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The dynamics of charged Coulomb grains in a plasma is numerically and analytically investigated. Analo-
gous to recent experiments, it is assumed that the grains are trapped in an external parabolic field. Our
simulations are based on a Langevin model, where the grain-plasma interaction is realized by a velocity-
dependent friction coefficient and a velocity-independent diffusion coefficient. In addition to the ordinary case
of positive (passive) friction between grains and plasma, we also discuss the effects of negative(active)
friction. The latter case seems particularly interesting, since recent analytical calculations have shown that
friction coefficients with negative parts may appear in some models of ion absorption by grains as well as in
models of ion-grain scattering. Such negative friction may cause active Brownian motions of the grains. As our
computer simulations show, the influence of negative friction leads to the formation of various stationary
modes(rotations, oscillations), which, to some extent, can also be estimated analytically.
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I. INTRODUCTION

During the last two decades the physics of charged grains
in plasmas has attracted ever-growing theoretical[1–5] and
experimental interest[6–9]. Among the first who theoreti-
cally investigated the dynamics of finite, two-dimensional
(2D) Coulomb clusters with parabolic confinement were Lo-
zovik and co-workers[2,3], Bolton and Rössler[4], and Be-
danov and Peeters[5]. Using Monte Carlo simulation tech-
niques, these authors were able to develop a classification
scheme(“Mendeleev table”) of the elementary excitations in
systems withN=2, . . . ,52 grains. Later, Schweigert and
Peeters investigated the spectral properties of classical(non-
quantum) 2D Coulomb clusters on the basis of a modified
Newton method[10]. In this context, one should also men-
tion recent dynamical simulations performed by Bonitz
et al. [11].

Experimental interest in 2D Coulomb systems was stimu-
lated by the discovery of dusty plasmas, containing relatively
large highly charged grains[6,12–15]. Since then, the dy-
namics of Coulomb clusters has been studied in various ex-
periments[7–9,16–18]. For example, relatively long living
oscillatory and rotational modes have been observed[18,19]
and also theoretically investigated[1,20–27]. Another re-
markable observation is that in some experiments the grains
are characterized by very large kinetic energy values, corre-
sponding to a temperature three to ten times higher than that
of the electrons in the plasma[8,9,14,16,28]. Reviews dis-
cussing some of these phenomena can be found in[29–33].

In the present paper, we investigate numerically and ana-
lytically the dynamics of confined Coulomb grains on the
basis of Langevin equations with nonlinearly velocity-
dependent friction coefficients. This approach does differ es-
sentially from the Monte Carlo techniques[2–5] and the
Newton method[10], as used by other authors in preceding

investigations. In particular, we will also take into account
the possibility of friction functions possessing negative parts.
Since Lord Rayleigh’s work on sustained sound oscillations
[34], negative friction has become a useful concept for mod-
eling complex energy input processes in a simple manner.
With regard to dusty plasmas, negative friction has until now
been considered in specific physical models only, which have
to be further developed in order to be applicable to experi-
mentally realized dusty plasmas[16,17,19].

In a number of recent theoretical papers the stochastic
dynamics of charged grains in plasmas has been discussed in
the framework of Brownian motions[27,35–41]. In particu-
lar, for a relatively simple solvable grain-plasma interaction
model[41], it was shown that there appear some parallels to
the theory of active Brownian particles[42–45]. If a grain in
a plasma is regarded as a Brownian particle, then the friction
function gsvd provides an averaged macroscopic description
of the forces due to the grain-plasma interactions(v denotes
the velocity vector of a grain). The explicit shape of the
function gsvd is exclusively determined by the underlying
microscopic model, considered to describe the relevant mi-
croscopic interaction processes between the grains and sur-
rounding plasma particles(electron, ion and atom scattering,
absorption and emission of plasma particles by grains, etc.).
Thus, depending on which microscopic processes are taken
into account, the friction functiongsvd may differ consider-
ably.

Intuitively, one would expect that the interaction with a
plasma always leads to a damping of the grain motion, cor-
responding to generally positive frictiongsvd.0. Very re-
cently, however, Trigger and Zagorodny[41] showed that
there also exist acceleration effects which give negative con-
tributions to the friction function. More exactly, these authors
considered a relatively simple, analytically solvable model
for a fully ionized plasma with dominating ion-grain charg-
ing collisions. This model takes into account the momentum
transfer between ions and and grains, but neglects mass
transfer processes. For this specific model it was found that,*Electronic address: strig@gmx.net
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under certain conditions, there can exist a nonvanishing ab-
solute velocity valuev0.0, such that the effective friction
coefficient gsvd is negative for uvu,v0 and positive for
uvu.v0. Additionally, for this model the velocity space dif-
fusion coefficientDsvd was determined by means of a self-
consistent calculation[in contrast togsvd the functionDsvd
is always positive].

Negative friction for small grain velocities means that
slow grains(with 0, uvu,v0) are accelerated in the direction
of their motion due to some specific, unbalanced momentum
transfer mechanism. An example for such a mechanism is the
charging collisions considered in[41]. Qualitatively, this
process can be summarized as follows. A negatively charged
grain attracts positively charged plasma ions in its neighbor-
hood, which are finally absorbed at its surface. If the grain is
at rest in the plasma, then there is effectively no momentum
transfer during the absorption process. In contrast, for slowly
moving grains, the positive net acceleration stemming from
tailside absorptions may be larger than the negative accelera-
tion due to frontside absorptions, thus leading to an effective
(counterintuitive) acceleration of the grains in the direction
of their motion. It is necessary to emphasize(as was already
done earlier[36,37,41]) that this effect was found for a spe-
cific model, which is based on the standard assumption that
mass transfer is negligible. This model is valid for time
scales of the order of the charging processes and provides the
correct values of the average grain charge and charge distri-
bution. However, it can be insufficient for larger time scales,
for which the increase of the grain mass may become essen-
tial. Therefore, until now it is still an open question whether
the simple model discussed[41] can be applied in order to
correctly calculate the friction forces acting on long time
scales in real dusty plasmas. For the correct calculation of
these forces, it may be necessary to take into account the
kinetics of ion recombination with electrons on the dust sur-
face and the subsequent removal of the created atoms to the
ambient plasmas. An approach to this problem has already
been discussed in[37,38], but a complete theory of such
processes has not yet been considered.

On the other hand, not only ion-grain charging collisions
may yield friction functions with negative parts. Under cer-
tain conditions(e.g., in the presence of an ion flow in the
plasma), scattering of ions by grains may lead to negative
friction as well [46]. In particular, it seems that this effect
can be responsible for some observations in the experiments
by Dahiya et al. [19]. Hence, in principle, one cannot ex-
clude that active motions of grains can occur for some spe-
cific dusty plasma parameters and conditions, since there ex-
ist several different mechanisms that can give negative
contributions to the friction coefficientgsvd.

In the meantime, it seems reasonable to identify the pecu-
liarities that arise for qualitatively different types of friction
coefficients. Therefore, it is the primary aim of this paper to
study the effects of positive and negative friction on the dy-
namics of 2D Coulomb clusters from a general point of view.
To this end, we have performed computer simulations of the
cluster dynamics for two qualitatively different phenomeno-
logical friction models, corresponding to passive and active
friction, respectively.

As mentioned before, in contrast to previous numerical
investigations[4,5,10] of finite 2D Coulomb clusters, the re-

sults presented below were obtained by direct numerical in-
tegration of the Langevin equations, governing the stochastic
dynamics of the grains in the plasma. Compared with Monte
Carlo techniques[4,5] and the Newton method[10], this
approach has the advantage that one obtains detailed time-
dependent trajectories of the 2D Coulomb system. Moreover,
the Langevin method is readily applicable to a wide class of
models with nonlinearly velocity-dependent friction and dif-
fusion coefficients.

Formally, the paper is structured as follows. In Sec. II we
briefly review general aspects concerning the Brownian mo-
tion of isolated Coulomb grains in plasmas. The Langevin
equations for interacting grains are discussed in Sec. III. As
shown in Sec. IV, the Langevin approach can successfully
reproduce experimental data for the common case of positive
(passive) friction. Section V focuses on the effects of nega-
tive (active) friction. Section VI contains a summary of the
main results.

II. BROWNIAN MOTION OF FREE GRAINS IN PLASMAS

In this section we briefly discuss the Brownian motion of
an isolated dust grain(i.e., grain-grain interactions are ne-
glected in this part).

A. Langevin and Fokker-Planck equations of a free grain

Consider a negatively charged grain with position vector
rstd, velocity vectorvstd, and unit massmg=1. The two-
dimensional Brownian motion of such a grain in a surround-
ing plasma can be described by the Langevin equation

d

dt
r = v, s1ad

d

dt
v = − gsvdv + Î2Dsvdjstd, s1bd

where the stochastic force term is characterized by the time
averages

kjstdl = 0, kjnstdjmssdl = dnm dst − sd s2d

with m ,n=1,2 denoting the two spatial components of the
random vectorj. In the Langevin approach, the friction co-
efficient g and the velocity diffusion coefficientD give an
averagedmacroscopicdescription of the grain-plasma inter-
actions.

Throughout this paper, we shall confine ourselves to the
case where the plasma is isotropic in the horizontalx-y plane
in which the charged grains are moving. Note that this does
not exclude the possibility of a vertical anisotropy in the
plasma(i.e., an anisotropy with respect to the third spatial
directionz). For such isotropic 2D plasmas the coefficientsg
and D are nonlinear functions of the absolute velocityv
= uvu of the grain. By considering the energy balance equation
associated with Eq.(1), one can easily see that the function
gsvd models the energy transfer from the plasma to the grain.
For example, under typical experimental conditions there
may also exist vertical currents, crossing thex-y plane in the
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z direction, which of course also transfer energy to the
grains. Therefore, one should considergsvd as a phenomeno-
logical model for the energy transfer from three different
directions to the grains. Due to the complex character of the
grain-plasma interactions, a complete microscopic theory
does not yet exist. However, there exist special tractable
models for which the(in general nonlinear) functionsgsvd
andDsvd can be calculated.

For example, in[35–38,41] explicit functional expres-
sions forgsvd andDsvd were derived on the basis ofmicro-
scopicmodels of the interaction between the grain and the
plasma constituents. The exact shape of the corresponding
coefficients essentially depends on the underlying micro-
scopic model and, in particular, on the microscopic processes
taken into account. A more detailed discussion concerning
the structure ofgsvd will be given below in Sec. II B. First,
let us briefly discuss the stationary velocity distribution that
follows from the Langevin dynamics(1).

In order to find the stationary velocity distribution for a
grain governed by Eq.(1), one can use the corresponding
Fokker-Planck equation(FPE) for the probability density
function fsr ,v ,td. The FPE reads

] f

] t
+ v

] f

] r
=

]

] v
Fgsvdvf +

] Dsvdf

] v
G . s3d

The stationary solution of this equation is well known(see,
e.g.,[41]):

fsvd =
C

Dsvd
expS−

1

2
E gsvd

Dsvd
dv2D . s4d

For constant friction and diffusion coefficients, i.e., for
gsvd;g0 andDsvd;D0, this solution corresponds to a Max-
wellian (Gaussian) velocity distribution. In the case of more
realistic plasma models, however, the velocity distribution
(4) is non-Maxwellian.

Qualitatively, the two simplest cases one can distinguish
are monostable and bistable distributionsfsvd. Monostable
distributions, such as e.g., the Maxwell distribution, are as-
sociated with purely positive friction coefficientsgsvd.0. If
the friction functiongsvd is purely positive(and slowly vary-
ing), then one may use the simple approximation by a con-
stantgsvd.g0. A completely different distribution results if
the friction function becomes negative at small velocities.
More exactly, it has been shown that multimodal distribu-
tions appear ifgsvd may assume negative values for some
velocity domain[41,47,48].

The transition from purely positive friction coefficients to
friction functions exhibiting a negative part can be viewed as
a bifurcation. A common procedure in bifurcation theory(as
well as in the theory of phase transitions) is to use a low
order Taylor expansion near the bifurcation point. Sincegsvd
should be an even function, this leads in lowest order to
Rayleigh’s phenomenological model of active friction[34]

gRsvd = − b + av2 = asv2 − v0
2d, a . 0, s5d

where v0
2=b /a. Near the bifurcation point, the constantb

and correspondingly also the characteristic velocityv0 are

relatively small. Additionally, in this situation one may also
simplify the diffusion function by assuming thatDsvd
.D0.0. Obviously, in the Rayleigh model(5) the friction
coefficient is negative ifv2,v0

2 and positive otherwise. Ac-
cording to Eq.(4), the related stationary velocity distribution
function is then given by

fsvd = N expF−
a

4D0
sv2 − v0

2d2G , s6d

whereN is a normalization constant. As one can see in Fig.
1, the probability densityfsvd exhibits two peaks near ±v0

and decays strongly at high absolute velocities. In the weak
noise limit,D0/a→0, the distribution becomes very narrow
around ±v0, approaching thed distribution

f0svd = Ñdsv2 − v0
2d. s7d

That is, in this limit the dispersion of the kinetic energy of
the grains is completely neglected. From the physical point
of view, the Brownian grains then move with constant kinetic
energyE=mgv0

2/2, while randomly changing their directions
of motion from time to time.

To summarize, if the negative friction effects are rela-
tively weak, then it is often sufficient to approximate a more
complicated friction functiongsvd by Rayleigh’s simple
model (5), which is effectively characterized by only two
parametersa andv0.

B. Structure of the friction coefficient in more realistic
plasma models

Starting from detailed microscopic models of the grain-
plasma interaction, it is in principle possible to derive ex-
plicit functional expressions forgsvd and Dsvd. Then, of
course, the results do essentially depend on the properties of
the underlying microscopic model. For example, the qualita-
tive behavior ofgsvd andDsvd strongly differs, depending on
whether surface recombination effects between plasma ions
and grain surface electrons are neglected or not, as discussed
above.

Generally, for a plasma consisting of ions and atoms the
friction coefficient can be written in the additive form

FIG. 1. Non-Maxwellian stationary distribution function for the
Rayleigh friction modelgRsvd=asv2−v0

2d from Eq.(5). In the limit
a /D0→0 the density converges to thed-function (7).
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gsvd = gnsvd + gisvd. s8d

Here, gnsvd is related to grain–neutral-atom collisions, and
gisvd represents the influence of ion absorptions and scatter-
ing. In the next two sections we briefly discuss some general
properties ofgnsvd andgisvd.

1. Atomic friction

Under the usual experimental conditions the plasmas are
often weakly ionized, i.e., in addition to ions and electrons
the plasma also contains a non-negligible amount of neutrals
species(atoms). Therefore, a reasonable theory must also
take into account the interactions between the grains and the
neutrals atoms. Analytical estimates of this effect on the ba-
sis of the kinetic theory are well known[49]. In principle,
grain–neutral-atom interactions always give rise to a positive
contribution gnsvd.0 to the full friction coefficientgsvd;
that is, such interactions always lead topassivefriction.

Throughout this paper, we shall assume that it is sufficient
to use an Epstein-type[49] approximation in order to ac-
count for grain–neutral-atom collisions; i.e., we confine our-
selves to the case

gnsvd ; g0, s9d

whereg0 is a positive constant. This simplifying assumption
is also justified by analytical results based on the transition
probability function for the short-range atom-grain interac-
tion [50]. For the case of a mirror reflection of the point
atoms from the spherical grain the expression for the atomic
friction can be represented as[50]

g0 = 8A
na

ni
STama

Timi
D1/2

, s10d

where

A =
1

3
Î2pS mi

mg
Da2nivTi . s11d

The quantities appearing in Eqs.(10) and (11) are the grain
massmg, the grain radiusa, the massma of an atom, the

densitiesni/a of ions and atoms in the plasma, the ion mass
mi, and the thermal ion temperature

vTi
2 ;

kTi

mi
. s12d

In typical experiments[7,18] the passive friction coefficient
g0 is of the order 1–10 s−1 (see Table I).

2. Grain-ion interaction

Rather generally, the ionic contributiongisvd to the full
friction coefficient(8) can be written in the form

gisv;Gd = gi
asv;Gd + gi

ssv;Gd + g i
rsv;Gd. s13d

Here,gi
a reflects the absorption of ions at the surface of the

grain, while gi
s represents friction resulting from scattering

processes between the negatively charged grain and posi-
tively charged plasma ions. The last termg i

r is connected
with surface recombination processes. As discussed in
[36,50], a satisfactory theory of grain-plasma interactions
must also account for the recombination of absorbed ions
and electrons in the grain as well as for the subsequent re-
moval of the emerging atoms from the grain surface to the
surrounding plasma. Such a theory, however, is still absent.

As indicated by the notation, the explicit shape ofgi is
essentially determined by the characteristic ion-grain interac-
tion parameter

G ;
ZgZie

2

4p«0 a kTi
, s14d

whereZg andZi are the charge numbers of the grains and the
plasma ions, respectively, whilea denotes the grain radius
andTi is the ion temperature in the plasma.

An analytical expression for the absorption coefficientgi
a

has been calculated earlier[41] for the specific model dis-
cussed in Sec. I. An interesting aspect of this model is thatgi

a

assumes negative values for small absolute velocity, if the
degree of ionization in the plasma is sufficiently high. An-
other cause of negative friction in quite realistic models can
be the existence of ion flows. For example, when an ion

TABLE I. Typical grain, plasma, and trap parameters as given in[7] for a helium plasma containing
charged spherical plastic particles. The last column gives the corresponding parameter values in the charac-
teristic unitssc.u.d as used in our computer simulations. At temperatureT=300 K andZi =1 these parameters
result inG<140 (ion-grain interaction parameter).

Quantity Symbol Value(SI units) Value sc.u.d

Grain radius a 4.74mm 0.0053

Grain mass mg 6.73310−13 kg 1

Grain charge Q −12100e −12100

Debye length lD 900 mm 1

Viscous friction coefficient g0 5.5 s−1 0.67

Pressure P 1.6 Pa

Trap angular frequency v0 2p31.3 s−1 1

Permittivity of free space «0 8.85310−12 F m−1

Boltzmann constant k 1.38310−23 J K−1
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stream is flowing in a dusty plasma the friction coefficient
gsvd behaves as −1/v for small absolute velocity values
[46,50]. This result means that under such special(aniso-
tropic) conditions negative friction effectively always exists
due to ion flow scattering by grains. In this case the ion drag
force, recently calculated also for large angles of ion scatter-
ing [39,51], leads to a negative term in the effective friction
coefficient. For example, as shown in[51], for moderate pa-
rameter values

Zge
2

4p«0 lD mivi
2 , 5, s15d

the ion-grain scattering friction coefficientgi
s takes the form

gi
ssGd = 2AG2ln L, s16d

where lnL is the Coulomb logarithm generalized to dusty
plasmas[39,40].

Since negative friction manifests itself in several dusty
plasma models, it seems reasonable to consider the specific
properties of the grain dynamics in the presence of grain-
grain interactions, not only for the case of positive friction,
but also for negative friction.

III. DYNAMICS OF CONFINED CLUSTERS OF
CHARGED GRAINS

A. Screened interactions and equations of motion

In the previous sections, the interaction between quasifree
grains and a surrounding plasma has been discussed. In the
remainder, we additionally consider grain-grain interactions,
mediated by a screened Coulomb pair interaction potential

Fi j
Csrd =

Qi Qj

4p«0

1

r ij
expS−

r ij

lD
D , s17d

where

r ij = ur i − r ju s18d

denotes the distance between two grains located atr i
=sxi ,yid andr j =sxj ,yjd, respectively. For simplicity, we shall
confine ourselves to the case where all grains are identical,
i.e.,

Qi = Q = − Zge s19d

for all i =1,2, . . . ,N. We also note that deviations from the
Debye potential, which may be caused by different attraction
mechanisms(shadow effects, dipole interactions, etc.), are
negligible for the parameter range considered in the present
paper(see, e.g.,[30,31] for an extensive discussion of the
limitations of the Debye interaction model). Similarly, the
influence of ion wake fields can be neglected, as long as the
typical velocity of the grains is smaller than the thermal ve-
locity of the ions.

If an ensemble ofN Coulomb grains is confined by an
external parabolic potential

Fextsrd =
mgv0

2

2
r2, s20d

then the ground-state configuration corresponds to a regular
two-dimensional structure, referred to as Coulomb crystal
[4,10,52]. These structures can be classified, and for the case
of pure Coulomb interactions, corresponding tolD→`, a
Mendeleev table for particle numbersN=2, . . . ,52 was pre-
sented in Ref.[5]. An analogous analysis for screened poten-
tials of the type(17) is, e.g., given in[53].

In the present paper we are going to study the dynamics
of two-dimensional Coulomb clusters in a harmonic trap by
using a Langevin approach. In particular, we are interested in
identifying the excitations that may arise due to the influence
of negative friction. To this end, we numerically integrate the
Langevin equations of motion

ṙ i = vi , s21ad

v̇i = sF i
C + F i

extd/mg − gsvidvi + Î2D0 jistd, s21bd

wherexi describes the position of a grain at timet and v j
denotes its velocity. The external linear forceF i

ext modeling
the ion trap reads

F i
ext = − ¹iF

extsr id = − mgv0
2 r i , s22d

and the screened Coulomb force is obtained from

F i
C = − ¹i o

j=1,jÞi

N
Q2

4p«0

1

r ji
expS−

r ji

lD
D

= o
j=1,jÞi

N
Q2

4p«0

r i − r j

r i j
3 expS−

r ij

lD
DS1 +

r ij

lD
D , s23d

where

=i ; S ]

] xi
,

]

] yi
D

is the Nabla operator related to the coordinates of theith
particle. In the Langevin equation(21b) the interaction be-
tween the grains and the surrounding plasma is realized by
the last two terms, containing the friction coefficientgsvid
and the stochastic Langevin forceÎ2D0 jistd with properties
(2). With regard to the friction coefficient, we shall concen-
trate below on the following two cases:(i) constant positive
(passive) friction corresponding togsvd;g0; (ii ) velocity-
dependent negative friction corresponding to the Rayleigh
modelgRsvd=asv2−v0

2d.
Moreover, we make a second simplifying assumption by

always considering a constant noise amplitudeD0 in Eq.
(21b). In the limit of purely constant viscous friction,gsvd
;g0, this assumption is unproblematic since then the Ein-
stein relation

D0 =
g0kT

mg
s24d

holds. In general, however, one should expect that both the
friction coefficient and also the noise amplitude are velocity
dependent. Among others, this is evident from the explicitly

ACTIVE AND PASSIVE BROWNIAN MOTION OF… PHYSICAL REVIEW E 70, 046406(2004)

046406-5



velocity-dependent results for friction and diffusion coeffi-
cients given in[41]. Thus, using a constant noise amplitude
parameterD0 in the case of active friction reflects the as-
sumption that theDsvd is slowly varying aroundD0. Since
the main objective of this paper is to discuss the qualitative
effects of active friction in two-dimensional Coulomb clus-
ters, the simplificationDsvd<D0 seems reasonable at this
stage.

In this context it should also be mentioned that friction
and diffusion coefficients of dusty plasmas are, in general,
functions of the grain charge[36]. For example, Matsoukas
and Russel[54] and Schramet al. [40] have analyzed in
detail the charge dependence of the stationary grain distribu-
tion function. According to their results, fluctuations of the
grain charge are negligible if

e2Zg
2

4p«0 a kTeff
* @ 1 s25d

holds, wherea denotes the grain radius and

Teff
* = Te

1 + Zi

2

q + z

1 + q + z
, z =

e2Zg

4p«0 a kTe
, q =

Ti

ZiTe
.

s26d

Equation(25) is satisfied for the parameter values used in
our computer simulations, and also for typical experimental
conditions [7,18]. Therefore, following the standard ap-
proach[1], we neglect charge fluctuation effects by consid-
ering grains with constant identical charge values.

B. Characteristic unit system

It is convenient to use a characteristic unitsc.u.d system
defined by

mg = 1, lD = 1, e= 1, v0 = 1, s27d

and to introduce the dimensionless coupling constant

k ;
Zg

2e2

4p«0mgv0
2lD

3 . s28d

The experimental parameter values from Table I yieldk
=1.03, whereask=4.61 for those from Table II. By virtue of
Eq. (27) and (28) one can rewrite the Langevin equations
(21) in the simplified form

ṙ i = vi , s29ad

v̇i = − r i + F i
C − gsvidvi + Î2D0 jistd, s29bd

where

F i
C = k o

j=1,jÞi

N
r i − r j

r i j
3 exps− r ijds1 + r ijd. s29cd

Thus, the remaining effectively free parameters of the model
are the coupling constantk, the noise amplitudeD0, and the
parameters of the friction model, i.e.,g0 in the case of posi-
tive friction or a andv0 if the Rayleigh model(5) is consid-
ered. Also note that all numerical results presented below
will exclusively refer to Eqs.(29).

IV. POSITIVE (PASSIVE) FRICTION

In this section we concentrate on the limiting case of
purely passive frictiongsvd;g0. This case corresponds to
experimental conditions as realized by Klindworthet al. [7]
and Melzeret al. [18] (see Tables I and II). In the mentioned
experiments the degree of ionization is rather low,ni !na,
and, therefore, ordinary positive friction due to grain-atom
interactions is predominant.

In the context of the present paper, it is useful to consider
gsvd;g0 first, because this case allows a straightforward
comparison between our numerical simulations and the ex-
perimental results reported by Melzeret al. [18]. In this way
one can check that the numerical integration of the Langevin
equations(29) yields not only the correct ground-state con-
figurations[5], but also the correct time-dependence of clus-
ter oscillations. Moreover, with regard to the subsequent con-
sideration of negative friction effects in Sec. V, it is useful to
first discuss the case of passive friction.

It might be appropriate to emphasize that, compared with
Monte Carlo methods[4,5], the Langevin approach has the
advantage that it allows a time-resolved study of the grain
dynamics. The Langevin method also makes it easy to nu-
merically determine several stationary distributions for dif-
ferent nonlinearly velocity-dependent friction and diffusion
coefficients, derived from microscopic models. These results
can be compared with experimental data in order to evaluate
the underlying microscopic theory.

Formally, this section is structured as follows. Section
IV A contains analytical estimates for the simplest nontrivial
case withN=2 grains. In Sec. IV B the stationary configu-
rations of Coulomb crystals are determined via direct simu-
lation of the dynamical equations(29) for the deterministic
limit case D0=0. The results presented in Sec. IV C show
that the normal modes, as experimentally measured in[7],
can also be numerically reproduced on the basis of the
Langevin approach. Finally, in Sec. IV D numerically gener-
ated angular momentum distributions are discussed. As will
become clear below, the analysis of angular momentum dis-
tributions might also provide a useful tool in order to deter-
mine whether or not negative friction is present in a system
under consideration.

TABLE II. Typical grain, plasma, and trap parameters as deter-
mined in[18] for melamine-formaldehyde microspheres surrounded
by an argon plasma. The last column gives the corresponding pa-
rameter values in the characteristic unitssc.u.d as used in our com-
puter simulations. At temperatureT=300 K andZi =1 these param-
eters result inG<210.

Quantity Symbol value(SI units) Value sc.u.d

Grain radius a 4.74mm 0.0064

Grain mass mg 6.73310−13 kg 1

Grain charge Q −18000e −18000

Debye length lD 740 mm 1

Viscous friction coefficient g0 No data given

Pressure P 1.6 Pa

Trap angular frequency v0 7.7 s−1 1
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A. The caseN=2

For the caseN=2 it is possible to derive some simple
analytical estimates for the ground-state configuration. To
this end, consider the potential energy

Usr1,r2d =
1

2
sr1

2 + r2
2d +

k

r ij
exps− r ijd. s30d

By definition, each ground-state configurationsr1
* ,r2

*d
=sx1

* ,y1
* ,x2

* ,y2
*d must minimizeU. For symmetry reasons,

such a configuration must satisfy

x1
* = − x2

* , y1
* = − y2

* . s31d

If we introduce

r* = sx1
*d2 + sy1

*d2, s32d

then r* must be determined such that

Usr1
* ,r2

*d = r*
2 +

k

2r*
exps− 2r*d ; Usr*d s33d

is a minimum. From the conditionU8sr*d=0 we thus get the
transcendental equation

2r* − k exps− 2r*dS 1

r*
+

1

2r*
2D = 0. s34d

In Fig. 2(a) the solution of this equation is plotted as the
function ksr*d. The ground-state distance between the two
grains for a given valuek is then given by 2r*skd. In Fig.

2(b) we also show a numerically found ground-state configu-
ration(for details concerning the simulations, see Sec. IV B).

B. Ground-state configurations for N.2

In the previous section we briefly discussed the ground-
state configuration for the caseN=2. For more complex two-
dimensional Coulomb clusters withNù3, analytical studies
become more complicated or even impossible. Nevertheless,
one can identify the respective ground-state configurations
by applying numerical methods. On the basis of Monte Carlo
simulations such an analysis was performed by, e.g., Be-
danov and Peeters[5]. In the present paper we pursue an
alternative approach based on direct numerical simulations
of the Langevin equations(29). More exactly, in order to
identify the ground-state configurations we consider the de-
terministic limit, characterized byD0=0 andgsvd;g0.0.
Due to the pure damping, the system will eventually ap-
proach a state of minimal energy; i.e., all grains come to rest
and constitute a stable configuration.

In Fig. 3 one can see the numerically obtained ground-
state configurations for grain numbersN=8 andN=9. The
shell structures agree with those found in the Monte Carlo
simulations of Bedanov and Peeters[5]. In our simulations
of the Langevin equations(29) we used a simple Euler
scheme with an integration time stepDt=0.0001(in c.u.) and
randomly chosen initial conditions.

C. Normal modes

In the experiments of Melzeret al. [18] the normal modes
of cluster oscillations were determined from a single more

FIG. 2. (a) Solution ksr*d of the transcendental equation(34).
(b) Ground-state configuration for Coulomb crystals withN=2
grains(black dots) obtained from numerical simulations according
to the procedure described in Sec. IV B. The stationary distance
between the grains is given by 2r*skd, wherer*skd is the inversion
of the functionksr*d.

FIG. 3. Ground-state configurations of Coulomb crystals con-
sisting of (a) N=8 and (b) N=9 grains, symbolized by the black
dots. In each simulation we used an arbitrarily chosen friction pa-
rameterg0=1 (in c.u.) and k=1.03, which is consistent with the
data given in Table I. Each simulation run was stopped att=100(in
c.u.) and the integration step was chosen asDt=0.0001.
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complex oscillation, representing a superposition of the nor-
mal modes. As illustrated in Fig. 4, forN=4 grains there
exist four normal modes, which can be identified as(a) ro-
tation,(b) center-of-mass oscillation,(c) the breathing mode,
and (d) the antisymmetric mode. Any more complex excita-
tion of a Coulomb cluster can be represented as a superpo-
sition of the normal modes(or eigenmodes, respectively).

Figure 5 shows numerical results for the normal modes in
a Coulomb cluster withN=4 grains, obtained from numeri-
cal integrations of the Langevin equations(29). The param-
eters in the simulations are chosen similar to those in the
experiments of Melzeret al. [18] and listed in Table III. In
the experiments of Melzeret al. [18] the modes were excited
by a pulse modulation of the trap potential. As long as the
pulse signal is present the cluster is quenched. After the sig-
nal is switched off, the cluster tends to relax to its original
size and thus starts to oscillate. Since the grains are slowed
down by collisions with neutrals in the plasma, these oscil-
lations are damped. In our simulations each mode can be
excited separately by choosing appropriate initial conditions.

As is particularly evident in Fig. 5(a), the simulated
modes always exhibit(small) fluctuations around the per-
fectly unperturbed modes due to the presence of the heat
bath (white noise). In general, our numerical results are in
good agreement with the experimental results described in
Ref. [18]. This fact supports the hypothesis that the Langevin
approach provides a useful tool in order to theoretically in-
vestigate the dynamics of finite-size Coulomb crystals.

D. Angular momentum distributions

In the previous two subsections it was shown that the
Langevin approach can successfully be used to find the
ground-state configuration and describe the Brownian dy-
namics of Coulomb grains in a surrounding plasma. Further-
more, by numerically integrating the Langevin equations of
motion(29a)–(29c) one can calculate the stationary probabil-
ity distributions for arbitrary physical observables. With re-
gard to our subsequent investigations of negative friction ef-
fects, it turns out to be useful to focus on the probability
density functionfsLd, where

FIG. 4. The four different normal modes for a Coulomb cluster
with N=4 particles.

FIG. 5. Normal modes forN=4 particles and parameters as
listed in Table III. Due to the positive friction coefficientg0

=0.7 s−1 the modes are damped out ast→`. (a) Rotation around
the center of the potential well: The diagram shows the orbits of the
particles. The fluctuations from the circular orbit are caused by the
stochastic force.(b) Center-of-mass oscillations: Here the oscilla-
tions of the x projection of the center-of-mass-coordinates
=s1/4doi=1

4 r i are shown.(c) Breathing mode: The oscillations of
the mean radial positionkrl=s1/4doi=1

4 sxi
2+yi

2d1/2 are plotted.(d)
Antisymmetric mode: This diagrams shows the oscillations of the
alternating sums1/4doi=1

4 s−1di+1sxi
2+yi

2d1/2. (b)-(d) are arranged
such that they can be directly compared with Figs. 2(b)–2(d) in
Refs.[18].
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L =
1

N
o
i=1

N

Li =
1

N
o
i=1

N

mgsxivyi − yivxid s35d

is the overall angular momentum normalized to one particle.
Figure 6 shows the numerically calculated functionfsLd for
the case ofN=2 grains and parametersg0=1.0, D0=0.001
(we continue to use c.u. defined bymg=v0=lD=e=1). The
probability densityfsLd was determined from a histogram,
numerically calculated over the time intervalf0;10000g (in
c.u.). As one can see in Fig. 6, the functionfsLd possesses an
approximately Gaussian shape, centered aroundL=0. Quali-
tatively very similar results are found forN=1 andN=3 (not
shown here); that is, in these cases also the distributions
exhibit a single maximum atL=0 and decay monotonically
for uLu.0. This behavior can be readily understood if one
considers the equilibrium stochastic dynamics of the grains.
In the presence of constant positive frictiongsvd=g0 and
sufficiently low temperatureT, corresponding to small values
D0, the particles weakly oscillate around the ground state,
which is characterized byL=0.

As we shall see later, the angular momentum probability
densityfsLd will look essentially different in the presence of
negative friction.

V. NEGATIVE (ACTIVE) FRICTION

In the previous Sec. IV we concentrated on constant posi-
tive friction coefficientsgsvd;g0.0. In the remainder we
focus on the effects of negative friction. More exactly, it is
assumed that the effective friction coefficient is given by the
Rayleigh approximation[34] from Eq.(5); that is, we exclu-
sively considergsvd=asv2−v0

2d from now on. Additionally,
we shall make the simplifying assumption that the noise am-
plitude is approximately constant,Dsvd<D0. In all simula-
tions the parametersa, v0, andD0 are treated as independent
parameters. As will become clear below, the influence of
negative friction leads to complex stationary motions of a
Coulomb cluster, which can be identified as rotations or os-
cillating modes.

In order to get an idea of the effects of negative friction, it
is helpful to consider the deterministic limit case, corre-
sponding toD0=0, first. This will be done in Sec. V A. The
more general caseD0.0 is discussed subsequently in Sec.
V B. As before we use characteristic unitssc.u.d defined by
mg=v0=lD=e=1 throughout this section.

A. Deterministic dynamics „D0=0…

In the limiting caseD0=0 the originally stochastic equa-
tions of motions(29) reduce to a set of ordinary determinis-
tic differential equations. Hence, depending on the initial
conditions, the dissipative system will approach a stable sta-
tionary state, corresponding to a special sub-manifold(at-
tractor) in the phase space. For grain numbersN=1,2 one
can find analytical estimates for the attractors, while for
N.2 analytical studies become extremely difficult. Never-
theless, the general structure of the attractors can already be
well understood on the basis of the results obtained for the
two simplest casesN=1,2.

1. The case N=1

Here the grain-grain Coulomb interaction is irrelevant.
Hence, forD0=0 the dynamical equations(29b) reduce to

v̇ = − r − asv2 − v0
2dv. s36d

The related stable stationary motions(limit cycles) corre-
spond to cyclic rotations with constant radiusr0 around the
center of the trap. Obviously, they must satisfy the condition

TABLE III. Parameter values as used in the simulations of the normal modes, illustrated in Fig. 5. By
virtue of the Einstein relationT=mgD0/ sg0kd, one finds that the parameters given below correspond toT
=285.64 K.

Quantity Symbol Value(SI units) Value sc.u.d

Grain radius a 4.74mm 0.0068

Grain mass mg 6.73310−13 kg 1

Grain charge Q −18000e −18000

Debye length lD 700 mm 1

Viscous friction coefficient g0 0.7 s−1 0.091

Noise amplitude D0 4.1310−9 m2 s−3 1.8310−5

Trap frequency v0 7.7 s−1 1

FIG. 6. Angular momentum probability density functionfsLd
for N=2 grains, numerically calculated over the time interval
f0;10000g (in c.u.). Further parameters used in this simulation are
k=1.03, g0=1.0, D0=0.001, and integration time stepDt=0.0001
(in c.u.). The shape of the density functionfsLd is very similar for
N=2,3 (not shown here).
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v2 = v0
2 = r0

2. s37d

Figure 7 shows the projection of these limit cycles on the
horizontalsx,yd plane of the trap.

2. The case N=2

For D0=0 andN=2 the dynamical equations(29b) read

v̇1 = − r1 + F1
C − asv1

2 − v0
2d v1, s38ad

v̇2 = − r2 + F2
C − asv2

2 − v0
2dv2, s38bd

where

F1
C = k

r1 − r2

ur1 − r2u3
exps− ur1 − r2uds1 + ur1 − r2ud = − F2

C.

s38cd

The first attractor of the dynamical system(38) corresponds
to an equidistant rotation of the grains around the center of
the trap[see Fig. 8(b)]. The stationary motions of the grains
on this attractor are uniquely determined by the following
conditions:

r1 = − r2, r1
2 = r2

2 = r0
2, s39ad

v1 = − v2, v1
2 = v2

2 = v0
2, s39bd

wherer0 andv0 are connected as follows:

v0
2

r0
= r0 − k

exps− 2r0d
4r0

2 s1 + 2r0d. s39cd

Obviously, the condition(39b) makes sure that the two fric-
tion force terms in Eq.(38) vanish. Moreover, according to
Eq. (39a), the grains rotate diametrically around the center of
the trap with constant distance 2r0 between each other. De-
pending on the initial conditions, the rotations of the grains
occur either clockwise or counterclockwise. The last condi-
tion (39c) reflects the compensation of radial and centripetal
forces on the attractor. In Fig. 8(a) one can see a plot of the
related functionv0sr0d. In particular, we note that the condi-
tion (39c) reduces to the earlier result(34) in the limit case
v0=0.

The rotation attractors just described are not the only
stable stationary motions in the case ofN=2. In order to
identify a second type of attractor, we introduce the center-
of-mass coordinatess and relative coordinatesr by

s=
1

2
sr1 + r2d, r = r2 − r1. s40d

The related velocitiesu= ṡ andw= ṙ read

u =
1

2
sv1 + v2d, w = v2 − v1. s41d

Using Eq.(38) one thus finds

u̇ = − s− aF2Su2 +
1

4
w2 − v0

2Du + suwdwG , s42ad

ẇ = − r + 2k
r

ur u3
exps− ur uds1 + ur ud

− aF2suwdu + Su2 +
1

4
w2 − v0

2DwG . s42bd

Obviously, a stationary solution of these two equations is
given by

w = 0, ur u = r* , s43ad

u2 = v0
2, usu = s* , s43bd

provided the constantsr* ands* are solutions of the follow-
ing two equations:

FIG. 7. Dynamics of a single grain,N=1, moving in the trap
under the influence of active friction.(a) Limit cycle in the sx,yd
plane for deterministic grain motion in the limit caseD0=0. (b) For
D0.0 the grain performs a stochastic motion in the trap, which is
plotted here for the time intervalf99 980;100 000g (in c.u.). Due to
the influence of the stochastic force, the motion of the grain devi-
ates from the exact attractor. As shown in(c), this results in the
double-peaked shape of the angular momentum probability density
fsLd. The function fsLd is calculated from a histogram, reflecting
theL distribution over the time intervalf0;100 000g (in c.u.). As in
the previous simulations the integration time stepDt=0.0001 (in
c.u.) was used.
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0 = r* − 2k
exps− r*d

r*2 s1 + r*d, s43cd

v0
2

s* = s* . s43dd

The condition(43c) exactly corresponds to the earlier result
(34) and (43d) reflects the compensation of the centrifugal
force and the harmonic(trap) force with respect to the
center-of-mass coordinates. Figure 8(c) shows an example
for the orbits determined by Eqs.(43). As one can see in this
picture, the difference vectorr =r2−r1 remains fixed, as in-
dicated by Eq.(43a), whereas the center-of-mass coordinate
performs a stationary rotation with radiuss* =v0 around the
center of the trap. Since the relative coordinate remains
fixed, we shall refer to this attractor type as anacoustical
oscillation.

In addition to the rotation attractor from Fig. 8(b) and the
acoustical attractor from Fig. 8(c), one can still find a third
type of stable motion, which is represented in Fig. 8(d). The
orbits related to this attractor are more complex and can be
explained as a superposition of radial oscillations and center-
of-mass oscillations. In the following, the attractor in Fig.
8(d) will be referred to as a stationaryoptical oscillation.

In order to find out whether there still exist further types
of stable stationary motions forN=2 grains, we have calcu-
lated the orbits for a large number of randomly chosen initial
conditions. In these simulations the grains always ap-
proached one of the above attractors. Therefore, it seems
plausible to assume that the set of attractors in Figs.
8(b)–8(d) is complete. This assumption is supported by the
close relationship between the above three attractor types and
the three normal modes of the Coulomb cluster with two
grains: rotation, center-of-mass motion, and optical oscilla-
tions (breathing mode).

With regard to the subsequent discussion of the stochastic
dynamicssD0.0d it is important to note that each of the
attractor types is characterized by a characteristic time aver-
age value

kLl = lim
t→0

1

t
E

0

t

dt L, s44d

where the mean overall angular momentumL was defined in
Eq. (35). In Table IV, we have listed the respective numerical
values ukLlu, based on the same simulation parameters as
used in Figs. 8(b)–8(d). Below, the knowledge of these val-

TABLE IV. Absolute time average valuesukLlu for the three
different attractor types found forN=2. The parameters are the
same as those used in Figs. 8(b)–8(d).

Attractor type ukLlu sc.u.d

Rotation 0.12

Acoustical oscillation 0.04

Optical oscillation 0

FIG. 8. Attractors for the active motions ofN=2 grains in the
deterministic limitD0=0. (a) Functionv0sr0d from Eq.(39c) plotted
for the same parameterk as used in the numerical simulations of the
orbits shown in diagrams(b)–(d). (b) Rotation attractor: The inter-
section point of the thin horizontal linev0=0.2 with the curvev0sr0d
in (a) determines the stationary distanced=2r0 of the grains, if this
attractor is approached.(c) Acoustical oscillation attractor: The or-
bits of this attractor type correspond to a stationary center-of-mass
rotation with constant relative vectorr =r2−r1 between the grains.
(d) Optical oscillation attractor: Here the orbits of the grains result
from a superposition of center-of-mass oscillations and radial
oscillations.
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ues will help us to understand the shape of the angular mo-
mentum distributionfsLd.

3. Attractors for N.2

In Fig. 9 one can see some examples of numerically cal-
culated stable orbits for active Coulomb clusters withN
=3,4,5 grains. While some of these attractors exhibit a
structure that is very similar to those observed forN=2, there
also appear new types of stationary motions[see Fig. 9(c)].
In principle, the number of attractors steadily increases with
particle numberN. This observation is explained by the fact
that the number of normal modes also increases withN.
More generally speaking, each of the observed attractors
seems to be closely related to one of the normal modes of the
related conservative system. This observation supports the
following more general hypothesis[55]: If the friction coef-

ficient is similar to Rayleigh’s model, then each attractor of
the system must be very similar to one of the eigenmodes of
the corresponding conservative system; in particular, there
seems to exist a fixed relationship between the number of
attractors and the number of eigenmodes(or normal modes,
respectively).

B. Stochastic dynamics„D0.0…

While the previous subsection was dedicated to the dy-
namical attractors in the deterministic limit caseD0=0, we
shall now also consider the effects of a stochastic force com-

FIG. 9. Examples of stationary active motions for Coulomb
clusters withN=3,4,5 grains. (a) N=3: A comparison with Fig.
8(c) reveals that this attractor corresponds to the acoustical oscilla-
tion. (b) N=4: For this stable optical excitation[compare Fig. 8(d)],
the stationary orbit of a single grain is very similar to a Lissajous-
pattern.(c) N=5: This attractor form is different in the caseN=2
from Fig. 8.

FIG. 10. (a) For D0.0 the two grains performs a stochastic
motion around the center of the trap, plotted here for the time in-
terval f99 980;100 000g (in c.u.). Due to the influence of the sto-
chastic force, the system can travel between the different attractor
regions of the related deterministic system.(b) Angular momentum
probability densityfsLd for the caseN=2, numerically calculated
over the time intervalf0;100 000g (in c.u.). The peaks of the dis-
tribution are located at theL values that characterize the attractors
of the corresponding deterministic system withD0=0. (c) Angular
momentum probability densityfsLd for the caseN=3, numerically
calculated over the time intervalf0;100 000g (in c.u.). In all simu-
lations the integration time step is chosen asDt=0.0001(in c.u.).
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ponent. ForD0.0 the stationary dynamics of our model
system is not confined to a single attractor basin anymore. If,
however, the parametersa andk are sufficiently large, then
the stochastic system withD0 is also spending a relatively
long time in the vicinity of the attractor regions of the related
deterministic system withD0=0. This is illustrated in Figs.
7(b) and 10(a), where we plotted the stochastic orbits forN
=1 andN=2, respectively.

The transitions between the different attractor regions are
also reflected by the angular momentum probability density
fsLd. For active friction the shape of this function essentially
differs from the approximately Gaussian distribution, which
was found earlier in the case of passive friction(Fig. 6). As
shown in Fig. 7(c), for N=1 the densityfsLd exhibits two
maxima located nearuLu=0.04, which is just the angular mo-
mentum value for a grain moving on the attractor in
Fig. 7(a).

Similarly, for N=2 the functionfsLd exhibits four peaks
[see Fig. 10(b)]. By virtue of Table IV, these peaks can be
identified with the rotation attractor and the acoustical oscil-
lation attractor from Figs. 8(b) and 8(c). Merely the central
peak atL=0, corresponding to the optical mode, is sup-
pressed. A plausible explanation for this fact is that this at-
tractor is not very stable with respect to fluctuations.

VI. SUMMARY

During the past decade, Coulomb clusters confined by an
external harmonic trap potential have attracted considerable
experimental and theoretical interest[1–5,7,18]. In the
present paper, the Brownian dynamics of finite-size Coulomb
clusters was studied numerically and analytically on the ba-
sis of a Langevin approach. In particular, the influence of
passive and active friction was investigated.

Passive friction is characterized by a positive friction co-
efficient and arises primarily due to grain–neutral-atom inter-
actions in dusty plasmas. Here, we considered this(rather
usual) case in order to show that the Langevin approach can
successfully describe the Brownian dynamics of charged
grains in a plasma. More exactly, it was shown that numeri-
cal integration of the Langevin equations of motion yields
the correct ground-state configurations(Sec. IV B) as well as
the correct normal modes(Sec. IV C), known from recent
experiments[18] and theoretical work[1].

As outlined in Secs. I and II, in some dusty plasma mod-
els there also appears active friction[41,46,50]. Active fric-

tion means that the effective friction coefficient becomes
negative at small grain velocities. Thus, active friction may
result in complex stable excitations of a Coulomb crystal. In
particular, in such models the mean kinetic energy associated
with active grain motions can be much larger than the mean
thermal energy. Fortovet al. [9] report that in several of their
experiments the “apparent temperature” of the grains is in
the ranges23105–53105d K, which is approximately 103

times higher than the temperature of the ions in the surround-
ing plasma. We suggest that the development of the concept
of active friction might be helpful in order to explain such
observations.

As indicated by the numerical results in Secs. IV D and
V B, measurements of velocity distributions and angular mo-
mentum distributions may help to answer the question of
whether active friction is actually present or not. In the case
of purely passive friction the angular momentum distribution
is characterized by an approximately Gaussian shape,
whereas it exhibits several different maxima in systems with
active friction.

In summary, direct simulation of the Langevin equations
provides a useful tool in order to investigate the spatiotem-
poral dynamics of finite Coulomb clusters. In principle, this
method can easily be applied to test microscopic models un-
derlying friction and velocity diffusion coefficients. A gen-
eral approach to the calculation of these coefficients is, e.g.,
discussed in Ref.[50]. Nevertheless a satisfactory theory,
which models the very complex energy transfer processes
between nonequilibrium plasmas and grains, is still missing.
Possible future applications of the Langevin method could
also include time-resolved numerical studies of heating and
melting phenomena in clusters.

With regard to experiments, however, the most interesting
question is whether it is possible to realize plasma conditions
such that active motions of grains in a plane can be studied
in detail. In particular, it would be very interesting to learn
whether experimentally measured velocity distributions do
indeed show deviations from a Maxwellian distribution as
discussed in the present work.
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