical concepts address-
ing this problem can be subdivided in two categories. The first
category comprises the dark matter (DM) theories (Binney &
Tremaine 1994; Sadoulet 1999; van den Bergh 2001; Ostriker
& Steinhardt 2003), whereas the second group assumes that
Newton’s gravitational law requires modification (Milgrom
1983a, 1983b, 1983c).

DM theories are based on the hypothesis that there exist
significant amounts of invisible (nonbaryonic) matter in the
universe, interacting with ordinary visible matter only via grav-
ity. Since empirically it is very successful, DM has become a
widely accepted cornerstone of the contemporary cosmological
standard model (Sadoulet 1999; van den Bergh 2001; Ostriker
& Steinhardt 2003). Nevertheless, it must also be emphasized
that until now DM has been detected only indirectly by means
of its gravitational effects on the visible matter or the light.

Aiming to avoid the introduction of invisible matter, an al-
ternative phenomenological concept was proposed by Milgrom
(1983a, 1983b, 1983c). Instead of adapting the mass distri-
bution, his approach requires a modified Newtonian dynamics
(MOND) in the limit of small accelerations. As extensively
reviewed by Sanders & McGaugh (2002), this theory can ex-
plain galaxy data, such as the flat rotation curves, in a very
compelling way. On the other hand, there also have been some
indications in the past that MOND might be an effective or
approximate theory, applicable to a limited range of astro-
physical problems only (Aguirre 2003). This hypothesis is sup-
ported by fundamental difficulties associated with relativistic
generalizations of Milgrom’s theory (Sanders & McGaugh
2002; Soussa & Woodard 2004; Aguirre 2003). Also, according
to Aguirre, Schaye, & Quataert (2001), MOND seems to be-
come less effective on larger scales; e.g., it cannot account for
cluster densities and temperature profiles in detail.

The fact that, to some extent, both DM and MOND can
successfully explain galactic dynamics favors the possibility
that there exists a deeper connection between these two theories
(for a general comparison, see Aguirre 2003). Among others,
this idea was formulated by McGaugh & de Blok (1998b) and
later pursued by Kaplinghat & Turner (2002). Using arguments
based on galaxy formation processes in the early universe, the
latter authors claim that MOND follows from cold DM theory.
In his response, Milgrom (2002) questions these results. Among
others, he argues that the predictions made by Kaplinghat &
Turner (2002) would conflict not only with astronomical ob-
servations of pairs of galaxies (McGaugh & de Blok 1998),
but also with numerical results obtained for DM models (Na-
varro, Frenk, & White 1997). Thus, unclarity still seems to
exist about whether or not MOND can in fact be understood
in the framework of DM (Aguirre 2003).

It is therefore the main purpose of the present Letter to
explicitly demonstrate that the MOND equations (if considered
as modified Newtonian gravity) can be derived from classical
Newtonian dynamics, provided one also takes into account the
gravitational influence of a DM component. In particular, it is
shown that the characteristic threshold acceleration,a ≈0

m s�2, below which MOND effects begin to dom-�101.2# 10
inate, also can be interpreted as the asymptotic value of a more
general acceleration field, characterizing the difference between
the gravitational forces caused by visible matter and DM,
respectively.

2. MOND FROM NEWTONIAN DYNAMICS WITH DM

As a starting point, consider the Newtonian equations of
motion of a pointlike test particle

¨mx p �m∇[F (x) � F (x)], (1)dv

where and denote the gravitational potentials dueF (x) F (x)dv

to visible and DM, respectively. Both potentials are solutions
of Poisson equations,

2∇ F p 4pGr , (2)/d /dv v

where is the corresponding mass density andG denotesr (x)/dv
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the gravitational constant. For convenience, we define the
accelerations

g (x) p �∇F (x). (3)/d /dv v

Thus, equation (1) simplifies to

ẍ p g � g p g. (4)dv

Now let us additionally assume that the acceleration vectors
and point in the same direction, denoted byg gdv

g FF g . (5)dv

Note that in this case also . Roughly speaking, theg FF g/dv

assumptions (eq. [5]) mean that the visible mass distribution
and the DM distribution behave very similarly. Next, wer rdv

rewrite equation (4) as

gdẍ p 1 � g , (6)v( )gv

where withg p Fg F/d /dv v

g p g � g ≥ 0, (7)dv

if condition (5) holds. Inserting this into equation (6) yields

1
ẍ p 1 � g . (8)v( )g/g � 1d

Thus, by virtue of equation (4), we find that

e
˜g p g p m(e)g, (9)v ( )e � 1

where we have introduced

g(x)
e(x) p � 1 ≥ 0. (10)

g (x)d

Equation (9) can be compared to the fundamental MOND for-
mula (Milgrom 1983a, 1983b, 1983c; Sanders & McGaugh
2002)

g
g p m g, (11)v ( )a0

where, because of empirical reasons, the function ispos-m(y)
tulated to have the asymptotic behavior

1, y k 1,
m(y) p (12){y, y K 1.

One readily observes that this is exactly thenatural asymptotic
behavior of for and , respectively. Hence, if wem̃(e) e r 0 e r �
identify m with and introduce an acceleration field bym̃ a(x)

g(x) g(x)
p e(x) p � 1, (13)

a(x) g (x)d

then it becomes obvious that equation (9) is the natural gen-

eralization of the MOND postulate (eq. [11]). The only dif-
ference is that we have a local acceleration field in equa-a(x)
tion (9), whereas was postulated in the MONDa p const0

formula (11). Note that equation (13) also can be written in
the equivalent form

1 1 1
p �

a(x) g (x) g(x)d

1 1
p � . (14)

g (x) g (x) � g (x)d dv

Thus, the special MOND case

a(x) { a (15)0

implies a fixed relation between the acceleration fields due to
visible and DM. In particular, since the characteristic MOND
acceleration is relatively small, one can further infer froma0

equation (14) that galaxies satisfying the MOND limit are DM
dominated.

3. AXISYMMETRIC DISK GALAXIES AND TULLY-FISHER LAW

In the following, let us concentrate on the quasi–two-
dimensional problem of axisymmetric disk galaxies. It is an
experimental observation that for many such systems the Tully-
Fisher relation holds (Sanders & McGaugh 2002; McGaugh &
de Blok 1998a, 1998b)

4 4v p lim v (r) ∝ L ∝ M, (16)�
rr�

whereL denotes the luminosity andM is thevisible (baryonic)
mass of the galaxy. The quantity is the absolute velocityv(r)
of stars or gaseous components, rotating in the disk plane
around the galactic center (r is the distance from the galactic
center, defining the origin of the coordinate system). Equating
centripetal acceleration and , we find2v /r g(r)

2 �v p lim rg(r) p lim r a(r) g (r). (17)� v
rr� rr�

Note that the second equality holds, only if one additionally
assumes that for . The reason is that, accordinge(r) K 1 r r �
to equation (9), only in this very case is the approximation

valid. Physically, the condition reflects a2g ≈ ag e(r) K 1v

dominating DM influence, as implied by equations (10) and
(13), respectively.

The Tully-Fisher law (eq. [16]) follows directly from the
right-hand side of equation (17). Assuming that fora(r) r a�

and, in agreement with the standard procedure, a Kep-r r �
lerian behavior for , we find the desired2g (r) � GM/r r r �v

result

4v p a GM. (18)��

For the special case , this is the well-known MONDa p a� 0

formula. Note that according to our approach, equation (18)
represents, at least formally, a derived result, whereas it plays
the role of a postulate in the original MOND papers (Milgrom
1983a; Sanders & McGaugh 2002). It might be worthwhile to
emphasize here once again the crucial aspect, which is that the
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function from equation (9) naturally satisfies the MONDm̃
postulates equation (12).

Nevertheless, one must be aware of the fact that the above
derivation of equation (18) was essentially guided by the
knowledge of the empirical Tully-Fisher law (eq. [16]). More
precisely, the DM paradigm in its current form doesnot provide
any explanation for the fact that in many disk galaxies, visible
and DM have arranged in such a way that rapidly con-a(r)
verges to a constant nonvanishing value.

Since and reflect the distributions of visible and darkg gdv

matter, and because of

1 1 1
p lim � , (19)[ ]a g (r) g (r) � g (r)rr�� d dv

the quantity gives us information about the asymptotic massa�

distributions. According to Milgrom (1983a, 1983b, 1983c) and
Sanders & McGaugh (2002), for several disk galaxies the ex-
perimental value is given by the MOND value, . Froma p a� 0

the point of view adopted in this Letter, this indicates that the
composition of these galaxies is generally similar.

In contrast, at least for some clusters of galaxies the actual
value of seems to essentially deviate from the MONDa(x)
value . As mentioned earlier, Aguirre et al. (2001) havea0

shown that the experimentally observed radial temperature pro-
files of Coma, A2199, and Virgocannot be fitted if one assumes
a globally constant value . Furthermore, these au-a(x) { a0

thors report satisfactory agreement when they apply standard
DM models instead. With regard to our above considerations,
the latter procedure simply corresponds to using a locally vary-
ing field . On the one hand, this supports the hy-a(x) +a0

pothesis that MOND should be viewed as a special limit case
of DM theory; on the other hand, one is led to ask whya(x)
is approximately constant in disk galaxies but seems to vary
in clusters. According to the author’s opinion, the answer to
this question can be given only by an improved DM theory,
yet to be developed. In particular, such a theory must predict
the dynamics of dark and visible mass components in detail.

Finally, we still note that if holds, then oneg (x) K g (x)dv

can expand equation (14) yielding

2g (x)da(x) ≈ . (20)
g (x)v

For spherical matter distributions, this means that

2 2[GM (r)/r ]da(r) ≈ , (21)2GM (r)/rv

where denotes the visible/dark mass contained withinM (r)/dv

radiusr. For the special case , this is equivalent toa(r) ≈ a0

21 M (r) a kg Md 0 ,3≈ ≈ 2 ≈ 10 , (22)[ ] 2 2M (r) r G m pcv

which implies a strong correlation between the distributions of
visible and DM in the MOND limit. It should be mentioned
here that the possibility of such a connection was already sug-
gested by McGaugh & de Blok (1998b) and, later, also more
extensively discussed by McGaugh (2000).

4. SUMMARY AND CONCLUSIONS

It has been shown that the generalized MOND (eq. [9]) can
be derived from Newtonian dynamics, if one adds a DM con-
tribution to the (baryonic) Newtonian potential , such thatF Fd v

leads to equally directed accelerations . Com-F g p �∇F/d /d /dv v v

pared to the traditional MOND law (eq. [11]), the only formal
difference consists in the fact that the constant threshold value

is replaced by the more general acceleration field froma a(x)0

equation (14). In the DM picture, reflects the local dif-a(x)
ference between the gravitational forces caused by dark and
visible matter, respectively. In order to exactly regain the tra-
ditional MOND law (eq. [11]), one additionally has to demand
that . Thus, MOND can in principle also be inter-a(x) { a0

preted as a DM theory, satisfying the two additional conditions
(5) and (15).

Therefore, it seems reasonable to assume that the traditional
MOND theory represents a special limit case of Newtonian
DM theory. Adopting this point of view, one can further con-
clude that MOND successfully explains the rotation curves of
disk galaxies because for such objects the above conditions (5)
and (15) are fulfilled. If this is true, then, as also discussed
above, the MOND constant can be interpreted as the as-a0

ymptotic value of the field as .a(r) r r �
More generally speaking, whenever there is a fixed rela-

tionship between and (or and , respectively) such thatg g r rd dv v

, then the traditional MOND theory should continuea(x) ≈ a0

to work successfully. In turn, if a disk galaxy is in the MOND
regime, then equation (14) can be used to estimate the DM
distribution , provided the visible matter distribution isr rd v

known from observations. Furthermore, it was shown that
is the natural candidate for the MOND func-m(y) p y/(y � 1)

tion. Another result of this Letter was the formal derivation of
the Tully-Fisher law (eq. [18]) in § 3. This relation should hold
whenever the two conditions and are satisfied,g K g a 1 0d �v

where . In this context it must be stressed thata p lim a(r)� rr�

the current DM model cannot explain in which situations these
two conditions are fulfilled and, if so, why this is the case.
Therefore, modifications of the conventional DM theory seem
inevitably necessary.

We conclude this short Letter with a more general remark.
In principle, there seems to be an agreement that Newton’s
theory applied to visible matter doesnot give a generally correct
description of the dynamics of galaxies and, therefore, has to
be modified. A first way to do this is to simply consider an
additional potential and, following the standard strategy, toFd

attach a “generating object” called DM to this potential. As
shown above, Milgrom’s concept (if considered as modification
of gravity) is in fact very similar, even though it seems quite
different at first glance. In particular, the MOND equations can
also be transformed into a modification of the former potential
type, by starting with and reversing the above ma-a(x) { a0

nipulations. The generating object of the related potential can
then be named DM as well.
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