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Abstract

We study a simple model for a dissipative collision process of two one-dimensional chains, consisting of point-particles.
In this model, the particles interact with their nearest neighbors via nonlinear Morse potentials. In addition, each particle is
subject to nonlinear friction, modeling the transfer of energy between the translational degree of freedom and energy depots,
representing further (internal) degrees of freedom. Depending on the momentary state of the system, this energy exchange
mechanism can decrease or increase the kinetic energy of the particles on the cost of the depots. In particular, the clusters are
assumed to have the ability to store parts of their initial energy in the depots. In later stages of a collision process, the stored
depot energy can be used for an acceleration of the fragments, i.e., it can be converted into kinetic energy of motion. Both,
analytically and by means of computer simulations, we investigate the dependence of the fragmentation channels, observed
after the collisions, on different initial conditions (e.g. initial particle energy, cluster size) and system parameters.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Collision and scattering experiments are among the most powerful tools allowing to investigate the physical
properties, the structure and the laws governing the behavior of matter on different macroscopic and microscopic
length scales[1–4]. Traditionally, the theory of particle collision processes is well-investigated on classical and
non-relativistic as well as on relativistic and quantum levels for the case that the interactions, which determine the
outcome of the collision process, are realized by conservative forces (elastic collisions[5]).

With regard to non-conservative or dissipative collision processes (e.g.[6]), the whole situation is quite different.
In contrast to the scattering theory dealing with conservative forces, the theory of dissipative collisions is far
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from being complete. One reason for that is, for example, the absence of conserved quantities like energy, when
also taking into account dissipation. In such cases exact analytical predictions become extremely difficult or even
impossible. Considering these difficulties, one could certainly ask the question: why are we interested in dissipative
(collision) processes at all? The simple answer is, that actually all macroscopic processes are of dissipative nature,
i.e., they include complex energy exchange mechanisms such as friction or thermal pumping. Sometimes of course,
the influence of dissipation can be neglected, since it reveals its presence at time scales which are beyond the
observational time span. On the other hand, if we think of physical, chemical and biological non-equilibrium
systems, where dissipation is the driving force of pattern formation on macroscopic as well as on microscopic
length scales[7], then one may expect that dissipation of energy also causes peculiarities in collision processes of
matter, which are absent in purely conservative systems.

In preceding investigations[8,9], based on the analysis of two colliding linear chains of particles, it was found,
indeed, that dissipation may lead to a large variety of fragmentation channels, not observable in purely conservative
processes of similar kind. In the cited papers, the dissipation was modeled by a law similar to that valid for the
motion of a body in viscous media. Now, the questions arises, whether the diversity in the number of fragmentation
channels, as observed in[8,9], is only due to special dissipative force employed there, or whether this is a rather
general effect also observable for other types of friction. In this sense, we extend the analysis by considering not
only conventional friction (resulting in a decrease of the mechanical energy of motion), but also so-called negative
friction, leading to an increase of the kinetic energy. To this end, we shall use a simple nonlinear friction model,
which was introduced in[10], as generalization of Rayleigh’s model of negative friction[11].

In the present work, we investigate a one-dimensional, non-relativistic model of dissipative collision processes.
Our model simulates the following physical situation. We start with two clusters moving towards each other. The
first cluster consists ofN1 particles, each possessing the same initial velocity value+v0, while the second cluster
containsN2 particles, each starting with velocity−v0. After the collision of two such chains, we expect to find one,
two, or, in general, several clusters.

The scattering process itself is dissipative in the following sense. In our model we assume, that during collisions the
kinetic energy of the particles cannot only be transformed into conservative potential energy, but that, additionally,
also internal degrees of freedom, modeled by energy depots, may be excited. Moreover, we assume that the energy
stored in such depots can be used for accelerating the particles during the scattering, until they reach the initial value
of the kinetic energy again (in a sense, one could say the depots work like the battery of car). The conversion of kinetic
energy of motion into depot energy, and vice versa, will be realized by including a nonlinear velocity-dependent
friction force, fdis(v), in the Newtonian equations of motions. Hence, our model is dissipative with respect to
the structure of the dynamical equations, but, nevertheless, it can also be considered as energy-conserving in
total. The latter fact we are going to clarify below by including a depot energy term in the balance equation of
energy.

As already mentioned, this article extends previous work on dissipative collisions[8,9] and active Morse chains
[12,13]. The primary aim is to learn about the interplay between dissipative and conservative forces and, of course,
about the resulting effects. Although our relatively simple model is still far away from real systems, we consider
it appropriate in order to gain a deeper insight into the essential mechanisms. In the investigations, we primar-
ily use the methods of qualitative analysis as known from nonlinear dynamics and, to a great extent, numerical
simulations.

The paper is organized as follows. InSection 2we introduce the model.Section 3is exclusively dedicated to the
analysis of two-particle-collisions. For this case, analytical results can be derived, which turn out to be useful for
the understanding of fragmentation involving higher numbers of particles, too. InSection 4we present numerical
results for collisions of longer chains. Finally,Section 5contains a brief summary and an outlook on possible future
research in the present field.
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2. The model

2.1. Basic equations and assumptions

We consider a set ofN point-like particles with identical massesm moving in the one-dimensional laboratory
frameΣ. At time t each particle is described by a coordinatexi(t) ∈ R (wherei = 1, . . . , N) and its velocity
vi(t) ∈ R in Σ. In our model we assume that the dynamics of the particles inΣ is governed by the Newtonian
equations of motion

ẋi = vi, (1a)

v̇i = 1

m
Fi − γ(vi)vi, (1b)

wherev̇i = dvi/dt. Each particle can interact with its nearest neighbors via conservative forcesFi and is additionally
subject to nonlinear friction represented by the last term in(1b). The conservative interaction forceFi can be derived
from the potential energy functionU of the system by

−Fi = ∂

∂xi
U = ∂

∂xi

N−1∑
j=1

Uj(xj+1 − xj). (2)

For the pair potentialsUi(ri) = Ui(xi+1 − xi) we assume

Ui(ri) = a

2b
[e−b(ri−σ) − 1]2, (3)

representing so-called Morse potentials, wherea, b andσ are positive parameters.
Originally, the Morse potential(3)was introduced to describe diatomic molecules[14]. Inserted into Schrödinger’s

equation it allows an exact calculation of their energy spectrum. We note, that the Morse potential can also be
considered as generalization of Toda’s exponential potential[15], which has been extensively studied before[16].
As evident from(3), and also illustrated inFig. 1 the Morse potential possesses atri = σ the only minimum
Ui(σ) = 0 and tends asymptotically to

ε = a

2b
(4)
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Fig. 1. Morse potential as used in the numerical simulations. The parameterb is given in unitsσ−1.
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at ri → ∞. The angular frequencyω near the minimum is defined by

ω2 = 1

m

d2Ui(σ)

dr2
i

= ab

m
. (5)

For subsequent discussion it is convenient to use a characteristic system of units (c.u.), such thatm = 1,σ = 1 and
ε = 1. Hence, the characteristic unit timeτ of our model reads

τ = σ

√
m

ε
= 1 (in c.u.), (6)

and we findω2 = 2b2 (in c.u.). In order to justify our restriction on nearest neighbor (n.n.) interactions, we have to
choose a sufficiently large parameter valueb. As we can see inFig. 1, parameter valuesb ≥ 5σ−1 are satisfactory,
since then the Morse interaction force decays sufficiently fast.

2.2. The depot model

Having discussed the conservative interaction in our model so far, we now turn the attention to the dissipative
forces also appearing in the equations of motion(1). In this work we intend to use the following nonlinearly
velocity-dependent friction coefficient

γ(v) = γ0

(
1 − κ + µ

κ + v2

)
= γ0

v2 − µ

κ + v2
, (7)

whereκ andγ0 are positive parameters, whileµ can also take negative values. This friction coefficient (see also
Fig. 2) was originally proposed to describe active Brownian particles carrying internal energy depots[10]. The
parameterγ0 is the usual viscous friction coefficient and has the meaning of an inverse relaxation time. As evident
from the r.h.s. of(7), the parameterµ plays the role of a bifurcation parameter. It is an important aspect, that we
identify µ = v2

0 in our model, wherev0 is the absolute value of the initial velocity; i.e., there is no dissipation in
the initial state. Hence, the friction coefficientγ(v) is negative, if the absolute velocity of a particle is smaller than
v0, and positive if|v| > v0. From the physical point view this means, that during the first stage of the collision,
when the particles are accelerated to|v| > v0 due to the attractive part of the Morse potential, some energy flows
into non-translational degrees of freedom (the depots) via a dissipative mechanism represented by(7). On the other
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Fig. 2. Shape of the friction coefficientγ(v) for different values ofκ in units [κ] = µ. The region, whereγ(v) < 0 holds, corresponds to the
transformation of stored depot energy into translational kinetic energy of motion. On the other hand, ifγ(v) is positive, then kinetic energy is
transformed into (dissipative) depot energy.
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hand, in the second stage, when the particles are slowed down by the repulsive part of the Morse potential, they can
regain kinetic energy from depot energy stored before. Finally, we note, that the remaining parameterκ is related
to the ratio between internal dissipation and conversion of depot energy into kinetic energy of motion. For further
details regarding this parameter, we refer the reader to[10,17].

In principle, for the time being, it is sufficient to consider(7) as a simple nonlinear friction model depending on
a particle’s kinetic energy and converging to the viscous friction coefficientγ0, if v2 → ∞. Since a variation of
κ does not cause qualitative changes of the friction coefficient, we are going to fixκ = 1εm−1 (corresponding to
κ = 1 in c.u.) during all computer simulations.

Another convenient form of the dynamical equations follows by introducing a dissipative potential

Udis(v) := m

2
γ0

[
v2 − µ − (κ + µ) ln

(
κ + v2

κ + µ

)]
, (8)

from which we can derive the dissipative force by

fdis = − ∂

∂v
Udis. (9)

In case ofµ > 0, the bistable potentialUdis(v) has two minima at±v0 = ±√
µ, corresponding to the initial condi-

tions used in our theoretical scattering experiments. The shape ofUdis(v) can be seen inFig. 3. For non-interacting
particles, i.e., if|xi+1−xi| → ∞ or |xi+1−xi| = 1 (in c.u.), as for instance observable after a quasi-elastic collision,
we have

v̇i = fdis(vi) = γ0
µ − v2

i

κ + v2
i

vi. (10)

In other words, for negligible conservative interaction forces, this type of friction (or pumping, respectively) leads
again to the two stable velocities±v0 = ±√

µ, corresponding to the initial velocities or minima of the dissipative
potential, respectively.

Finally, let us consider the energy balance. By multiplication ofEq. (1b)with the velocityvi and subsequent
summation, we obtain

d

dt

(
m

2

∑
i

v2
i + U

)
= −

∑
i

γ(vi) v
2
i . (11)
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Fig. 3. Shape of the dissipative potential as defined inEq. (8).
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Introducing by definition the energy in the depots

Edis(t) :=
∫ t

0
ds
∑
i

γ(vi(s))vi(s)
2, (12)

we can rewrite(11)as

d

dt

[
m

2

∑
i

v2
i + U + Edis(t)

]
= 0. (13)

This relation expresses the balance equation for the total energy (including the dissipative energyEdis stored in the
depots). We note, that for initial states withvi(0) = ±√

µ alwaysEdis(0) = 0 holds.
Thus, we may summarize the physics contained in the model as follows. We have introduced a depot which may

store dissipative energy. In the first part of the collision process our systems stores energy in the depots, which can
be regained later. In a sense, the dissipative depots work like a battery, that, on the one hand, can be charged using
a dynamo and, on the other hand, also provides energy for the acceleration of the particles.

2.3. Initial conditions and fragmentation channels

In real collision or scattering experiments the initial states of the collision partners essentially determine the
results finally observed. In this work we investigate the collision of two one-dimensional dissipative Morse chains
governed by the dynamical equations(1), while concentrating on the following initial situation in the laboratory
frameΣ.

At time t = 0 the first chain containsN1 particles moving with initial velocitiesvi(0) = +√
µ (i = 1, . . . , N1)

to the right and the second one consists ofN2 particles moving withvj(0) = −√
µ (j = N1 + 1, . . . , N) to the left.

We shall also use the notation [N1, N2] to symbolize this configuration. Consequently, the initial kinetic energyEin

of each particle simply reads

Ein = 1
2µ. (14)

Changing the parameterµ means a change of the initial energy in our computer experiments. Sinceµ is the main
bifurcation parameter in the theory presented, the initial kinetic energy is the decisive quantity for the determination
of the outcome of the scattering process.

The particle numberN = N1 +N2 is conserved during the whole process. The distanced(t) between the chains
is defined as

d(t) = xN1+1(t) − xN1(t). (15)

In our computer experiments we shall always start with two chains (or clusters), separated by a large initial distance,
more exactlyd(0) 
 σ (see alsoFig. 4). Furthermore, the initial distance between n.n. within the same cluster is
assumed to be 1σ, corresponding to the equilibrium length of the Morse potentials. The timetcol of the first collision
of the chains is approximately given by

tcol ≈ d(0)

2|v(0)| = d(0)

2
√
µ
. (16)

It is an useful quantity in order to estimate the duration of the computer experiments. According to the special initial
conditions the two chains are quasi-equilibrated at timet = 0. While they are moving towards each other, their
internal structure does not essentially change as long ast � tcol; but, as soon as their distance becomes sufficiently
small, t � tcol, the local equilibrium states of the chains are destroyed, and the whole system has to reorganize
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Fig. 4. Schematic representation of the initial configuration at timet = 0 forN = 7 particles.

after the collision. Our aim is to illuminate the interplay of dissipation and conservative interaction during the
recombination process.

In agreement with the standard terminology of collision theory we shall refer to each outcome of a collision
experiment as fragmentation channel. Let us, for example, imagine an initial configuration [N1, N2] with N =
N1 + N2 particles. Then each final state (fragmentation channel)

φ = [n1, . . . , nj] (17)

consisting ofj clusters with different sizesnk must containN particles, too. Thus, we have

N =
j∑

k=1

nk. (18)

For example, in case ofN = 3 particles possible fragmentation channels of the collision experiment are

φ ∈ {[3], [2,1], [1,2], [1,1,1]}. (19)

We conclude this section with some remarks on the numerical simulations. For all numerical simulations of the
dynamical system(1) we used the classical Runge–Kutta algorithm with discrete time intervals of length dt =
0.0001τ. The parameterb of the Morse potential and the parameterκ of the friction coefficient were always set to
valuesb = 5.0 andκ = 1.0 (in c.u.). This choice of parameters corresponds to the Morse potential as drawn in
Fig. 1and to the solid line inFig. 2. Further, we defined that two n.n. particles are bound in the same cluster as long
as their distance is smaller than 2σ. This definition is in agreement with the chosen parameter valueb = 5.0, as we
can learn fromFig. 1. Finally, we give below the compact mathematical form of the initial conditions as used in all
numerical simulations (in c.u.):

(1) x1(0) = 0, xi(0) = 1 + xi−1(0) (1 < i ≤ N1),
(2) xN1+1(0) = xN1(0) + 20,xi(0) = 1 + xi−1(0) (N1 + 1 < i ≤ N),
(3) vi(0) = +√

µ (1 ≤ i ≤ N1),
(4) vi(0) = −√

µ (N1 + 1 ≤ i ≤ N),

i.e., we always setd(0) = 20 (in c.u.).

3. The case N= 2

3.1. Fragmentation channels

In this section we deal with the simplest non-trivial case of two colliding particles corresponding to the initial
stateφin = [1,1]. This situation does not seem very exciting at a first glance, but it has, however, the advantage that
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it admits some analytical treatment. Moreover, we shall see later, that this case already exhibits some of the main
features also met forN > 2.

For convenience, we use in this part instead of the laboratory system relative and center-of-mass (c.o.m.) coor-
dinates defined by

r = x2 − x1, s = 1
2(x2 + x1), vr = v2 − v1, vs = 1

2(v2 + v1). (20)

With respect to our characteristic unit system we obtain the full potential energy

U = U1(r) = [e−b(r−1) − 1]2. (21)

Fixing initial conditionsv1(0) = +√
µ and v2(0) = −√

µ in agreement with previous considerations yields
vs(0) = 0 and due to symmetry reasons also

vs = 0, v̇s = 0 ∀t > 0. (22)

Thus, in this situation the only relevant dynamical equations are those for the change of the relative coordinater

given by

ṙ = vr (23a)

v̇r = 4[e−b(r−1) − 1] e−b(r−1)b + γ0
4µ − v2

r

4κ + v2
r

vr. (23b)

Stationary solutions of the second equation(23b)are

S0 = (r, vr) = (1,0), S1 = (r, vr) = (∞,2
√
µ). (24)

The first solution,S0, is a stationary solution of the full dynamical system(23) and we can apply methods of the
qualitative stability analysis. The eigenvaluesλ1/2 of the corresponding linearized system are given by

λ± = 1

2κ
(µγ ±

√
µ2γ2 − 16b2κ2). (25)

Because of Reλ+ > 0, solutionS0 represents an unstable fixed point∀µ, γ > 0. In the original particle picture,S0

describes the situation, where the two particles are at rest while their distance is given by the equilibrium length 1σ.
Due to its general instability, this type of stationary behavior will never be observed for initial conditions as applied
in our studies.

From the mathematical point of view, the second solution,S1, is not a stationary solution of the full dynamical
system(23) because of the non-vanishing stationary velocity. Nevertheless, it is physically relevant in our model
and corresponds to the situation, where the two particles overcome the binding energy after the collision and move
into different directions (quasi-elastic collision). In contrast toS0 the behavior described byS1 is stable and can be
observed for the initial conditions used in this work (seeFig. 5).

However, in course of our simulations we found out, that depending on the parameter values there may also
exist another stable stationary solution representing a bound state of the two particles. More exactly, it corresponds
to stationary anti-phase oscillations of the particles, while they form a cluster (seeFig. 6). For small stationary
oscillations the oscillation amplitude can be analytically estimated using the following linearized version of(23):

ṙ = vr, (26a)

v̇r = −4b2(r − 1) + γ0

4κ
(4µ − v2

r )vr. (26b)
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Fig. 5. (a) Traces of the two particles in case of a quasi-elastic collision. (b) Kinetic energy per particle during the collision as a function of time.
Further parameter values areb = 5, κ = 1 (in c.u.).

In order to obtain(26), we additionally assumed, thatv2
r � 4κ holds, corresponding to weak pumping. In agree-

ment with the linear approximation of the Morse interaction force in(26b), we are looking for a 2π-periodic
approximation

vr(t) = A sinθ(t) = A sin(2bt) (27)
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Fig. 6. (a) Traces of the two particles in case of a fusion. (b) The stationary (bound) state corresponds to (optical) anti-phase oscillations.
According to the analytic estimate(31) the maximum/minimum distance between the particles is given byr± = (1± 0.16) (in c.u.). (c) Kinetic
energy per particle as a function of time. All three pictures are taken from the same simulation run (further parameter values areb = 5, κ = 1
in c.u.).
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of the unknown exact stationary solution, such that

0 = d

dt
〈2U(r) + T(vr)〉 = d

dt

〈
2U(r) + v2

r

2

〉
=
〈 γ0

4κ
(4µ − v2

r )v
2
r

〉
= 1

2π

∫ 2π

0
dθ

γ0

4κ
(4µ − v2

r )v
2
r (28)

is fulfilled. The criterion(28) means nothing else but that for stationary solutions the temporal average of the
mechanical energy must become constant[13]. Inserting(27) into (28)yields

0 = −3
8A

4 + 2A2µ, (29)

which has the non-trivial solutions

A± = ±4
√

1
3µ. (30)

Thus, we get as amplitudes of the relative oscillations

r± = 1 + A±

2b
= 1 ±

√
4µ

3b2
. (31)

For the parameter values used inFig. 6the analytical estimate is in acceptable agreement with the numerical result.

3.2. Basins of attraction

It remains to be discussed for which parameter valuesb, γ0, µ, κ the two particles end up in the bound state or
the separated state, respectively. The numerical results for fixedκ andb values are shown inFig. 7. We shall now
try to find an analytical estimate for the hyperplane separating the two corresponding parameter regions. To this
end, we imagine the relative coordinate to represent a quasi-particle with unit mass (in c.u.) moving in the effective
potential

V(r) = 2U(r). (32)

We note, that this approach is the similar to that used before to calculate the stationary oscillation amplitude(31).
But instead of the harmonic approximation ofV(r) employed in(26), we now choose a box-like approximation

Fig. 7. Fragmentation channels forN = 2 particles and symmetric initial state [N1, N2] = [1,1]. The solid curve 1 was numerically calculated.
The dashed–dotted line 2 shows the analytical approximation of the upper branch and is obtained from the numerical solutions of the transcendental
equation (47). The dotted curve 4 represents the analytical estimate for the lower branch according to(41). The other parameter values used here
areb = 5, κ = 1 (in c.u.). (b) Enlarged section of the part (a).
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VB(r) of the effective potentialV(r) reading

VB(r) =




∞, r < 1 − 1

2b
,

0, 1 − 1

2b
≤ r ≤ 1 + 1

b
,

2ε, 1 + 1

b
< r.

(33)

The motivation of this choice is that−1/2b and 1/b are characteristic length scales for the exponential increase
of V(r) in the vicinity of the minimum atr = 1 and, secondly,VB(r) provides for exact further calculations. More
exactly, we shall see, that the use ofVB(r) leads to satisfactory analytical results, ifγ0 � b holds (in c.u.), i.e., if
the conservative forces dominate the collision process.

ConsideringVB(r) and, like before, initial conditionsvr(0) = −2
√
µ andr(0) = 20σ the quasi-particle arrives

at r1 = 1 + 1/b ≤ r with exactly the same speed,v+
r (r1) = −2

√
µ, corresponding to the kinetic energy value

T+
r (r1) = 2µ. (34)

While passing throughr1 the quasi-particle gains additional kinetic energy from the step of the potential energy
leading to

T−
r (r1) = 2µ + 2 ⇒ v−

r (r1) = −2
√
µ + 1. (35)

Consequently, from this point on the quasi-particle is subject to the nonlinear friction force. Since its absolute
velocity is bigger than 2

√
µ, it is effectively slowed down by the friction. The dynamical equations for the motion

of the quasi-particle inVB(r) betweenr1 andr2 = 1 − 1/2b are given by

ṙ = vr, (36a)

v̇r = γ0
4µ − v2

r

4κ + v2
r

vr. (36b)

The quasi-particle moves on until it reachesr2, there it is reflected and returns tor1. The stationary bound state
of the original collision process corresponds to the situation, where the energy loss of the quasi-particle due to the
friction is large enough to prevent it from overcoming the step of the potentialVB(r) at r1. In other words, when it
has returned tor1 its kinetic energyT ret

r (r1) has to be smaller than the critical valueT c := 2ε or, respectively, in
c.u.

T ret
r (r1) < T c = 2 ⇒ vret

r (r1) < vc
r = 2. (37)

Otherwise the quasi-particle escapes over the potential barrier and we observe a quasi-elastic collision. The critical
energy-loss

+Ec := T−
r (r1) − T c = 2µ (38)

is connected to a critical parameter valueγc
0 = γc

0(b, µ, κ) and this is the quantity we intend to calculate now. We
note, that(38) simply means that the quasi-particle has to loose its full amount of initial kinetic energy in order to
achieve a bound state. The reflection atr2 is assumed to be elastic and thus it can be taken into account by simply
extending the range of validity of(36) to the interval(1 + 1/b,1 − 2/b) as long as we also change the sign of the
boundary value

vc
r = 2 → ṽc

r = −2. (39)
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Dividing the first equation in(36)by the second, separation of variables and consideration of all relevant boundary
conditions gives∫ 1−2/b

1+1/b
dr = 1

γc
0

∫ ṽc
r

−2
√
µ+1

dvr
4κ + v2

r

4µ − v2
r

, (40)

and thus

γc
0 = 2b

3

{√
µ + 1 − 1 + κ + µ√

µ

[
arccoth(

√
µ) − arctanh

(√
1 + µ

µ

)]}
. (41)

This function has a pole atµ = 1 reflecting the fact that for the initial conditions applied here bound states can
only exist as long as the kinetic energy provided by the negative friction is smaller than the binding energy 2ε.
However, if we compare the numerically calculated curve 1 inFig. 7with the graph of(41) given by curve 4, then
the analytic expression(41) represents an appropriate approximation only for the lower part of the numerically
simulatedγc

0-curve. Hence, the remainder of this section is dedicated to the upper part. This branch corresponds
to the parameter constellationγ0 
 b (in c.u.), where the dissipative forces dominate the dynamics. Obviously, in
this parameter region the approximation of the effective potentialV(r) = 2U(r) by means of the box-potential(33)
is not sufficient anymore in order to explain the results of the computer experiments correctly. Before we discuss
a more successful alternative, it is convenient to give some more general statements concerning this parameter
regime. In principle, we can still use the quasi-particle model introduced above. From the qualitative point of view,
the motion of quasi-particle is similar as before. Incoming from the right it passes through the minimum of the
effective potentialV(r) at r = 1 (in c.u.) and is reflected at some pointr2 < 1. Finally, it returns at timet1 to the
minimum. Now we make our first essential assumption. Rememberingγ0 
 b, we can assume that at this time the
quasi-particle’s velocity is given byvr(t1) ≈ 2

√
µ due to the dominating (effective) friction force

f eff
dis(vr) := γ0

4µ − v2
r

4κ + v2
r

vr. (42)

This also means, that we can neglect all the previous dynamics att < t1. Consequently, we begin our quantitative
analysis att = t1 andr = 1. In order to obtain analytical results, we now approximate the original effective potential
V(r) for r ≥ 1 by

VL(r) =




2b

3
(r − 1), 1 ≤ r ≤ 1 + 3

b
=: r2,

2, 1 + 3

b
< r.

(43)

The piecewise linear potentialVL(r) is chosen such that

VL(1) = V(1) = 0, VL(∞) = V(∞) = 2,
∫ ∞

1
dr|VL(r) − V(r)| = 0.

Furthermore, we approximate the effective friction force(42)by using a linear friction coefficient

f eff
dis(vr) ≈ γ0

µ

κ
(2

√
µ − vr)vr, (44)

yielding the modified dynamical equations

ṙ = vr, (45a)
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v̇r = −2b

3
+ γ0

µ

κ
(2

√
µ − vr)vr, (45b)

for the motion of the quasi-particle betweenr(t1) = 1 andr2 = 1 + 3/b. Again a separated state [1,1] is observed
only if the quasi-particle can escape from the potential well tor = ∞. ConsideringVL(r), this only happens if
vr(r2) > 0. Hence, by analogy to(40) the connected critical parameter valueγc

0 can be determined from∫ r2

1
dr =

∫ 0

2
√
µ

dvr
vr

γ0(µ/κ)(2
√
µ − vr)vr − 2b/3

. (46)

Evaluation of the integrals gives the following transcendental equation forγc
0:

3

b
= 2κ

√
3

γc
0

arctan(
√

3γc
0µ/

√
2bκ − 3γc

0µ
2)√

2bκ − 3γc
0µ

2
, (47)

which can be solved numerically (see curve 2 inFig. 7). Moreover, one can still get, e.g., from the denominator in
(47), the following upper boundary

γc
0 ≤ 2bκ

3µ2
. (48)

The r.h.s. of this inequality is illustrated as curve 3 inFig. 7. Together with curve 4 corresponding to the graph of the
complementary estimate(41)we thus have achieved a satisfactory analytical confirmation of the numerical results.

Finally, we can summarize the results of this section. For the initial conditions applied in this work, the dissipative
collision of two active particles can only lead to two different stationary states. The first one corresponds to a bound
state, [N] = [2], with vanishing c.o.m. velocity. In this state the two particles perform optical oscillations. The second
stationary state,φ = [1,1], is characterized by two particles moving away from each other after the collision. Hence,
the process leading to this state can be interpreted as a quasi-elastic collision. The parameter regions leading to the
different final states could be analytically estimated.

4. Numerical results for N> 2

In principle, it is not necessary to investigate the collision of an initial stateφ′
in = [N2, N1], if the the opposite

case of aφin = [N1, N2] collision has been investigated before. This is due to the fact that the dynamics of these
two cases is connected by the transformation

v′
i(t) = −vN−i+1(t), x′

i = xN(0) − xN+1−i(t). (49)

In terms of fragmentation channels this simply means that ifφin leads to a final stateφ = [n1, . . . , nj], thenφ′
in

leads toφ′ = [n′
1, . . . , n

′
j] = [nj, . . . , n1].

In Figs. 8–10we plotted the results of the computer simulations for systems withN = 3,4 and 8 particles. The
caseN = 4 is the first case, where symmetric initial conditions [N1, N2] with N1 = N2 as well as asymmetric
initial conditions [N1, N2] with N1 �= N2 can be investigated. In principle, we observe only two different types of
stationary states. Either the two colliding chains [N1, N2] merge with each other and the result is one big cluster
(or bound state) [N] or, otherwise, they split again into a cluster configuration [N2, N1]. The latter case can be
interpreted as quasi-elastic collisions. Furthermore, we can learn from the caseN = 4 that theµ–γ0-parameter
region, where the fusions occur, depends on the initial distribution of the particles in the clusters. According to our
numerical results, this region becomes considerably smaller for the symmetric initial state (seeFig. 9). The same
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Fig. 8. Fragmentation channels forN = 3 with asymmetric initial state [N1, N2] = [1,2]. Further parameter values areb = 5, κ = 1 (in c.u.).
The results are very similar to those obtained forN = 2 andN = 4.

tendency is observable forN = 8 particles (Fig. 10). Another new effect appearing for particle numbersN > 2 is
shown inFig. 11. In contrast to the process

[1,1] → [2] (50)

discussed in the previous section, we can now distinguish between stationary bound states, [N]vs , with vanishing
and non-vanishing c.o.m. velocity

vs := 1

N

N∑
i=1

vi (in c.u.). (51)

Depending on the parameter valuesb, κ, γ0, µ and initial configurations, [N1, N2], there exist three possible
stationary values

vs(∞) := lim
t→∞ vs(t) ∈ {0,±√

µ}. (52)

If the stationary state [N]vs(∞)=0 is approached, then the particles perform stationary relative oscillations around
the equilibrium distancer = σ = 1 (in c.u.) as represented inFig. 11(a) and already discussed forN = 2 in the
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Fig. 9. Fragmentation channels forN = 4 with (a) asymmetric initial state [1,3] and (b) symmetric initial state [2,2]. Further parameter values
areb = 5, κ = 1 (in c.u.). For the asymmetric initial condition in (a) the parameter region leading to a fusion is significantly larger compared
with the symmetric initial state.
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Fig. 10. Fragmentation channels forN = 8 and different initial states [N1, N2]. As already observed forN = 4, the parameter region leading
to a fusion decreases with increasing symmetry of the initial state. Further parameter values areb = 5, κ = 1 (in c.u.).

previous section (see alsoFig. 6). On the other hand, if the fragmentation channel [N]±√
µ represents the stationary

state, then the relative oscillations are damped out and all particles move into the same direction with constant
distancesr = σ between each other. It is not difficult to show[13], that these stationary configurations correspond
to stable fixed points of the dynamical system(1). Due to the special initial conditions used throughout this work,
the stationary states [N]±√

µ, as shown inFig. 11(b), can only be observed in case of asymmetric initial states, since
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Fig. 11. Two different realizations of the fragmentation channel [N] = [3] characterized by different stationary c.o.m. velocitiesvs(∞). (a) A
process leading to a stationary configuration withvs(∞) = 0. (b) A fusion with stationary c.o.m. velocityvs(∞) = −√

µ. Further parameter
values areb = 5, κ = 1 (in c.u.).
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otherwise the c.o.m. velocity is conserved. We emphasize, that this conservation of the c.o.m. velocity is a special
property of our model, which only holds in presence of highly symmetric initial conditions.

For the sake of completeness we note, that we extended our simulations on parameter valuesµ 
 1, but this did
not lead to any new effects.

5. Conclusions and outlook

According to our numerical results, we can observe two qualitatively different types of dissipative collision
processes for arbitrary particle particle numbersN in our model. More exactly, these are fusions described by

[N1, N2] → [N], (53)

and quasi-elastic collisions

[N1, N2] → [N2, N1]. (54)

Identical initial conditions (i.e., same initial energy per particle, distances and configuration [N1, N2]) can lead
to both types of processes, if the parameters (e.g. the viscous friction coefficientγ0) of the system are varied
accordingly.

The hyperplane, which separates the two processes in the parameter space, can be analytically estimated for the
simplest caseN = 2. For particle numbersN > 2 its shape seems to be qualitatively similar, but quantitatively it
also depends on the initial configuration [N1, N2]. Considering the numerical simulations, it seems likely that the
parameter region leading to fusion decreases for more symmetric initial states.

In previous studies of dissipative collision models[8,9], the effects of a linear friction force of type

fdis =
{
γ0(vi+1 − vi), if |xi+1 − xi| < dcrit,

0, otherwise,
(55)

acting on the relative velocity of n.n. were investigated. In the mentioned articles, the authors used a similar
class of initial conditions but found a significantly higher number of different fragmentation channels than we do
here. In order to explain this difference, it is useful to remember the close relationship between the stable states
of the dissipative potentialUdis introduced inSection 2.2and the stationary states of the collision experiments.
While in our model there exist only a limited number of stable states ofUdis, corresponding to velocity values
v(0) = ±√

µ, the dissipative potential̃Udis connected with(55) shall possess a continuous set of minima in the
velocity space, merely determined by the conditionvi = vi+1, if the distance between n.n. is smaller than a critical
valuedcrit.

Thus, as a general result, we may conclude, that (i) the presence of dissipative forces may increase the variety
of possible fragmentation pattern compared with the case of purely conservative interactions and (ii) the number
of observable fragmentation channels essentially depends on the structure of the dissipative terms appearing in the
equations of motions.

Since the methods applied in the above sections are independent from the rather simple and academic model
discussed in this paper, we will extend our studies on more realistic models of dissipative collision processes in the
near future. Due to the fact that the results are obviously very sensitive with regard to the form of the dissipative
terms, one of the primary tasks will be the finding of a realistic dissipation model. Attempts to solve this problem
could, for example, also include stochastic pumping effects in the equations of motions. More exactly, one could
think of random forces modeling thermal fluctuations.
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