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The dynamics of charged Coulomb grains in a plasma is numerically and analytically investigated. Analo-
gous to recent experiments, it is assumed that the grains are trapped in an external parabolic field. Our
simulations are based on a Langevin model, where the grain-plasma interaction is realized by a velocity-
dependent friction coefficient and a velocity-independent diffusion coefficient. In addition to the ordinary case
of positive (passive friction between grains and plasma, we also discuss the effects of negatitiee)
friction. The latter case seems patrticularly interesting, since recent analytical calculations have shown that
friction coefficients with negative parts may appear in some models of ion absorption by grains as well as in
models of ion-grain scattering. Such negative friction may cause active Brownian motions of the grains. As our
computer simulations show, the influence of negative friction leads to the formation of various stationary
modes(rotations, oscillations which, to some extent, can also be estimated analytically.
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I. INTRODUCTION investigations. In particular, we will also take into account

] ) _ the possibility of friction functions possessing negative parts.
During the last two decades the physics of charged graingince Lord Rayleigh’s work on sustained sound oscillations

in plasmas has attracted ever-growing theorefi¢ab] and  [34], negative friction has become a useful concept for mod-
experimental interest6—9). Among the first who theoreti- gling complex energy input processes in a simple manner.
cally investigated the dynamics of finite, two-dimensionaljth regard to dusty plasmas, negative friction has until now
(2D) Coulomb clusters with parabolic confinement were Lo-pheen considered in specific physical models only, which have
zovik and co-worker$2,3], Bolton and Rosslefd], and Be-  tg be further developed in order to be applicable to experi-
danov and Peetel®]. Using Monte Carlo simulation tech- mentally realized dusty plasm#s6,17,19.
niques, these authors were able to develop a classification |n 3 number of recent theoretical papers the stochastic
schemg“Mendeleev tabley of the elementary excitations in  dynamics of charged grains in plasmas has been discussed in
systems withN=2,...,52 grains. Later, Schweigert and the framework of Brownian motioni27,35—41. In particu-
Peeters investigated the spectral properties of clasgioat |y, for a relatively simple solvable grain-plasma interaction
quantum 2D Coulomb clusters on the basis of a modified model[41], it was shown that there appear some parallels to
Newton method10]. In this context, one should also men- the theory of active Brownian particl¢g2—45. If a grain in
tion recent dynamical simulations performed by Bonitza plasma is regarded as a Brownian particle, then the friction
et al. [11]. . _ ~ function y(v) provides an averaged macroscopic description
Experimental interest in 2D Coulomb systems was stimuyf the forces due to the grain-plasma interactianglenotes
lated by the discovery ofgiusty plasmas', containing relativelype velocity vector of a grajn The explicit shape of the
large highly charged grainf5,12-13. Since then, the dy- fynction y(v) is exclusively determined by the underlying
namics of Coulomb clusters has been studied in various exmicroscopic model, considered to describe the relevant mi-
periments[7-9,16-18 For example, relatively long living  ¢1os5copic interaction processes between the grains and sur-
oscillatory and rotational modes have been obseft8dl9 o nding plasma particlglectron, ion and atom scattering,
and also theoretically investigated,20-27. Another re-  ahgartion and emission of plasma particles by grains). etc.
markable observation is that in some experiments the grainghs. depending on which microscopic processes are taken

are characterized by very large kinetic energy values, CoMmeyi, account, the friction function(v) may differ consider-
sponding to a temperature three to ten times higher than th%tmy_

of the electrons in the plasni&,9,14,16,28 Reviews dis-
cussing some of these phenomena can be fourid9r33.

In the present paper, we investigate numerically and an
lytically the dynamics of confined Coulomb grains on the
basis of Langevin equations with nonlinearly velocity-
dependent friction coefficients. This approach does differ e
sentially from the Monte Carlo techniqug2-5 and the
Newton method10], as used by other authors in preceding

Intuitively, one would expect that the interaction with a

lasma always leads to a damping of the grain motion, cor-
‘esponding to generally positive frictiop(v) >0. Very re-
cently, however, Trigger and Zagorodii¢l] showed that
there also exist acceleration effects which give negative con-
Stributions to the friction function. More exactly, these authors
considered a relatively simple, analytically solvable model
for a fully ionized plasma with dominating ion-grain charg-
ing collisions. This model takes into account the momentum
transfer between ions and and grains, but neglects mass
*Electronic address: strig@gmx.net transfer processes. For this specific model it was found that,
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under certain conditions, there can exist a nonvanishing alsults presented below were obtained by direct numerical in-
solute velocity valueyg>0, such that the effective friction tegration of the Langevin equations, governing the stochastic
coefficient y(v) is negative for|v|<v, and positive for dynamics of the grains in the plasma. Compared with Monte
|v| >v,. Additionally, for this model the velocity space dif- Carlo techniqueg4,5] and the Newton metho(il0], this
fusion coefficientD(v) was determined by means of a self- approach has the advantage that one obtains detailed time-
consistent calculatiofin contrast toy(v) the functionD(v)  dependent trajectories of the 2D Coulomb system. Moreover,
is always positivg the Langevin method is readily applicable to a wide class of

Negative friction for small grain velocities means that models with nonlinearly velocity-dependent friction and dif-
slow graingwith 0< |v| <v,) are accelerated in the direction fysjon coefficients.

transfer mechanism. An example for such a mechanism is thgyiefly review general aspects concerning the Brownian mo-

charging colllijsions con_sidzred firﬁl]' Qualitativ_elyl, thris tion of isolated Coulomb grains in plasmas. The Langevin
process can be summarized as follows. A negatively chargegy ations for interacting grains are discussed in Sec. Ill. As

grain attracts positively charged plasma ions in its nelghbo_r—shoWn in Sec. IV, the Langevin approach can successfully

hood, which are finally absorbed at its surface. If the grain 'Sreproduce experimental data for the common case of positive

at rest in the plasma, then there is effectively no momentu assive friction. Section V focuses on the effects of nega-
transfer during the absorption process. In contrast, for slowrl:;.p : g

moving grains, the positive net acceleration stemming fro ve (active friction. Section VI contains a summary of the
tailside absorptions may be larger than the negative accelerfan results.

tion due to frontside absorptions, thus leading to an effective

(counterintuitivg acceleration of the grains in the direction || BROWNIAN MOTION OF FREE GRAINS IN PLASMAS

of their motion. It is necessary to emphasias was already

done earlie[36,37,41) that this effect was found for a spe-  In this section we briefly discuss the Brownian motion of
cific model, which is based on the standard assumption thatn isolated dust graigi.e., grain-grain interactions are ne-
mass transfer is negligible. This model is valid for time glected in this pait

scales of the order of the charging processes and provides the
correct values of the average grain charge and charge distri-
bution. However, it can be insufficient for larger time scales,
for which the increase of the grain mass may become essen- Consider a negatively charged grain with position vector
tial. Therefore, until now it is still an open question whetherr(t), velocity vectorwv(t), and unit massn,=1. The two-
the simple model discussgd1] can be applied in order 0 dimensional Brownian motion of such a grain in a surround-

correctly calculate the friction forces acting on long timeing plasma can be described by the Langevin equation
scales in real dusty plasmas. For the correct calculation of

these forces, it may be necessary to take into account the d
kinetics of ion recombination with electrons on the dust sur- d_tr -v, (1a)
face and the subsequent removal of the created atoms to the
ambient plasmas. An approach to this problem has already
been discussed if37,38, but a c_omplete theory of such Ev: — y(v)v + V’T(v)g(t), (1b)
processes has not yet been considered. dt
On the other hand, not only ion-grain charging collisions
may yield friction functions with negative parts. Under cer-
tain conditions(e.g., in the presence of an ion flow in the
lasma, scattering of ions by grains may lead to negative - — _
l‘orictionaas well [48]. In partic)lljlgr, it seemys that this e%fect (E)=0, (6(08(9)= 6, AL-9) @
can be responsible for some observations in the experimentith «,v=1,2 denoting the two spatial components of the
by Dahiyaet al. [19]. Hence, in principle, one cannot ex- random vecto#. In the Langevin approach, the friction co-
clude that active motions of grains can occur for some speefficient y and the velocity diffusion coefficierd give an
cific dusty plasma parameters and conditions, since there egveragednacroscopialescription of the grain-plasma inter-
ist several different mechanisms that can give negativactions.
contributions to the friction coefficieng(v). Throughout this paper, we shall confine ourselves to the
In the meantime, it seems reasonable to identify the pecusase where the plasma is isotropic in the horizoxdglplane
liarities that arise for qualitatively different types of friction in which the charged grains are moving. Note that this does
coefficients. Therefore, it is the primary aim of this paper tonot exclude the possibility of a vertical anisotropy in the
study the effects of positive and negative friction on the dy-plasmagi.e., an anisotropy with respect to the third spatial
namics of 2D Coulomb clusters from a general point of view.directionz). For such isotropic 2D plasmas the coefficiepts
To this end, we have performed computer simulations of th@nd D are nonlinear functions of the absolute velocity
cluster dynamics for two qualitatively different phenomeno-=|v| of the grain. By considering the energy balance equation
logical friction models, corresponding to passive and activeassociated with Eq(1), one can easily see that the function
friction, respectively. v(v) models the energy transfer from the plasma to the grain.
As mentioned before, in contrast to previous numericaFor example, under typical experimental conditions there
investigationg4,5,1Q of finite 2D Coulomb clusters, the re- may also exist vertical currents, crossing ¥ plane in the

A. Langevin and Fokker-Planck equations of a free grain

where the stochastic force term is characterized by the time
averages
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z direction, which of course also transfer energy to the 25
grains. Therefore, one should consigér) as a phenomeno- ol
logical model for the energy transfer from three different
directions to the grains. Due to the complex character of the 15
grain-plasma interactions, a complete microscopic theory s
does not yet exist. However, there exist special tractable 1r
models for which thgin general nonlinearfunctions y(v)
andD(v) can be calculated. 05
For example, in[35-38,4]1 explicit functional expres- 0
sions fory(v) andD(v) were derived on the basis oficro- -2 2

scopicmodels of the interaction between the grain and the ViVo

p'asm"’.‘ Constltuent§. The exact shape of the co'rrespo.ndlng FIG. 1. Non-Maxwellian stationary distribution function for the
coeff_|C|ents essent_lally o_lepends on the_: underl_ylng MICrORayleigh friction modelyg(v) = a(v?-v2) from Eq.(5). In the limit
scopic model and, in particular, on the microscopic Processes;p .o the density converges to ti&function (7).

taken into account. A more detailed discussion concerning

the structure ofy(v) will be given below in Sec. Il B. First, relatively small. Additionally. in this situation one m |
let us briefly discuss the stationary velocity distribution that < .o ve Smat. onaty, S situation one may also

: . simplify the diffusion function by assuming tha(v)
follows from the Langevin dynamicdl). — ) . . o
In order to find the stationary velocity distribution for a Do>0. Obviously, in the Rayleigh modéb) the friction

rain governed by Eq(l), one can use the correspondin coefflment Is negative ib”<uvg an.d positive ot'her\{wsg. A.C'
I%okke?-Planck eq):Jati%(m?:PE) for the probability dgnsity g cording to Eq(4), the related stationary velocity distribution

function f(r,v,t). The FPE reads function is then given by
Jf it 9 dD(v)f f(p) = p[ & 2 22
i + , (v) =Nexp - —(*-vp|, (6)
ot Cor av[y(v)vf Jv } @ 4D, °
The stationary solution of this equation is well knoygee, whereA is a normalization constant. As one can see in Fig.
e.g.,[41)): 1, the probability densityf(v) exhibits two peaks nearuvg
and decays strongly at high absolute velocities. In the weak
f(v) = Lexp(— 1 f Mdvz)_ (4) noise limit, Do/ a— 0, the distribution becomes very narrow
D) 2J D(v) around ., approaching thé distribution
For constant friction and diffusion coefficients, i.e., for ~ 2
y(v) = yo andD(v) = Dy, this solution corresponds to a Max- fo(v) = Né(v" - vp). (7)

wellian (Gaussiai velocity distribution. In the case of more L. o ) ) L

realistic plasma models, however, the velocity distribution! Nt iS, in this limit the dispersion of the kinetic energy of

(4) is non-Maxwellian. the grains is completely neglected. From the physical point
Qualitatively, the two simplest cases one can distinguist‘?f view, the Brownian grains then move with constant kinetic

_ 2 . . . . .
are monostable and bistable distributiciis). Monostable ~€NergyE=mg;/2, while randomly changing their directions

distributions, such as e.g., the Maxwell distribution, are as®f motion from time to time.
To summarize, if the negative friction effects are rela-

sociated with purely positive friction coefficie >0. If
purey p Mev) tively weak, then it is often sufficient to approximate a more

e e e e soomplite iton o) by Reegs S
stanty(v) = y,. A completely different distribution results if model (5), which is effectively characterized by only two
the friction function becomes negative at small velocities.parametem andup.
More exactly, it has been shown that multimodal distribu-
tions appear ify(v) may assume negative values for some B. Structure of the friction coefficient in more realistic
velocity domain[41,47,48. plasma models

The transition from purely positive friction coefficients to Starting from detailed microscopic models of the grain-

friction functions exhibiting a negative part can be viewed as,|35ma interaction, it is in principle possible to derive ex-
a bifurcation. A common procedure in bifurcation the¢ag plicit functional expressions for(v) and D(v). Then, of

W%” a_ls_ ml the theor_y of phatshe tg_?nsnut)_ns to_ufes?‘ low course, the results do essentially depend on the properties of
order Taylor expansion near the bifurcation point. Sinte) the underlying microscopic model. For example, the qualita-

Sho‘ljlq rt]),e ar';‘ even fu?cti_oni this(,j I?a(ffis in Io¥v¢s_t order Qiye hehavior ofy(v) andD(v) strongly differs, depending on
Rayleigh’s phenomenological model of active frictifg#] whether surface recombination effects between plasma ions

Ya(0) = - B+ av?= a(v?-vd), @>0 (5) and grain surface electrons are neglected or not, as discussed
' ' above.
where v(2)=,8/a. Near the bifurcation point, the constagt Generally, for a plasma consisting of ions and atoms the

and correspondingly also the characteristic velocigyare  friction coefficient can be written in the additive form
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TABLE |. Typical grain, plasma, and trap parameters as givefi7/jnfor a helium plasma containing
charged spherical plastic particles. The last column gives the corresponding parameter values in the charac-
teristic units(c.u.) as used in our computer simulations. At temperafir&00 K andZ;=1 these parameters
result inI" = 140 (ion-grain interaction parameder

Quantity Symbol ValugSI unity Value (c.u)
Grain radius a 4.74 um 0.0053
Grain mass my 6.73x 108 kg 1
Grain charge Q -1210@ -12100
Debye length \D 900 um 1
Viscous friction coefficient Yo 55s? 0.67
Pressure P 1.6 Pa
Trap angular frequency wp 27rx1.3¢s? 1
Permittivity of free space €0 8.85X 1072 F m?
Boltzmann constant k 1.38x 1028 J K™
Y() = y(v) + %(v). (8) densitiesn;, of ions and atoms in the plasma, the ion mass

. . . m;, and the thermal ion temperature
Here, y,(v) is related to grain—neutral-atom collisions, and
v(v) represents the influence of ion absorptions and scatter- 5> KT;
. . . . V= . (12)
ing. In the next two sections we briefly discuss some general m,

roperties of and y;(v).
prop 7lv) nw) In typical experiment$7,18] the passive friction coefficient

% is of the order 1-107¢ (see Table)l
1. Atomic friction

Under the usual experimental conditions the plasmas are 2. Grain-ion interaction

often weakly ionized, i.e., in addition to ions and electrons  Rather generally, the ionic contribution(v) to the full

the plasma also contains a non-negligible amount of ne“tralﬁiction coefficient(8) can be written in the form
species(atomg. Therefore, a reasonable theory must also

take into account the interactions between the grains and the ¥i(;T) =% w;T) + ;) + y{(v;T). (13

neutrals atoms. Analytical estimates of this effect on the ba- . .
sis of the kinetic theory are well knowf#9]. In principle, ~ 1€r® 77 reflects the absorption of ions at the surface of the

grain—neutral-atom interactions always give rise to a positivédain, while 5’ represents friction resulting from scattering

contribution y,(v) >0 to the full friction coefficienty(v);  Processes between the negatively charged grain and posi-

that is, such interactions always leadpassivefriction. tively charged plasma ions. The last ter is connected
Throughout this paper, we shall assume that it is sufficien\."”th surface recombination processes. As discussed in

to use an Epstein-typp49] approximation in order to ac- [36,50, a satisfactory theory of gr_ainjplasma interactiqns
count for grain-neutral-atom collisions; i.e., we confine oyr-must also account for the recombination of absorbed ions

selves to the case and electrons in the grain as well as for the subsequent re-
moval of the emerging atoms from the grain surface to the
Yav) = 70, (9)  surrounding plasma. Such a theory, however, is still absent.

As indicated by the notation, the explicit shape fis

yvhere YlS a positive constant. This simplifying assumpt!qn essentially determined by the characteristic ion-grain interac-
is also justified by analytical results based on the transition; parameter

probability function for the short-range atom-grain interac-

tion [50]. For the case of a mirror reflection of the point 2,26
[50] L . . P . E_‘Z'_, (14)
atoms from the spherical grain the expression for the atomic 4areg a KT,

friction can be represented 0]
whereZ, andZ; are the charge numbers of the grains and the

Yo = 8A%<Ta_ma>l/2 (10) plasma ions, respectively, whike denotes the grain radius
N\ T;m, ’ andT, is the ion temperature in the plasma.

An analytical expression for the absorption coefficigft

has been calculated earlipfl] for the specific model dis-

1—(m), cussed in Sec. |. An interesting aspect of this model is #fiat
A= §N’27T — |anu;. (11)  assumes negative values for small absolute velocity, if the

My degree of ionization in the plasma is sufficiently high. An-

The quantities appearing in Eq4.0) and(11) are the grain  other cause of negative friction in quite realistic models can
massmy, the grain radiusa, the massm, of an atom, the be the existence of ion flows. For example, when an ion

where
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stream is flowing in a dusty plasma the friction coefficient w?
¥(v) behaves ag -1/ for s)r/ngll absolute velocity values q)eXt(r):n‘]chofzy (20)
[46,50. This result means that under such spec¢aiiso-

tropic) conditions negative friction effectively always exists then the ground-state configuration corresponds to a regular
due to ion flow scattering by grains. In this case the ion dragwo-dimensional structure, referred to as Coulomb crystal
force, recently calculated also for large angles of ion scatterf4,10,53. These structures can be classified, and for the case
ing [39,51], leads to a negative term in the effective friction of pure Coulomb interactions, correspondingNg— «, a

coefficient. For example, as shown[#i], for moderate pa- Mendeleev table for particle numbeis=2, ... ,52 was pre-
rameter values sented in Ref[5]. An analogous analysis for screened poten-
P tials of the type(17) is, e.g., given in53].
7 . .
g <5 (15) In the present paper we are going to study the dynamics

of two-dimensional Coulomb clusters in a harmonic trap by
using a Langevin approach. In particular, we are interested in

the ion-grain scattering friction coefficienf takes the form identifying the excitations that may arise due to the influence
of negative friction. To this end, we numerically integrate the

47780 )\D mil)iz

Y(') = 2AI'%n A, (16) Langevin equations of motion
where InA is the Coulomb logarithm generalized to dusty i =vi, (213
plasmaq39,4Q. . _ =C, ext R
Since negative friction manifests itself in several dusty v = (Fi7+ F7)/mg — fv)vi +v2Do §(1), (21D

plasma models, it seems reasonable to consider the specifihere x; describes the position of a grain at tirend v,

properties of the grain dynamics in the presence of graingenotes its velocity. The external linear forigg modeling
grain interactions, not only for the case of positive friction, ihe jon trap reads

but also for negative friction. . 5
Fiex == Vi(DeXt(ri) == mga)o ri, (22)

IIl. DYNAMICS OF CONFINED CLUSTERS OF and the screened Coulomb force is obtained from
CHARGED GRAINS N

2
s 8 lexp<_ lji_)
. . . . . j=1j#i 4T \p
In the previous sections, the interaction between quasifree N
. . . 2
grains and a surrounding plasma has been discussed. In the _ Q" ri- rlexp(— h)(l +ﬂj_> (23)
Ap Ap/’

. . . . C
A. Screened interactions and equations of motion Fir=-V

remainder, we additionally consider grain-grain interactions, T~ Ames 3
R .. . . j=1,j#i 0 ij
mediated by a screened Coulomb pair interaction potential
where

QQl_{ y
®j(r) = '—l—exp<— —'L>, (17) (2 9
I 47T80 Fij \p Vi = I, ) ay;

where is the Nabla operator related to the coordinates ofithe
particle. In the Langevin equatioi21b) the interaction be-
rij=ri = rjl (18) tween the grains and the surrounding plasma is realized by
the last two terms, containing the friction coefficiepv;)
and the stochastic Langevin fordé—Do &(t) with properties
2). With regard to the friction coefficient, we shall concen-
rate below on the following two case@) constant positive
(passive friction corresponding toy(v) =y, (ii) velocity-
I dependent negative friction corresponding to the Rayleigh
Q=Q=-2Zge 19 odel Yr(v) = a(v?-vd).
for all i=1,2,... N. We also note that deviations from the _ Moreover, we make a second simplifying assumption by
Debye potential, which may be caused by different attractior@lv@ys considering a constant noise amplitugg in Eg.
mechanismgshadow effects, dipole interactions, gtare (21D In the limit of purely constant viscous frictionf(v)
negligible for the parameter range considered in the presert Yo this assumption is unproblematic since then the Ein-
paper(see, e.g.[30,3] for an extensive discussion of the Stein relation
limitations of the Debye interaction modelSimilarly, the Yok T
influence of ion wake fields can be neglected, as long as the Do="—
typical velocity of the grains is smaller than the thermal ve- My
locity of the ions. holds. In general, however, one should expect that both the
If an ensemble ofN Coulomb grains is confined by an friction coefficient and also the noise amplitude are velocity
external parabolic potential dependent. Among others, this is evident from the explicitly

denotes the distance between two grains locatedr; at
=(x;,y;)) andr;=(x;,y;), respectively. For simplicity, we shall
confine ourselves to the case where all grains are identic
ie.,

(24)
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velocity-dependent results for friction and diffusion coeffi-  TABLE II. Typical grain, plasma, and trap parameters as deter-
cients given in[41]. Thus, using a constant noise amplitude mined in[18] for melamine-formaldehyde microspheres surrounded
parameterD, in the case of active friction reflects the as- by an argon plasma. The last column gives the corresponding pa-
sumption that theD(v) is slowly varying around,. Since rameter valugs in the characteristic uriitsu) as used in our com-
the main objective of this paper is to discuss the qualitativé?Uter simulations. At temperatufie=300 K andz;=1 these param-
effects of active friction in two-dimensional Coulomb clus- €ters result in’~210.

ters, the simplificatiorD(v) =D, seems reasonable at this

stage Quantity Symbol valugSI unity Value (c.u)
In this context it should also be mentioned that friction Grain radius a 4.74 um 0.0064
and (_Jllffusmn coeffu_:lents of dusty plasmas are, in general, Grain mass m,  6.73x10%3kg 1
functions of the grain charg86]. For example, Matsoukas Grain charae Q 18006 —~18000
and Russel54] and Schramet al. [40] have analyzed in 9
Debye length \p 740 um 1

detail the charge dependence of the stationary grain distribu- = B _
tion function. According to their results, fluctuations of the Viscous friction coefficient 7y, ~ No data given

grain charge are negligible if Pressure P 1.6 Pa
272 Trap angular frequency  wg 7.7t 1
_ "
>1 (25
dmeg a kT;ff

IV. POSITIVE (PASSIVE) FRICTION

holds, wherea denotes the grain radius and . . N
In this section we concentrate on the limiting case of
. 1+7, 9+¢ ezzg T; purely passive frictiony(v)=y,. This case corresponds to
Terr=Te 2 1+9+¢ = 4rreg a KT, = ZT, experimental conditions as realized by Klindwoghal. [7]
and Melzeret al.[18] (see Tables | and)! In the mentioned
(26) experiments the degree of ionization is rather loyn,,
Equation(25) is satisfied for the parameter values used inand, therefore, ordinary positive friction due to grain-atom
our computer simulations, and also for typical experimentainteractions is predominant.

conditions [7,18. Therefore, following the standard ap-  In the context of the present paper, it is useful to consider
proach[1], we neglect charge fluctuation effects by consid-¥(v)= o first, because this case allows a straightforward
ering grains with constant identical charge values. comparison between our numerical simulations and the ex-
perimental results reported by Melzetral. [18]. In this way
B. Characteristic unit system one can check that the numerical integration of the Langevin
It is convenient to use a characteristic ufitu) system €quations(29) yields not only the correct ground-state con-
defined by figurations[5], but also the correct time-dependence of clus-
ter oscillations. Moreover, with regard to the subsequent con-
my=1, Ap=1, e=1, =1, (27)  sideration of negative friction effects in Sec. V, it is useful to

first discuss the case of passive friction.
It might be appropriate to emphasize that, compared with
_ Zzge2 28) Monte Carlo method$4,5], the Langevin approach has the
 dmegmyedny advantage that it allows a time-resolved study of the grain
dynamics. The Langevin method also makes it easy to nu-
The experimental parameter values from Table | yield merically determine several stationary distributions for dif-
=1.03, whereag=4.61 for those from Table II. By virtue of ferent nonlinearly velocity-dependent friction and diffusion
Eq. (27) and (28) one can rewrite the Langevin equations coefficients, derived from microscopic models. These results
(21) in the simplified form can be compared with experimental data in order to evaluate
— (299 the underlying microscopic theory.
SR Formally, this section is structured as follows. Section
, c [ IV A contains analytical estimates for the simplest nontrivial
v = =1+ Fi = v + V2D §(V), (298 case withN=2 grains. In Sec. IV B the stationary configu-
where rations of Coulomb crystals are determined via direct simu-
lation of the dynamical equation®9) for the deterministic
limit case Dy=0. The results presented in Sec. IV C show
that the normal modes, as experimentally measuref]in
can also be numerically reproduced on the basis of the
Thus, the remaining effectively free parameters of the modelLangevin approach. Finally, in Sec. IV D numerically gener-
are the coupling constamt the noise amplitud®,, and the ated angular momentum distributions are discussed. As will
parameters of the friction model, i.ey in the case of posi- become clear below, the analysis of angular momentum dis-
tive friction or a andu, if the Rayleigh mode(5) is consid-  tributions might also provide a useful tool in order to deter-
ered. Also note that all numerical results presented belownine whether or not negative friction is present in a system
will exclusively refer to Eqs(29). under consideration.

and to introduce the dimensionless coupling constant

K

N
=
FiC:K E I—3J'EX[X— rij)(1+rij). (299
i=tj= T
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5 . .
(@ 2| N=8,Dy=00
47 .
1 o .
3r a
<
w T 0 ° .
2t > .
1 . °
1 x=1.03
2+ (a)
0 ) ) ' 2 1 0 1 2
0 0.2 0.4 0.6 0.8 1
r/Ap x/Ap
2| N=2,D4=0.0, k=1.03 2 N=9,Dg=00
[ ]
1 i ¢ .
(<D [ ]
‘\f 0 . . N 0 4 . .
-1 A . .
2t (b) ; 21 (b)
P RN
X/ Ap x/Ap

FIG. 3. Ground-state configurations of Coulomb crystals con-
sisting of (@) N=8 and(b) N=9 grains, symbolized by the black

grains(black dots obtained from numerical simulations according dots. In each simulation we used an arbitrarily chosen friction pa-

to the procedure described in Sec. IV B. The stationary distancéamete,r”o:,l (in c.u) and K.:]..OS,. which is consistent With, the
between the grains is given by.2«), wherer:(k) is the inversion data given in _Table I._Each simulation run was stopper-a00(in
of the function(r.). c.u) and the integration step was chosem\as 0.0001.

FIG. 2. (a) Solution «(r+) of the transcendental equatig84).
(b) Ground-state configuration for Coulomb crystals whikh=2

2(b) we also show a numerically found ground-state configu-
A. The caseN=2 ration (for details concerning the simulations, see Sec. )V B

For the caseN=2 it is possible to derive some simple B. Ground-state configurations for N> 2
analytical estimates for the ground-state configuration. To

this end, consider the potential energy In the previous section we briefly discussed the ground-

state configuration for the cadb=2. For more complex two-
dimensional Coulomb clusters witkhi= 3, analytical studies
become more complicated or even impossible. Nevertheless,
o ) . one can identify the respective ground-state configurations
By definition, each ground-state configuratiofr,,r;)  py applying numerical methods. On the basis of Monte Carlo
=(X1,Y1,X,Y,) must minimizeU. For symmetry reasons, simulations such an analysis was performed by, e.g., Be-
such a configuration must satisfy danov and Peeterfs]. In the present paper we pursue an
X ==X yi=—v. (31) alternative approach bgsed on direct numerigal simulations
L 2 2 of the Langevin equation&9). More exactly, in order to
If we introduce identify the ground-state configurations we consider the de-
TR terministic limit, characterized b¥,=0 and y(v) = ,>0.
r= )"+ (V)" (32) Due to the pure damping, the system will eventually ap-
thenr. must be determined such that proach a state of minimal energy; i.e., all grains come to rest
and constitute a stable configuration.
U(ry,ry) =r2+ Lexp(— 2r.) = U(rs) (33) In Fig. 3 one can see the numerically obtained ground-
2r, state configurations for grain numbdis=8 andN=9. The
shell structures agree with those found in the Monte Carlo
simulations of Bedanov and Peetg&. In our simulations
of the Langevin equation$29) we used a simple Euler

1 K
U(rl,rz):§(r§+r§)+Fqu‘rij)- (30)
ij

is @ minimum. From the conditiod’(r)=0 we thus get the
transcendental equation

1 1)\ scheme with an integration time stap=0.0001(in c.u. and
20—k expl=2r)| =+ o 5] =0. (34 randomly chosen initial conditions.
In Fig. 2a) the solution of this equation is plotted as the C. Normal modes

function «(r«). The ground-state distance between the two In the experiments of Melzeat al.[18] the normal modes
grains for a given valuex is then given by B.(x). In Fig.  of cluster oscillations were determined from a single more
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2r N=4 (ro';ation)
¢ ‘ o o~ 1
— @ .
(a) rotation (b) center-of-mass motion ‘i 0
¢ ¢ !
-~ o~ e 2t @

-2 -1 0 1 2
* ? X/)\D

(c) breathing mode (d) antisymmetric mode j i N
150 | N=4 (center-of-mass motion)
FIG. 4. The four different normal modes for a Coulomb cluster 100 /\
with N=4 particles.
£ ¥
s Of
complex oscillation, representing a superposition of the nor- -50 |
mal modes. As illustrated in Fig. 4, fad=4 grains there 00 |
exist four normal modes, which can be identified(asro- 150 b , ,
tation, (b) center-of-mass oscillatioti¢) the breathing mode, 0 0.5 1 15 2
and(d) the antisymmetric mode. Any more complex excita- time [s]
tion of a Coulomb cluster can be represented as a superpo- 960 . .
sition of the normal modegr eigenmodes, respectively — N=4 (breathing mode)
Figure 5 shows numerical results for the normal modes in § oa0 1
a Coulomb cluster witiN=4 grains, obtained from numeri- S 920 & Al f\‘
cal integrations of the Langevin equatiof®9). The param- g f/\ f’\g
eters in the simulations are chosen similar to those in the R S S S
experiments of Melzeet al. [18] and listed in Table IIl. In 3 f \}; v \j
the experiments of Melzeat al.[18] the modes were excited g 880 1 V V ]
by a pulse modulation of the trap potential. As long as the € 860} (o)
pulse signal is present the cluster is quenched. After the sig- : : :
- : : - 0 05 1 15 2
nal is switched off, the cluster tends to relax to its original e [s]

size and thus starts to oscillate. Since the grains are slowed
down by collisions with neutrals in the plasma, these oscil-

lations are damped. In our simulations each mode can be 5 go | N=4 (antisymmeiric mode)
excited separately by choosing appropriate initial conditions. é
As is particularly evident in Fig. &), the simulated g 40f
modes always exhibitsmall fluctuations around the per- g
fectly unperturbed modes due to the presence of the heat g OF
bath (white noisé. In general, our numerical results are in g \‘
good agreement with the experimental results described in £ 40 @
Ref.[18]. This fact supports the hypothesis that the Langevin ® 80 , , ,
approach provides a useful tool in order to theoretically in- 0 0.5 1 15 2
vestigate the dynamics of finite-size Coulomb crystals. time [s]

FIG. 5. Normal modes foN=4 particles and parameters as
listed in Table Ill. Due to the positive friction coefficieng,
=0.7 st the modes are damped out as . (a) Rotation around

L In the prewoushtwo Subsectlor;slllt \t/)vas shgwn tpaé thh(%he center of the potential well: The diagram shows the orbits of the
angevin approach can successiully be used to find t Earticles. The fluctuations from the circular orbit are caused by the

grou_nd-state Conflgurat_lon_ and descr'b'_a the Brownian dy'stochastic force(b) Center-of-mass oscillations: Here the oscilla-
namics of Coulomb grains in a surrounding plasma. Furthergons of the x projection of the center-of-mass-coordinate
more, by numerically integrating the Langevin equations of=(1/4)s4  r, are shown(c) Breathing mode: The oscillations of
motion (298—(29¢) one can calculate the stationary probabil- the mean radial positiotr)=(1/4)3%, (x*+y?)*2 are plotted.(d)

ity distributions for arbitrary physical observables. With re- antisymmetric mode: This diagrams shows the oscillations of the
gard to our subsequent investigations of negative friction efalternating sum(1/4)3%, (-1)"**(¢+y)*2 (b)-(d) are arranged
fects, it turns out to be useful to focus on the probabilitysuch that they can be directly compared with Fig&)-22(d) in
density functionf(L), where Refs.[18].

D. Angular momentum distributions
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TABLE IIl. Parameter values as used in the simulations of the normal modes, illustrated in Fig. 5. By
virtue of the Einstein relatiom=myDo/ (oK), one finds that the parameters given below corresporifl to

=285.64 K.
Quantity Symbol ValugSI unity Value (c.u)
Grain radius a 4.74 um 0.0068
Grain mass My 6.73x 108 kg 1
Grain charge Q -1800@ -18000
Debye length \b 700 um 1
Viscous friction coefficient Yo 0.7 st 0.091
Noise amplitude Do 41x10°m?s3 1.8x10°°
Trap frequency wg 7.7t 1

V. NEGATIVE (ACTIVE) FRICTION

In the previous Sec. IV we concentrated on constant posi-
tive friction coefficientsy(v) = y,>0. In the remainder we
focus on the effects of negative friction. More exactly, it is

is the overall angular momentum normalized to one particle‘?ssumed that the effective friction coefficient is given by the

Figure 6 shows the numerically calculated functigh) for ~ Ravleigh approximation34] from Eq.(5); that is, we exclu-
the case oN=2 grains and parameteng=1.0, Dy=0.001 sively con3|dery(v):_a(v_—_vo) from now on. Add|t|onr_s1lly,
(we continue to use c.u. defined by=wy=\p=€=1). The we shall make the simplifying assumption that the noise am-
probability densityf(L) was determined from a histogram, Plitude is approximately constar(v) ~Do. In all simula-
numerically calculated over the time intenj@l;1000q (in ~ tons the parametes, vo, andD, are treated as independent
c.u). As one can see in Fig. 6, the functibfL) possesses an parameters. As will become clear below, the influence of

approximately Gaussian shape, centered ardund. Quali- geg?tlv% fr:cnton Iee;](_jshto cognp!gx ?_tf:?ttlé)nary Ti)_tlons of a
tatively very similar results are found foi=1 andN=3 (not oulomb cluster, which can be identilied as rotations or 0s-

shown herg that is, in these cases also the distributionsClllatlng modes. . . S
In order to get an idea of the effects of negative friction, it

xhibi ingle maximum dt=0 an monotonically . .
exhibit a single maximum &t =0 and decay monotonically is helpful to consider the deterministic limit case, corre-

for |L|>0. This behavior can be readily understood if one ) P S .
considers the equilibrium stochastic dynamics of the grains§pondlng 10D, =0, |rst. T.h's \.N'” he done in Sec. VA.‘ The
In the presence of constant positive frictigiiv) =y, and more general casBy>0 is discussed subsequently in Sec.

- : V B. As before we use characteristic unitsu. defined by
sufficiently low temperatur&, corresponding to small values ~ “\—e=1 th hout thi "
Do, the particles weakly oscillate around the ground state o~ “@0o=Ap=€= 1 throughout this section.

which is characterized bly=0.

1o 1
L= NE Li= NE My(Xivyi — Yivki) (35
i=1 i=1

As we shall see later, the angular momentum probability A. Deterministic dynamics (Do=0)
densityf(L) will look essentially different in the presence of  |n the limiting caseD,=0 the originally stochastic equa-
negative friction. tions of motions(29) reduce to a set of ordinary determinis-
tic differential equations. Hence, depending on the initial
40 — : - - - conditions, the dissipative system will approach a stable sta-
tionary state, corresponding to a special sub-manifald
30 | ] tracton in the phase space. For grain numbbis1,2 one
can find analytical estimates for the attractors, while for
T oot ] N>2 analytical studies become extremely difficult. Never-

theless, the general structure of the attractors can already be
well understood on the basis of the results obtained for the

10t .
two simplest casell=1,2.

-0.04 -0.02 0 0.02  0.04 1. The case &1

2 . . . . . .
L /(m.0nAn) Here the grain-grain Coulomb interaction is irrelevant.

FIG. 6. Angular momentum probability density functidfL) Hence, forDo=0 the dynamical equation@9b) reduce to

for N=2 grains, numerically calculated over the time interval i::—r—a(vz—vg)v. (36)
[0;10004 (in c.u,). Further parameters used in this simulation are

«k=1.03, y,=1.0, Dy=0.001, and integration time steft=0.0001  The related stable stationary motio(lanit cycles) corre-

(in c.u). The shape of the density functidflL) is very similar for ~ spond to cyclic rotations with constant radigsaround the
N=2,3 (not shown herg center of the trap. Obviously, they must satisfy the condition
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0.4 | N=1,v(=0.2, a=10.0, Dy=0.0

0.2

Q

< 0

>
0.2}
-04  (a)

-0.4 -0.2 0 0.2 0.4
x/ ;”D

0.4 | N=1,v(=02, 0=10.0, D=0.001

0.2}

y/hp
o

-0.2

0.4 (b)

-0.4 -0.2 0 0.2 0.4
x/ ;”D

N=1, vy=0.2, =10.0, Dy=0.001

0 1 I I
-0.1 -0.05 0 0.05 0.1

L/ (M0 23)

FIG. 7. Dynamics of a single grailN=1, moving in the trap
under the influence of active frictioria) Limit cycle in the (x,y)
plane for deterministic grain motion in the limit caBg=0. (b) For

Dy>0 the grain performs a stochastic motion in the trap, which is

plotted here for the time intervf®9 980;100 000(in c.u.). Due to

the influence of the stochastic force, the motion of the grain devi- 2

ates from the exact attractor. As shown(), this results in the

double-peaked shape of the angular momentum probability densit
f(L). The functionf(L) is calculated from a histogram, reflecting

the L distribution over the time intervaD; 100 00Q (in c.u). As in
the previous simulations the integration time steip=0.0001(in
c.u) was used.

2

v2=v5=r3. (37)

Figure 7 shows the projection of these limit cycles on the

horizontal(x,y) plane of the trap.
2. The case N2
For D=0 andN=2 the dynamical equation®9b) read

(38a)

= C 2 2
vl—_r1+ Fl _a(vl_vo) U1,

v, =+ Fg—a(vg—vg)vz, (38b)

where

PHYSICAL REVIEW E70, 046406(2004

I’l— rz
Ff= Kmexﬁ_ Ir =ra )@ +ry = 1) =~ FF.
17

(380

The first attractor of the dynamical syst&B88) corresponds

to an equidistant rotation of the grains around the center of
the trap[see Fig. 8)]. The stationary motions of the grains
on this attractor are uniquely determined by the following
conditions:

r=-ry ri=ri=rg, (393
U=~ Uy, v§:v§=vé, (39b)
whererg anduvg are connected as follows:
2
exp(—2r
o, _ K20 o (390

ro 4rd

Obviously, the conditior§39h) makes sure that the two fric-
tion force terms in Eq(38) vanish. Moreover, according to
Eq. (393, the grains rotate diametrically around the center of
the trap with constant distance 2between each other. De-
pending on the initial conditions, the rotations of the grains
occur either clockwise or counterclockwise. The last condi-
tion (399 reflects the compensation of radial and centripetal
forces on the attractor. In Fig(& one can see a plot of the
related functiorvy(rg). In particular, we note that the condi-
tion (39¢) reduces to the earlier resyB4) in the limit case
UOZO.

The rotation attractorsjust described are not the only
stable stationary motions in the case M£2. In order to
identify a second type of attractor, we introduce the center-
of-mass coordinates and relative coordinateshby

1
s= §(r1+r2), r=rp,—ry. (40
The related velocities =s andw=r read
1
u=_(v1+vy), W=vy-v1. (41)

%/Jsing Eq.(38) one thus finds

U=-s- a{2<u2+ %M—v§>u + (UW)W], (429

) r
w=-r+ ZKWEXFX_ [r(1+]r])

_ a{Z(uw)u + <u2 + %wz - vé)W} . (42b)

Obviously, a stationary solution of these two equations is
given by

(433

(43b

provided the constants ands™ are solutions of the follow-
ing two equations:

w=0, |r|=r",

u?=v3 |g=¢,
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: TABLE IV. Absolute time average valueigL)| for the three
x=1.03 different attractor types found foN=2. The parameters are the
08| same as those used in FiggbB-8(d).
R
S Attractor type KLY (c.u)
o 047F .
> Rotation 0.12
0.2 Acoustical oscillation 0.04
5 @ . / . Optical oscillation 0
0 02 04 06 08 1
fa/Ap .
15 —_— 0=r"- 2K%2r)(1 +r), (430
N=2, k=1.03, v=0.2, ¢=10.0, Dy=0.0 r
1 L 4
05t 2
£ ol =5, (43d)
N s
05 |
The condition(43c¢) exactly corresponds to the earlier result
AT ) (34) and (43d) reflects the compensation of the centrifugal
15 : s : : - force and the harmonigtrap) force with respect to the
45 4 05 0 05 1 15 center-of-mass coordinate Figure §c) shows an example
x/o for the orbits determined by Eggl3). As one can see in this
15 . : : . : picture, the difference vectar=r,—r; remains fixed, as in-
. N=2,%=1.03, v=0.2, 0=10.0, Do=00 | dicated by Eq(43a), whereas the center-of-mass coordinate
performs a stationary rotation with radigs=v, around the
051 O center of the trap. Since the relative coordinate remains
£ ol fixed, we shall refer to this attractor type as acoustical
> oscillation
051 Q In addition to the rotation attractor from Fig(t§ and the
al acoustical attractor from Fig.(§, one can still find a third
s © . . . . type of stable motion, which is represented in Figd)8The
45 41 05 0 05 1 15 orbits related to this attractor are more complex and can be
X/ Ap explained as a superposition of radial oscillations and center-
of-mass oscillations. In the following, the attractor in Fig.
5 N=2, k=1.03, vg=0.2, 0:=10.0, Dy=0.0 8(d) will be referred to as a stationapptical oscillation
1} In order to find out whether there still exist further types
05| of stable stationary motions fof=2 grains, we have calcu-
® % lated the orbits for a large number of randomly chosen initial
N conditions. In these simulations the grains always ap-
05 | % proached one of the above attractors. Therefore, it seems
, 1 plausible to assume that the set of attractors in Figs.
i @ 8(b)-8(d) i_s complete. This assumption is supported by the
-1.5_1 s T o5 o o5 o s close relationship between the above three attractor types and

the three normal modes of the Coulomb cluster with two
grains: rotation, center-of-mass motion, and optical oscilla-
tions (breathing modg

With regard to the subsequent discussion of the stochastic

FIG. 8. Attractors for the active motions &f=2 grains in the  dynamics(D,>0) it is important to note that each of the

deterministic limitDy=0. (a) Functionuo(ro) from Eq.(39¢) plotted  attractor types is characterized by a characteristic time aver-
for the same parameteras used in the numerical simulations of the age value

orbits shown in diagramg)—(d). (b) Rotation attractor: The inter-

section point of the thin horizontal ling=0.2 with the curvey(rg) 1(7
in (a) determines the stationary distarae?2r, of the grains, if this (Ly= Iim—f dtL, (44)
attractor is approachegc) Acoustical oscillation attractor: The or- t—-07Jg

bits of this attractor type correspond to a stationary center-of-mass ) )
rotation with constant relative vectorr,—r, between the grains. Where the mean overall angular momenturwas defined in

(d) Optical oscillation attractor: Here the orbits of the grains resultEd.(35). In Table IV, we have listed the respective numerical
from a superposition of center-of-mass oscillations and radiavalues (L), based on the same simulation parameters as
oscillations. used in Figs. &)-8(d). Below, the knowledge of these val-
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1 L N=3, k=1.03, vy=0.2, 0:=10.0, Dy=0.0 15 1 N=2, k=1.03, v4=0.2, 0:=10.0, D4=0.001 ]
1 L 4
08¢ O 0.5 |
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> >
05 03¢
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FIG. 9. Examples of stationary active motions for Coulomb
clusters withN=3,4,5 grains.(a) N=3: A comparison with Fig.
8(c) reveals that this attractor corresponds to the acoustical oscill
tion. (b) N=4: For this stable optical excitatijoompare Fig. &l)],
the stationary orbit of a single grain is very similar to a Lissajous-
pattern.(c) N=5: This attractor form is different in the cadé=2
from Fig. 8.

FIG. 10. (a) For Dy>0 the two grains performs a stochastic
d:notion around the center of the trap, plotted here for the time in-
terval [99 980;100 000 (in c.u). Due to the influence of the sto-
chastic force, the system can travel between the different attractor
regions of the related deterministic systgim. Angular momentum
probability densityf(L) for the caseN=2, numerically calculated
over the time interval0;100 00Q (in c.u). The peaks of the dis-

. tribution are located at the values that characterize the attractors
ues will help us to understand the shape of the angular mass the corresponding deterministic system witg=0. (c) Angular
mentum distributiorf(L). momentum probability densitf(L) for the caseN=3, numerically
calculated over the time intervfD; 100 00Q (in c.u). In all simu-

3 Attractors for N> 2 lations the integration time step is chosenAs 0.0001(in c.u.).

In Fig. 9 one can see some examples of numerically cal-. . . . . _—_
. . ficient is similar to Rayleigh’s model, then each attractor of
culated stable orbits for active Coulomb clusters wih the svstem must be verv similar to one of the eigenmodes of
=3,4,5 grains. While some of these attractors exhibit a y y 9

structure that is very similar to those observedNer2, there the correqunding 'conserva'tive system; in particular, there

also appear new types of stationary motigsee Fig. €c)]. seems to exist a fixed relatlonshlp between the number of

In principle, the number of attractors steadily increases Withattracto_rs and the number of eigenmodesnormal modes,
principre, . o Y respectively.

particle numbeN. This observation is explained by the fact

that the number of normal modes also increases With

More generally speaking, each of the observed attractors

seems to be closely related to one of the normal modes of the While the previous subsection was dedicated to the dy-

related conservative system. This observation supports theamical attractors in the deterministic limit caBg=0, we

following more general hypothesfs5]: If the friction coef-  shall now also consider the effects of a stochastic force com-

B. Stochastic dynamics(Dy>0)

046406-12



ACTIVE AND PASSIVE BROWNIAN MOTION OF.. PHYSICAL REVIEW E 70, 046406(2004)

ponent. ForDy>0 the stationary dynamics of our model tion means that the effective friction coefficient becomes
system is not confined to a single attractor basin anymore. Ifjegative at small grain velocities. Thus, active friction may
however, the parametetsand « are sufficiently large, then result in complex stable excitations of a Coulomb crystal. In
the stochastic system with, is also spending a relatively particular, in such models the mean kinetic energy associated
long time in the vicinity of the attractor regions of the related with active grain motions can be much larger than the mean
deterministic system witlD,=0. This is illustrated in Figs. thermal energy. Fortogt al.[9] report that in several of their
7(b) and 1@a), where we plotted the stochastic orbits fér experiments the “apparent temperature” of the grains is in
=1 andN=2, respectively. the range(2 X 10P—5x 10°) K, which is approximately 19
The transitions between the different attractor regions aréimes higher than the temperature of the ions in the surround-
also reflected by the angular momentum probability densityng plasma. We suggest that the development of the concept
f(L). For active friction the shape of this function essentiallyof active friction might be helpful in order to explain such
differs from the approximately Gaussian distribution, whichobservations.
was found earlier in the case of passive frictidilg. 6). As As indicated by the numerical results in Secs. IV D and
shown in Fig. Tc), for N=1 the densityf(L) exhibits two V B, measurements of velocity distributions and angular mo-
maxima located neat|=0.04, which is just the angular mo- mentum distributions may help to answer the question of
mentum value for a grain moving on the attractor inwhether active friction is actually present or not. In the case
Fig. 7(a). of purely passive friction the angular momentum distribution
Similarly, for N=2 the functionf(L) exhibits four peaks is characterized by an approximately Gaussian shape,
[see Fig. 1(0)]. By virtue of Table 1V, these peaks can be whereas it exhibits several different maxima in systems with
identified with the rotation attractor and the acoustical oscil-active friction.
lation attractor from Figs. @) and &c). Merely the central In summary, direct simulation of the Langevin equations
peak atL=0, corresponding to the optical mode, is sup-provides a useful tool in order to investigate the spatiotem-
pressed. A plausible explanation for this fact is that this atforal dynamics of finite Coulomb clusters. In principle, this

tractor is not very stable with respect to fluctuations. method can easily be applied to test microscopic models un-
derlying friction and velocity diffusion coefficients. A gen-
VI. SUMMARY eral approach to the calculation of these coefficients is, e.g.,

Hiscussed in Ref[50]. Nevertheless a satisfactory theory,

During the past decade, Coulomb clusters confined by A\hich models the very complex energy transfer processes
external harmonic trap potential have attracted considerablg © very P gy transter proces
etween nonequilibrium plasmas and grains, is still missing.

experimental and theoretical intereft—5,7,18. In the . L ;
. . A Possible future applications of the Langevin method could
present paper, the Brownian dynamics of finite-size Coulomk) . . . . .
also include time-resolved numerical studies of heating and

clusters was studied numerically and analytically on the ba- ™. .
elting phenomena in clusters.

sis of a Langevin approach. In particular, the influence of e . . .
passive and active friction was investigated. W't.h re.gafd to expgrlment_s, however_, the most mtere_s_tmg
question is whether it is possible to realize plasma conditions

Passive friction is characterized by a positive friction co- : : C g
. . o . . such that active motions of grains in a plane can be studied
efficient and arises primarily due to grain—neutral-atom inter- . . . ; ;
) . . X in detail. In particular, it would be very interesting to learn
actions in dusty plasmas. Here, we considered grather . . oY
. . whether experimentally measured velocity distributions do
usuaj case in order to show that the Langevin approach C&hdeed show deviations from a Maxwellian distribution as
successfully describe the Brownian dynamics of charged1

grains in a plasma. More exactly, it was shown that numeri—dlscusseol in the present work.

cal integration of the Langevin equations of motion yields
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