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Abstract

We consider the problem of computing the order of an element in a generic group. The two
standard algorithms, Pollard’s rho method and Shanks’ baby-steps giant-steps technique,
both use Θ

(
N1/2

)
group operations to compute |α| = N. A lower bound of Ω

(
N1/2

)
has been conjectured. We disprove this conjecture, presenting a generic algorithm with
complexity o

(
N1/2

)
. The running time is O

(
(N/ log log N)1/2

)
when N is prime, but for

nearly half the integers N ∈ [0,M], the complexity is O
(
N1/3

)
. If only a single success in a

random sequence of problems is required, the running time is subexponential.
We prove that a generic algorithm can compute |α| for all α ∈ S ⊆ G in near linear

time plus the cost of a single order computation with N = λ(S), where λ(S) = lcm|α| over
α ∈ S. For abelian groups, a random S ⊆ G of constant size suffices to compute λ(G), the
exponent of the group. Having computed λ(G), we show that in most cases the structure
of an abelian group G can be determined using an additional O

(
Nδ/4

)
group operations,

given an O
(
Nδ
)

bound on |G| = N. The median complexity is approximately O
(
N1/3

)
for

many distributions of finite abelian groups, and o
(
N1/2

)
in all but an extreme set of cases.

A lower bound of Ω
(
N1/2

)
had been assumed, based on a similar bound for the discrete

logarithm problem.
We apply these results to compute the ideal class groups of imaginary quadratic number

fields, a standard test case for generic algorithms. The record class group computation
by a generic algorithm, for discriminant −4(1030 + 1), involved some 240 million group
operations over the course of 15 days on a Sun SparcStation4. We accomplish the same
task using 1/1000th the group operations, taking less than 3 seconds on a PC. Comparisons
with non-generic algorithms for class group computation are also favorable in many cases.
We successfully computed several class groups with discriminants containing more than
100 digits. These are believed to be the largest class groups ever computed.

Thesis Supervisor: Michael F. Sipser
Title: Professor of Applied Mathematics
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Introduction

The foundation of this thesis is a new generic algorithm for computing the order of an

element in a finite group. This algorithm beats the conjectured lower bound for the problem

and is substantially faster than existing methods. For large problems the performance

improvement is often several orders of magnitude. Applications of this result include new

algorithms for computing the group exponent, and for determining the structure of an

abelian group.

We begin with a gentle and somewhat light-hearted introduction. Those desiring a

more formal presentation may proceed directly to Chapter 1.

Generic Algorithms

Suppose we are asked to compute:

x = 2718281828459045235331415926535897932384.

Given the size of the numbers involved, we decide to write a computer program. When

implementing our program, we have two basic choices to make: how to multiply, and how

to exponentiate. These choices may seem closely related, but they are quite separate. The

fastest algorithms to multiply two integers are very sophisticated; they exploit particularly

efficient representations of integers. The fastest ways to exponentiate are generally inde-

pendent of these details, and not that complicated. Russian peasants, we are told, solved

this problem in the 19th century [68]. The best modern algorithms have only marginally

improved their method.

Let us assume we choose the most advanced multiplication algorithm available and

go with the Russian peasant method of exponentiation: squaring and multiplying using

11



the familiar binary algorithm. We then execute our program with great expectations and

unfortunate results. Our computer runs out of memory. Examining the problem more

closely, we realize that it is intractable as written (at least at today’s memory prices) and

ask for a different problem, preferably one whose answer isn’t longer than the question.

We are given the apparently longer, but much easier problem:

x = 2718281828459045235331415926535897932384 mod 5772156649015328606065120.

We modify our program and are rewarded with the answer a few microseconds later. We

may attribute this to our state-of-the-art multiplication algorithm, but in fact we owe a

greater debt to the Russian peasants.1 They came up with a generic algorithm for exponen-

tiation that may be used effectively in any finite group.

The most impressive feature of the Russian peasant method, aside from its speed

and simplicity, is its generality. We can use it to exponentiate matrices, permutations,

and polynomials, as well as far more abstract objects, provided that in each case we are

given a multiplication operation. The algorithm is always the same, regardless of the

group. More importantly, it doesn’t matter how the group is represented. If we decide

to upgrade our polynomial multiplication algorithm to use a point representation rather

than storing coefficients, the Russian peasant algorithm remains happily oblivious to this

change. Indeed, we would be rightly upset if someone modified the algorithm in a non-

generic way that jeopardized this compatibility. The exponentiation algorithm should

know nothing about the multiplication algorithm, treating it as a black box.

The Order of a Group Element

An interesting thing happens when we exponentiate in a finite group. Pick an element and

compute its sequence of powers:

α, α2, α3, . . . , αN, αN+1, αN+2, . . .

It may take a while, but eventually we must get the same element twice. When this

happens it is always the element we started with, and the previous element in the sequence

1It would be only a slight exaggeration to say that much of our technological infrastructure would be
rendered useless if we lacked the ability to exponentiate quickly.
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is the identity element, 1G. For every element α, there is a least positive integer for which

αN = 1G. We call this number the order of α, denote it by |α|, and use a capital letter N,

because this number may be very large. We will generally reserve n for smaller numbers,

like the number of bits in N.

In order to communicate with the black box, we need a way to refer to group elements.

The black box decides exactly how to do this, since it is responsible for the representation,

but in every case a unique identifier is assigned to each group element. This identifier is

nothing more than a sequence of bits. It may be an encoding of the element, a pointer into a

memory location, or simply a random number, whatever the black box chooses. We cannot,

nor should we, attempt to extract any information from these identifiers, but we can tell

when two bit-strings are equal. It is then possible for us to determine |α| by computing

successive powers of α and noticing when two are the same.

Determining the order of α in this manner is a slow process, requiring N group opera-

tions. Fortunately there is a better way; in fact, there are two better ways. They are both

based on noticing that we needn’t find N such that αN = 1G directly. It suffices to find any

two powers of α that are equal, say αk = α j. When this happens we know that αk− j = 1G.

This does not necessarily mean that k − j is the least integer with this property, it may be a

multiple of |α|, but finding a multiple is the hard part. Once a reasonably small multiple is

known, computing |α| is easy.

Baby-Steps Giant-Steps

The first better way to compute N = |α| is the baby-steps giant-steps method, due to Shanks

[95], and it finds N exactly. It does this by computing two lists of powers, say

α1, α2, . . . , α999, α1,000 and α2,000, α3,000, . . . , α1,000,000,

and then compares them to see if it can find a match. If N is any number less than 1,000,000,

then either αN is in the first list, or there is a power in the first list that is equal to a power

in the second list. The smallest difference of two exponents for which this is true will be N.

Notice that this method involved fewer than 2,000 powers of α, not 1,000,000.

If N is greater than 1, 000, 000, we might appear to be stuck. However, we can always

13



guess a larger bound and construct two longer lists.2 Eventually we will find N using just

O
(
N1/2

)
group operations.

The Birthday Paradox

The second better way, known as Pollard’s rho algorithm [83], is a little more haphazard.

It involves guessing a random sequence of powers of α until we find two that are the same.

This relies on what is often called the ”birthday paradox”: if there are at least 23 people in

a room, there is a good chance two share the same birthday. If we compute approximately
√

N random powers of α, there is a good chance that two will be the same. Assuming we

know the exponents of these two powers, their difference will be a multiple of N.

The birthday paradox is so named because many find it surprising that such a small

number of people suffice:
√

N is a lot smaller than N. Compared to n = lg N, it is very big.

It is impractical to compute N = |α|, using either of the two methods that are known, when

N is greater than 2100. It is inconvenient for N greater than 250.

A Lower Bound

Computing the order of α involves finding the least positive k satisfying:

αk = 1G.

There is a closely related problem that looks quite similar. We replace 1G with β:

αk = β.

Solving this equation is known as the discrete logarithm problem. This is a very famous

problem, partially due to the fact that it is one of very few that is provably hard in a model

of computation that comes close to how people actually implement algorithms. Given

the unsettled nature of the “P versus NP” question, we have no way of knowing whether

there is a fast way to solve the discrete logarithm problem in general. There are non-generic

algorithms that can compute discrete logarithms using specific representations of particular

groups to achieve sub-exponential (but still super-polynomial) complexity. Nevertheless,

2We will see more elegant solutions to this problem.
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the only algorithms that are known to work in every group, generic algorithms, are variants

of the two methods discussed above for computing |α|.

In 1997, Shoup proved that no generic algorithm could solve the discrete logarithm

problem in every group, unless it usedΩ
(
N1/2

)
group operations [96]. Given the similarity

between the two problems, it has been generally assumed that computing |α| also requires

Ω
(
N1/2

)
group operations. Indeed, in one sense computing |α| seems harder, since the

problem is initially unbounded, whereas a discrete logarithm algorithm is generally told

|α| before it starts.

This assumption is incorrect. It is possible to compute |α| in any group using o
(
N1/2

)
group operations. This new result is achieved by the primorial-steps algorithm, presented

in Chapter 4.

What’s Hidden Behind the Little-o?

Anytime a complexity theorist uses a little-o in front of a big bound, one should be suspi-

cious. This case is no exception. The basic result, while quite surprising from a theoretical

point of view, is not a major breakthrough from a practical perspective. In the worst case,

the expression hidden by the little-o is very small: (log log N)−1/2. The constant factors are

quite good however, and the net result is a speed-up by a factor of 2 or 3 in the typical

worst-case scenario. Hardly earth shattering, but still better than the improvements made

on the Russian peasant algorithm over the past 200 years.

Of far more practical relevance is the average case, or, more precisely, the median case.

If N is randomly chosen from some large interval, then for nearly half the values of N,

|α| = N can be computed using O
(
N1/3

)
group operations. If N ≈ 2100, this makes it a

tractable problem in many cases, one that can be solved on a standard PC in a day or

two, depending on the speed of the black box. For about one tenth of the values of N, the

running time is O
(
N1/4

)
, yielding a problem that can easily be solved in less than an hour.

The two algorithms mentioned above have either zero or a negligible chance of solving

any 100-bit problem instance on a single computer in less than years.3

In the case of the standard baby-steps giant-steps algorithm, it will run out of space

long before this, probably on the first day. The rho method, on the other hand, requires

very little space. We take advantage of this feature to obtain a space-efficient hybrid that

3Assuming current (2007) technology.
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effectively matches the median complexity of the primorial-steps algorithm, as described

in Chapter 5.

A Subexponential Recipe

One way to handle a problem that is too hard to solve is to simply pass it by and move

on to another problem that you hope will be easier. Such a strategy can be very effective

if all that is required is a solution to any one of a large set of problems. This is the idea

behind some of the fastest algorithms we know for hard problems, ones which achieve

subexponential running times. We will see that any problem which requires the solution of

just one of a sequence of random order computations can be solved by a generic algorithm in

subexponential time. This spells out a recipe for inventing new subexponential algorithms:

find a way to transform the problem into a sequence of random order computations and

let a generic algorithm do the rest. This recipe is included in Chapter 5.

Send in the Primes

Nearly all the new algorithms in this thesis are based on a simple observation: most

numbers aren’t prime. They can be broken up into pieces which makes them easier to

handle. The ones that cannot, stand out for that very reason. This also makes them easier

to handle, because we know where to find them. In the context of order computations, it is

easier to compute the order of α if |α| is even: let β = α2 and then figure out the order of β.

It is also easier to compute the order of α if you know it must be odd. Put these two ideas

together and it is always easier.

In order to really capitalize on these ideas, we need to use a lot of primes, not just

the prime 2. The most impressive results are not obtained until we call on an astounding

number of primes, millions or more. In order to make use of this quantity of primes, we

need two things: a fast exponentiation algorithm, which we have, thanks to the Russian

peasants,4 and what is known as a fast order algorithm. This is an algorithm that has an easy

job and must do it very quickly. It is given a large set of prime numbers known to contain

all the divisors of |α| and must first determine the minimal subset with this property, and

then |α|. The first step can be done in linear time (in the size of the set), and the second step

can be done in near linear time (in lg |α|), using algorithms presented in Chapter 7.

4We will use a slightly faster version.
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What Good Is It?

While a faster order algorithm is certainly useful in its own right, the theme of this thesis

is that if you can perform a single order computation in a given group, you can do a whole

lot more for about the same computational cost. We start by showing that all the order

computations required by a generic algorithm can be completed for essentially the same

cost as a single computation on an element with order N = λ(G). The integer λ(G) is the

least N for which αN = 1G for every member of the group, known as the exponent of the

group. Once λ(G) is known, it can be used to complete all other order computations very

quickly, in near-linear time. If we replace G with any subset of elements in G, an equivalent

statement holds. This leads to the Order Computation Theorem, proven in Chapter 8.

We then apply the group exponent to compute the structure of a finite abelian group.

We give an effective isomorphism between the group in the black box to a product of cyclic

groups, providing a set of independent generators with known order. This algorithm uses

λ(G) to obtain a complexity that is generally no greater than the cost of a single order

computation in the same group (provided a suitable bound on |G| is known). The new

algorithm is not only faster, it is also simpler than existing solutions. These results are

described in Chapter 9.

In the final chapters and the appendices we reap the benefit of all these improvements.

We consider performance comparisons with existing results and put the new algorithms

to good use by computing the structure of some groups of particular interest to number

theorists (and cryptographers). Tables of ideal class groups for quadratic discriminants of

the form −(10n + 3), −4(10n + 1), −(2n
− 1), and −4(2n + 1) are provided, including many

previously unknown class groups. We apply the generic subexponential method described

in Chapter 5 to compute what may be the largest ideal class groups explicitly determined

to date, involving negative discriminants with more than 100 decimal digits.

A Reader’s Guide

The first three chapters of this thesis define the model of computation, analyze the complex-

ity of order algorithms in general, and examine the existing methods in some detail. The

core of the thesis lies in chapters 4, 5, 7, 8, and 9 mentioned above, with a number-theoretic

interlude in the middle. The final section contains a presentation of performance results
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along with a brief description of ideal class groups and some conjectures surrounding

them.

We assume the reader is familiar with asymptotic notation (see note below), and the

most elementary facts from group theory (the theorems of Legendre and Sylow suffice).

Ironically, we will have a greater need for number theory rather than group theory. The

required results are contained in Chapter 6.

A Note on Notation

Wherever possible we use standard notation and recall definitions as needed. A compi-

lation of number-theoretic definitions and notation can be found in Chapter 6. We use

standard big-O and little-o notation for asymptotic expressions, along with two analytic

relations which we recall here:

f (x) ∼ g(x) ⇐⇒ lim
x→∞

f (x)
g(x)

= 1;

f (x) ≺ g(x) ⇐⇒ lim
x→∞

f (x)
g(x)

= 0.

The variable x may be integer or real. Note that f (x) ≺ g(x) is equivalent to f (x) = o(g(x))

and in both cases we say that g dominates f . An increasing function f (x) satisfies a ≤ b ⇒

f (a) ≤ f (B) and is not necessarily strictly increasing.

We use big-Ω and big-Θ to specify asymptotic relationships in the usual way and avoid

the use of these symbols in a number-theoretic role. We do not use little-ω for asymptotic

notation, reserving ω for the Buchstab function, defined in Chapter 6.
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Chapter 1

Generic Group Computation

Chapter Abstract

We define a formal model for computation in finite groups based on a synthesis of
ideas common to the study of generic group algorithms and black-box groups. We
give a rigorous specification of generic group functions (and relations), and consider
several examples. We then define correctness criteria for three classes of algorithms,
deterministic, probabilistic, and non-deterministic, and give complexity metrics for
time and space. We conclude with a discussion and comparisons to prior work.

A generic group algorithm (or simply a generic algorithm) is based on a “black box” which

hides the representation of group elements. An algorithm is initially given an identifier for

each group element it takes as an input. Identifiers for other group elements are obtained

via calls to the black box, which supports the following operations:

1. Return an identifier for the identity 1G.

2. Return an identifier for the inverse α−1.

3. Return an identifier for the product αβ.

A randomized black box adds the operation:

4. Return an identifier for a random element of G.

The black box is free to choose any values for the identifiers as long as each group

element is assigned a unique bit-string of length O
(
lg |G|

)
. More formally, we define:
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Definition 1.1. A black box B(G) for a group G is a bijective function B : G → I, where

I ⊆ {0, 1}` is a set of identifiers of length ` = O
(
lg |G|

)
. For α, β ∈ I the interface to the black box

is provided by the functions:

Bid() = B(1G), Binv(α) = B
((
B
−1(α)

)−1)
, Bprod(α, β) = B

(
B
−1(α)B−1(β)

)
.

A randomized black box B(G) is a black box for G with a function Brand : {0, 1}2` → I with the

property that if ρ ∈ {0, 1}2` is a uniform random variable, then Pr[Brand(ρ) = B(α)] = 1/|G| ± ε for

all α ∈ G, where ε ≤ 1/|G|c for some c > 1.

The input to Brand(ρ) represents a source of randomness (or more generally, non-

determinism) that may be available to a probabilistic (or non-deterministic) algorithm.

The precise role of ρ is explained more fully in Section 1.2. A black box B(G) can be

regarded as a group isomorphism between G and I, where the group operation on I is

derived from G. As a notational convenience, we may refer directly to the group G rather

than I, with the understanding that all group elements are actually identifiers from I and

all group operations are performed via the black box. For a randomized black box we may

write “let α be a random element of G” to indicate that α = Brand(ρ).

Before formally defining the notion of a generic algorithm, it may be helpful to consider

a few examples.

Algorithm 1.1 (Binary Exponentiation). Given α ∈ G and an integer k, algorithm A(α, k)

recursively computes αk:

1. If k < 0, returnA(α−1,−k).

2. If k = 0, return 1G. If k = 1, return α.

3. Set β←A (α, bk/2c).

4. If k is even, return ββ, otherwise, return ββα.

The algorithm above can be used to compute αk in any group G using any black box B(G).

This is what makes it a generic algorithm: it is independent of both G and the black box.

The number of calls made to the black box is at least n and at most 2n− 2, where n =
⌈
lg |k|

⌉
(for k , 0), thus the binary exponentiation algorithm uses Θ (n) group operations.
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Algorithm 1.2 (Randomized Abelian Test). Given a randomized black box and an integer

parameter t > 1, the following algorithm tests whether G is abelian:

1. For i from 1 to t:

a. Let α and β be random elements of G.

b. If αβ , βα, return 0.

2. Return 1.

If G is not abelian, the algorithm will return 0 with probability ≥ 1−
( 3

4

)t
, since at least one

fourth of all ordered pairs of elements from a non-abelian group do not commute.1 If G

is abelian, the algorithm always returns 1. Thus we have a Monte Carlo algorithm with

1-sided error. The algorithm makes 4t calls to the black box: two in line 1a and two in line

1b. Note that the inequality test in line 1b is simply a comparison of identifiers and does

not involve the black box. Algorithm 1.2 is a probabilistic generic algorithm which (with

high probability) recognizes abelian groups using a constant number of group operations.

1.1 Generic Group Functions

In order to give precise meaning to statements such as “algorithm A is a generic expo-

nentiation algorithm,” it is useful to define a generic (group) function, or more generally, a

generic (group) relation. Intuitively, a generic relation should have two properties:

1. The relation should (in principle) be defined for any finite group.

2. The relation must be invariant under group isomorphisms.

The exponentiation function fG : G × Z → G defined by fG(α, k) = αk is an example of a

generic group function. It is well defined for any group G, and if ϕ : G → H is a group

isomorphism, then for all α ∈ G and all k ∈ Zwe have

ϕ
(

fG(α, k)
)
= fH

(
ϕ(α), k

)
.

1The center C(G) of a non-abelian group is a proper subgroup containing at most |G|/2 elements. For each
α < C(G), the centralizer of α is a proper subgroup containing at most |G|/2 elements. Thus for at least half the
α in G, there is a subset of at least half the elements in G, none of which commute with α.
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The square-root relation defined by RG(α, β) ⇔ α2 = β is an example of a generic group

relation, where we may think of α as an input value and {β : RG(α, β)} as the (possibly

empty) set of valid outputs. This relation is also invariant under isomorphisms:

RG(α, β) ⇐⇒ RG

(
ϕ(α), ϕ(β)

)
.

Invariance under isomorphisms necessarily holds for any relation that can be computed

using a black box. Thus it suffices to define a generic relation for each equivalence class

of isomorphic groups. In order to do this explicitly, it will be useful to have a specific

enumeration of canonical groups in mind. One way to represent a finite group is by

writing down its multiplication table (Cayley table). If G = {1G, α2, . . . , αn} is a group with

n elements indexed by the set {1, . . . ,n}, the Cayley table for G will be an n × n integer

matrix M, where Mi j = k whenever αiα j = αk. Call such a matrix a Cayley matrix. We can

enumerate all Cayley matrices by ordering them first by size and then lexicographically.

Distinct Cayley matrices may describe isomorphic groups, but among all such matrices,

one will occur first in this ordering. Call this matrix a minimal Cayley matrix.

Definition 1.2. The canonical family of finite groups F = G1,G2, . . . , is the ordered sequence

of all minimal Cayley matrices.

It is convenient to identify elements of F with the group they describe, thus we may

regard the n × n matrix G ∈ F as a group on the set {1, . . . ,n}.

The relations we wish to define typically involve a combination of group elements and

integers,2 as in the exponentiation function. To accommodate both types of parameters

without risk of confusion, we define the parameter space PG for a group G.

Definition 1.3. Given a group G, the set PG = {(0, α) : α ∈ G} ∪ {(1, k) : k ∈ Z} denotes the

disjoint union of the sets G and Z. The set P∗G denotes all vectors of zero or more elements of PG.

If ϕ : G → H is any function from G to H, ϕ′ : PG → PH is defined by ϕ′(0, α) = ϕ(α) and

ϕ′(1, k) = k. The function ϕ∗ : P∗G → P∗H is defined by letting ϕ∗(~x) be the result of applying ϕ′ to

each component of ~x.

We will abuse notation and write ϕ in place of ϕ∗ where there is no risk of confusion.

With these notational conveniences in hand, we can now define a generic relation.

2Or any finite objects that can be encoded as integers.
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Definition 1.4. A generic group relation R is an infinite sequence of relations indexed by F

such that for each G ∈ F , RG is a binary relation on P∗G satisfying

RG(~x, ~y) ⇐⇒ RG(ϕ(~x), ϕ(~y))

for all automorphisms ϕ : G→ G.

From the perspective of a generic algorithm, ~x represents inputs and {~y : RG(~x, ~y)}

represents the set of possible outputs, or the output when RG is a function.

For the sake of readability, when defining a particular generic relation we may explicitly

list the components of ~x and ~y, using Greek letters to denote group elements and Latin

letters to denote integers, with the understanding that the relation is not defined for pa-

rameters of the wrong type. With the same understanding we will use functional notation

where appropriate. Thus we may write f (α, k) = αk to define the exponentiation func-

tion rather than the more cumbersome R(~x, ~y) =
{(

[(0, α), (1, k)], [(0, β)]
)

: β = αk
}

. Strictly

speaking, we are defining a partial function on P∗G, since the function f (α, k) is not defined

for parameters of the wrong type: α must be a group element and k must be an integer.

We can now define some particular generic functions and relations of interest:

• order(~α) is the size of the subgroup 〈α1, . . . , αk〉 generated by ~α = [α1, . . . , αk]. When

k = 1, this may be denoted |α|.

• DL(α, β) is the discrete logarithm of β with respect to α: the least positive integer e

for which αe = β, or ∅ if no such e exists.

• DL(~α, β) is the discrete logarithm of β with respect to the vector ~α = [α1, . . . , αk]:

the lexicographically least vector of non-negative integers ~e = [e1, . . . , ek] for which

β = ~α~e = αe1
1 · · ·α

ek
k , or ∅ if no such ~e exists.

• The root([α, k], [β]) relation holds for all β such that βk = α and root([α, k], ∅) when no

such β exists.

• membership(~α, β) is 1 if β is in the subgroup generated by ~α and 0 otherwise.

• isomorphic(~α, ~β) is 1 if the subgroups generated by ~α and ~β are isomorphic and 0

otherwise.
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• isAbelian() is 1 if G is abelian and 0 otherwise. Other recognition functions such as

isCyclic(), isSimple(), isSolvable(), . . . , are defined analogously.

• λ(G) returns the exponent of G, the least positive integer N s.t. αN = 1G for all α ∈ G.

• The generators(∅, ~α) relation holds for all ~α = [α1, . . . , αk] which generate G.

Each of the definitions above holds for all G ∈ F . The function DL(α, β) , ∅ only when

β ∈ 〈α〉, but it is well defined for any group G and all α, β ∈ G.

Note that the function isAbelian takes no inputs and is constant (0 or 1) for any particular

G, as is the function λ(G). An algorithm computing the generators relation takes no inputs

and outputs a list of generators for G. These three examples must be computed using a

randomized black box.

Any of the definitions above can be augmented with additional inputs that may be of

use to an algorithm. For example, the function |α| may be extended to a (partial) function

order(α,E) where E is intended to specify an exponent of α, an integer such that αE = 1G.

This function is only defined for inputs which satisfy this relationship, and an algorithm

computing order(α,E) may assume this to be so.3 The correctness criteria defined below

only hold an algorithm responsible for its behavior on inputs which lie in the domain of

the function or relation it is computing.

1.2 Generic Group Algorithms

To complete the model of generic computation it is necessary to define correctness criteria

and complexity metrics. We first consider correctness. For a generic algorithm to compute

a generic function f , it must correctly compute fG on all inputs in its domain for every finite

group G, using any black box B(G). More generally, if R is a generic relation, we have the

following:

Definition 1.5. A (deterministic) generic algorithmA(~x) for R(~x, ~y) satisfies

RG

(
~x,B−1(

A(B(~x))
))

for all G ∈ F , any black box B(G), and all ~x in the domain of RG.

3Problems with this characteristic are sometimes called promise problems.
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For probabilistic and non-deterministic algorithms, the definition above may be ex-

tended using an additional input τ ∈ {0, 1}t to represent a read-once sequence of random

bits (or non-deterministic choices). IfA(~x) is a probabilistic (non-deterministic) algorithm,

we letA′(~x, τ) denote the deterministic algorithm obtained by letting the bits in τdetermine

the probabilistic (non-deterministic) choices made during the execution of A, including

the values of ρ passed to the randomized black box whenever a random group element

is requested. The read-once property of τ means that ρ must contain un-read bits; the

algorithm does not have access to the random bits used by the black box. A probabilistic

algorithm need not make use of this facility; the definition below also applies to a standard

black box as well.

Definition 1.6. A probabilistic generic algorithmA(~x) for R(~x, ~y) satisfies

RG

(
~x,B−1(

A
′(B(~x), τ)

))
for all G ∈ F , any (randomized) black box B(G), all ~x in the domain of RG, and at least c2t values

of τ ∈ {0, 1}t, where c > 1/2.

The definition above corresponds to a Monte Carlo algorithm with 2-sided error, or an

Atlantic City algorithm. It is assumed that τ is finite in length, which may force an algorithm

to fail simply because it “runs out” of random bits, however t may be chosen to ensure this

happens with sufficiently low probability. The choice of the constant c > 1/2 is arbitrary.

The confidence that an algorithm correctly computes a generic function can be boosted by

repeatedly executing the algorithm and choosing a plurality of the output values, or by

verifying the results (when practical) and re-executing the algorithm as required.4

The success probability is computed over the random choices contained in τ (which

may include the selection of random group elements), but not over the particular group,

black box, or input vector; the algorithm must achieve the required success probability in

every case. Note, however, that this does not require an algorithm to be successful in the

face of an “adaptive” black box. When analyzing an algorithm, an “adversary” may choose

the black box based on an examination of the algorithm’s program and the particular group

and input vector, but this choice is fixed prior to any coin flips (the generation of τ). In
4For relations, boosting confidence by repetition may not be practical if many correct outputs are possible.

In such cases either the output should be verifiable or the algorithm should ensure its output is correct to a
specified level of confidence.
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the case of a deterministic algorithm, an adversary can simulate the entire execution of the

algorithm and thus effectively “adapt” the choice of black box based on the algorithm’s

simulated behavior, but a probabilistic algorithm’s coin flips remain sacrosanct.5

Definition 1.7. A non-deterministic generic algorithmA(~x) for R(~x, ~y) satisfies

RG

(
~x,B−1(

A
′(B(~x), τ)

))
for all G ∈ F , any randomized black box B(G), all ~x in the domain of RG, and at least one value of

τ ∈ {0, 1}t. For all other values of τ, algorithmA terminates and outputs ”REJECT”.

Every possible execution of a non-deterministic algorithm must output the correct value

or “REJECT”. A non-deterministic algorithm is not allowed to make (undetected) mistakes,

and must always terminate. As noted above, a non-deterministic algorithm can effectively

select group elements non-deterministically via the “randomized” black box by passing in

an un-read subsequence ρ from τ.

The classes of probabilistic and non-deterministic generic algorithms clearly both con-

tain the class of deterministic generic algorithms, but neither is obviously contained in the

other. This state of affairs is analogous to the relationship between the complexity classes

BPP and NP.

Before defining complexity metrics for generic algorithms, there is one aspect of the

definitions above that merits further discussion. The behavior of a black box when one of

its interfaces is passed an invalid identifier (a bit-string which is not inI) is unspecified. We

consider the algorithm’s behavior to be incorrect in this scenario (e.g. the black box goes

into an infinite loop or self destructs). In light of this, there is an important consequence of

the definitions above:

Remark 1.1. Every identifier used by any type of generic algorithm in a call to a black box interface

is either an input to the algorithm or an identifier previously obtained via the black box.

A generic algorithm must satisfy the correctness criteria for every black box. If it tries

to “guess” a valid identifier, there exist black boxes for which the guess will be wrong

(more than half the time) since the identifier set I ⊆ {0, 1}` may be quite sparse and

5Not all models grant this assurance, which may impact statements regarding the expected running times
of certain algorithms, e.g. those that use Pollard’s rho method.
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still satisfy ` = O(lg |G|). Even in the case of a non-deterministic algorithm, it may non-

deterministically guess an unknown identifier, but it still must verify that the guess is

correct before it can safely use the identifier in a call to the black box (otherwise the black

box might go into an infinite loop causing the algorithm to be incorrect). The only way to

verify an unknown identifier is to non-deterministically request a group element from the

black box and check if the identifier matches, but then Remark 1.1 applies.

The practical consequence of Remark 1.1 is that it prevents any “cheating” on the

complexity metrics we now define. It will be convenient to ignore certain unnecessary

or ineffective calls to the black box when measuring a generic algorithm’s complexity.

Once the identifier for the element 1G has been obtained via Bid(), any group operations

involving the identity element can be readily avoided by a careful algorithm. Rather

than requiring algorithms to be careful, we will simply ignore all operations involving the

identity (including calls to Bid), regarding these as trivial operations.

Definition 1.8. The time complexity of a generic group algorithm is the number of non-trivial

interface calls to the black box, referred to as group operations. The space complexity of a generic

group algorithm is the maximum number of identifiers simultaneously stored by the algorithm, also

called group storage.

Asymptotic complexity results are typically stated in terms of n = lg |G| or some other

appropriate measure of the problem size (note that identifiers have length ` = Θ(n)),

but it will often be convenient to use N = |α|, or N = |G|. The terms “polynomial-

time”, “exponential-time”, “near linear-time”, etc., may all be used in conjunction with

the complexity metrics defined above with the usual meaning. An algorithm which uses

Θ
(
N1/2

)
group operations is an exponential-time algorithm, while an algorithm which

uses O
(
n2/ log n

)
group operations would be a sub-quadratic algorithm.6

These complexity metrics ignore any non-group computations performed by the algo-

rithm. This strengthens the statement of lower bounds, since it effectively grants algorithms

unlimited time and space for non-group operations. In the case of upper bounds, the actual

running time of most generic algorithms is overwhelming dominated by group operations

for large problems. It may generally be assumed that each group operation requires at

least as much time as it takes to multiply two n-bit integers (often more will be required).

6Throughout this thesis, log n denotes the natural logarithm while lg n refers to the binary logarithm. These
may be used interchangeably in asymptotic expressions, however, we typically use the more indicative form.
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Provided that the number of non-group operations (e.g. integer arithmetic on n-bit inte-

gers, comparing two n-bit strings) is less than the number of group operations, the actual

running time will be within a constant factor of the time spent performing group operations

(similar comments apply to space). For all the algorithms presented here, the time required

by group operations will constitute the vast majority of the running time in practice (see

Chapter 11).

1.3 Comparison and Discussion

The first formal model of generic group computation was introduced in the seminal 1984

paper of Babai and Szemeredi [7], where they define the concept of a black-box group.

Since then, numerous models of generic group computation have been considered. We

do not attempt a survey here, but note that all models share the common feature that the

representation of group elements is hidden. Two major distinguishing features are:

1. Can algorithms compare group elements without consulting the black box?

2. Does the black box provide support for random group elements?

In the black-box groups of Babai and Szemeredi the answer to both questions is “no”;

their black box provides a function for comparing a group element with the identity, and

algorithms are given a set of generators for the group. In the model defined here, the

answer to both questions is “yes”. To avoid confusion, we will use the term generic group to

refer to a group G ∈ F together with a black box for G as defined in this chapter, preserving

the original meaning of “black-box group” as defined by Babai and Szemeredi.

The approach taken here is a generalization of that used by Shoup in [96]. Following

Shoup, we assume that the identification function is bijective. This type of model is

also known as a uniquely encoded black-box group. Including this capability strengthens

the applicability of lower bounds, and provides a better platform for building efficient

algorithms in practice. Indeed, many widely-used generic algorithms depend on this

feature (e.g. Shanks’ baby-steps giant-steps method). The utility of unique encoding in

practice, combined with the strong lower bounds that may be proven even when algorithms

are granted this capability, make a compelling argument for its inclusion in the model.
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Unique encoding does not usually impose an undue burden on the black box. Typically

either there is a natural canonical representation for a group element (an integer, a matrix,

a permutation, a polynomial, etc...) or a black-box implementation of any type may be

impractical. Examples of the latter case include finitely presented groups, in which the

task of comparing two elements may be undecidable (the existence of such groups was

shown by Novikov [79] and Boone [18]).7 There are cases that fall between these extremes

(e.g. quotient group representations), however, trading unique encoding for a comparison

operation may simply shift the burden of work within the black box.

The black box definition above differs from Shoup’s oracle in that G may be an arbitrary

group and the inputs to the black box are simply identifiers rather than indices into a list

of previously acquired identifiers (but see Remark 1.1 above).

The notion of a randomized black box is a natural extension that is rapidly becoming

standard [20, 114]. Unless an algorithm is given a set of generators (as in the black box

groups of [7]) there is no way for it to access group members not generated by its inputs

unless a randomized black box is used. Given that many problems can be solved quite

efficiently without a set of generators (e.g. the randomized abelian test of Algorithm 1.2),

it seems unnecessary to require a set of generators as part of the model; they can always

be specified as inputs for a particular problem. Conversely, given a set of generators, it

is not a trivial problem for a generic algorithm to generate a random group element (see

[4] for a discussion). In many cases the black box can do this much more effectively then

the algorithm because it has direct access to the group representation, and it is certainly

no more difficult for the black box in any event. There are efficient heuristic methods

for generating nearly uniform random elements that may not be fully independent (the

product replacement algorithm of [34], see also [82]), and somewhat less efficient methods

that generate fully independent random elements [3].8

As noted earlier, the correctness criteria for a probabilistic generic algorithm fix the

choice of the black box prior to the algorithm’s execution, and, in particular, any coin flips.

A probabilistic algorithm can effectively randomize against a worst-case identification

map. It may be that for every sequence of coin flips there exists a bad black box, so long

as for every black box most sequences of coin flips are good. This approach strengthens

7It is worth noting that many finitely presented groups can be efficiently implemented as black boxes, e.g.
polycyclic groups.

8For a recent development in this area see [39].
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lower bounds, since it is easier for an algorithm to be correct and/or have a better expected

running time. It also represents the actual behavior of most black boxes in practice. If a

particular probabilistic algorithm happens to have the admirable virtue of being correct

against an adversary who knows every coin flip in advance, so much the better. Note

that this doesn’t apply to deterministic algorithms, they always have to handle the worst

possible scenario.

The formal model defined in this chapter is motivated not only by theory, but also

by a desire to make both generic algorithms and black boxes easy to implement in prac-

tice. There are obvious tradeoffs, but on balance the choices made here seem to work

well. As practical examples, all the algorithms presented in this thesis were implemented

and tested using black boxes with a wide variety of group representations, including the

multiplicative group of integers modulo m, products of additive cyclic groups, ideal class

groups, elliptic curves, permutation groups, and matrix groups. While conceived largely

for theoretical purposes, in practice, a formal model of group computation is sound soft-

ware engineering. It enables algorithms and black boxes to be designed, analyzed, and

improved independently.
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Chapter 2

The Complexity of Order

Computations

Chapter Abstract

We consider the complexity of computing |α|, proving an Ω
(
N1/3

)
lower bound

and reducing integer factorization to random order computations. Neither result is
fundamentally new, but they provide useful illustrations of the model and generalize
prior work. We also introduce a number of concepts that facilitate the analysis of
order algorithms.

In the most general case, an order algorithm is given a single inputα ∈ G, and has essentially

no information about |α| or |G|. There is an implicit bound on |G| given by the fixed size of

identifiers in the set I ⊆ {0, 1}`, which implies |G| ≤ 2`. This does give a polynomial bound

on |G|, since ` = O
(
lg |G|

)
, but it may be much larger than |G|. Practical example of groups

with unknown order are ideal class groups and groups of points on elliptic curves. In both

cases it is entirely straight forward to implement a black box for a particular group without

knowing its size, other than an upper bound on the number of bits required to represent a

group element.

In the particular cases of class groups and elliptic curves, we actually know fairly tight

bounds on |G|: O
(
|G| log |G|

)
and |G| + O

(
|G|1/2

)
respectively. We will see in Chapter 9

that a bound |G|c with c < 2 will be of great assistance in determining the structure of an

abelian group, but even if we know |G| within a constant factor, this is essentially no help

in computing |α| efficiently. Our complexity measure for order algorithms is in terms of |α|,

not |G|, and |α| may be much smaller than |G|. Computing |α| for an element with order 2
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should not be hard in any group, no matter how big.

On the other hand, if we happen to know the prime factors of |G|, or any set S containing

the possible prime factors of |α|, computing |α| is easy. This can be done in time linear in |S|

and nearly linear in lg |α|. Algorithms which compute |α|, given knowledge1 of the possible

prime factors of |α|, are called fast order algorithms, and are the subject of Chapter 7. For the

moment we assume neither |G| nor its prime factors are known. If an order algorithm can

identify a reasonably small superset of the prime factors of |α|, say by finding a multiple of

|α| and factoring it, a fast order algorithm may then be applied.

A third example of a group with unknown order is the multiplicative groups of integers

Z∗M, where the prime factors of M are unknown. In this case we would be better off factoring

M rather than attempting to determine the order of an arbitrary α ∈ Z∗M. Given the prime

factorization of M, we can easily compute

φ(M) =M
∏
p|M

(
1 −

1
p

)
= |Z∗M|,

and then factor φ(M) to obtain the possible prime factors of |α|, since |α| must divide |G|.

We give two proofs that factoring the integer M is easier than computing |α| = N with a

generic algorithm. The first and most direct is an Ω
(
N1/3

)
lower bound on the number of

group operations required to compute |α|, which is substantially larger than the complexity

of all but the most naive factoring algorithms (in particular the deterministic algorithm of

Pollard-Strassen uses O
(

N1/4 log2 N
)

arithmetic operations [83, 103, 40]). The second

proof is a reduction showing that a generic order algorithm can be used to construct a

probabilistic algorithm for factoring integers.

Neither of these results is particularly new. An exponential lower bound on order

computations in black-box groups is given by Babai in [5], and the factoring reduction is

essentially the same as that given by Bach [8] for the discrete logarithm (see also [46]), or

one based on the group exponent described by Shoup in [97]. Giving explicit proofs in our

model sharpens both results. The details of the lower bound in particular are illuminating:

the bound proven is Ω
(
N1/3

)
rather than Ω

(
N1/2

)
. It seems unlikely that the Ω

(
N1/3

)
bound is tight, but we shall see that an Ω

(
N1/2

)
bound does not exist.

1We make S more specific by defining a factored exponent of α, essentially a multi-set of the prime factors of
|α|, in Chapter 7.
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2.1 Analyzing Order Algorithms

Consider the execution of a generic algorithm A which receives the identifier of a single

group element α = α0 as input. As the algorithm proceeds, it makes a series of calls to the

black box, obtaining a sequence of (not necessarily distinct) identifiers α0, α1, . . . , αt, one

for each call made to the black box. For convenience, we prefix the sequence with 1G and

ignore all further operations involving the identity element.

Definition 2.1. An identification sequence for A(α) is the sequence 1G, α0, α1, . . . , αt where

α0 = α and αi is the value returned by the ith non-trivial call to the black box during an execution

of generic algorithmA on input α.

Given an identification sequence for a deterministic algorithm A(α), we define a se-

quence of ordered pairs by associating ( j, k) with the operationBprod(α j, αk) and ( j,−1) with

the operation Binv(α j).

Definition 2.2. A computation chain is a sequence of ordered pairs of integers (xi, yi) for 1 ≤ i ≤ t

which satisfies 0 ≤ xi < i and −1 ≤ yi < i.

There may be more than one choice of computation chain compatible with an identifi-

cation sequence due to duplicated identifiers ( j and k above may not be uniquely defined).

In such cases we arbitrarily select the first among duplicate values. There are two different

reasons why elements in an identification sequence may not be distinct. In the trivial

case, the algorithm may have simply computed the same thing twice, or discovered some

relation which must hold in every group, such as (α2)3 = (α3)2. In the non-trivial case,

the algorithm has found a relation which constrains the possible values of |α|. To help

extract information contained in non-trivial relations (or to prove no such relations exist),

we define the exponent sequence of a computation chain.

Definition 2.3. The exponent sequence 0, 1, e1, . . . , et of the computation chain (xi, yi) is the

sequence of integers defined by e−1 = 0, e0 = 1, and

ei =


−e j if (xi, yi) = ( j,−1);

e j + ek if (xi, yi) = ( j, k), k ≥ 0.

More generally, any sequence of integers 0, 1, e1, . . . , et, where each ei is the negation or sum of

previous elements, is called an exponent sequence of length t.
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An exponent sequence is simply an addition chain with negation steps allowed (or a

restricted form of an addition-subtraction chain).

Definition 2.4. An addition chain of length t is a sequence of integers e0, e1, . . . , et such that

e0 = 1 and for i > 0, ei = e j + ek for some j, k < i. An addition-subtraction chain of length t is a

sequence of integers e0, e1, . . . , et such that e0 = 1 and for i > 0, ei = e j ± ek for some j, k < i.

Addition chains play a key role in exponentiation algorithms, see Knuth [68, Section

4.6.3] for an overview. We consider addition chains further in Chapter 7 when we examine

fast order algorithms.

In terms of the identification sequence forA(α), the exponent sequence corresponds to

mapping α to the integer 1 and performing operations in the free group Z+. The element

e−1 = 0 corresponds to the identity element which we implicitly assume is always available.

The non-trivial relations in the identification sequence of an order algorithm are precisely

those where the corresponding elements of the exponent sequence differ.

Lemma 2.1. Let α−1, α0, . . . , αt be an identification sequence for a deterministic generic algorithm

A(α), and let e−1, e0, . . . , et be the exponent sequence of the associated computation chain. Then

(1) αi = α
ei , and (2) αi = α j ⇐⇒ ei ≡ e j mod |α|,

for all −1 ≤ i, j ≤ t.

Proof. The exponentiation map k 7→ αk is a group homomorphism from Z+ to 〈α〉 ⊆ G.

(1) may be proven by noting that α−1 = 1G = α0 = αe−1 and α0 = α = α1 = αe0 , then

inductively applying the exponentiation map to the relations on e1, . . . , et implied by the

computation chain. For (2), note that the exponentiation map has kernel NZ, where

N = |α|, giving an isomorphism ϕ : Z/NZ → 〈α〉. We have ϕ (e−1) = ϕ
(
0
)
= 1G = α−1 and

ϕ (e0) = ϕ
(
1
)
= α = α0, and it may be shown inductively that ϕ (ei) = αi by applying the

computation chain. �

In specific situations we may extend our definition of an exponent sequence to accom-

modate probabilistic algorithms. When doing so we will ensure that Lemma 2.1 still holds.

This lemma will be useful in proving lower bounds, but for the moment consider it from

the perspective of an order algorithm. As long as the exponents do not become too large,
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an algorithm can easily compute its own exponent sequence as it proceeds. If at any point

the algorithm finds αi = α j but ei , e j, then E = |ei − e j| is a non-zero multiple of |α| (an

exponent of α). If E is known to be minimal then E = |α|, otherwise, if the factorization of E

is known or can be readily computed, a fast order algorithm can quickly determine |α|.

On the other hand, Lemma 2.1 also implies that for ei , e j, if αi , α j then E = |ei − e j|

is not a multiple of |α|. This gives an algorithm useful information, as it rules out every

divisor of E as a possibility for |α|. There is a limit, however, to how rapidly an algorithm

can accumulate knowledge in this fashion.

Lemma 2.2. Let S be a set of n integers, each with absolute value at most 2t. Let c(S) denote the

number of distinct primes which divide the difference of a pair in S. Then c(S) = O(n2t/ log t).

Proof. Let m be the positive difference of a pair in S, and let k be the number of distinct

primes dividing m. If P =
∏

p≤pk
p is the product of the first k primes, then P ≤ m ≤ 2t+1.

Applying the prime number theorem (see Section 6.1), we have

k log k ≤ k log pk = π(pk) log pk ∼ pk ∼ ϑ(pk) =
∑
p≤pk

log p = log P ≤ (t + 1) log 2,

hence k = O(t/ log t). There are
(n

2

)
= O(n2) distinct pairs in S, and the lemma follows. �

2.2 An Exponential Lower Bound

We are now in a position to prove our first result, an Ω
(
N1/3

)
lower bound on order

algorithms. The statements and proofs of lower bounds require a degree of care; it is

important to be clear exactly what needs to be proven.

We typically argue by contradiction, supposing that a generic algorithmA(~x) computes

some generic function or relation R(~x, ~y), using at most t group operations. We then

construct an exceptional problem instance for which the algorithm fails to compute R.

Specifically, we must show there exists a particular group G, black box B(G), and a set

of input values ~x for which A(~x) is incorrect, using the correctness criteria defined in

Chapter 1. In the case of a probabilistic algorithm, this means we need to construct a

randomized black box, including a specific function Brand(ρ), such thatA′(~x, τ) fails for at

least half the values of τ (the sequence of coin-flips). It is not sufficient to merely show an
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exceptional problem instance for each τ. This distinction is a key feature of the model: it

gives algorithms more power and strengthens the impact of lower bounds.

Theorem 2.3. Let A be a probabilistic generic order algorithm. For all sufficiently large M = 2`

there is a prime p,
√

M < p ≤M, and a randomized black box B(Cp) for the cyclic group Cp = 〈α〉,

such that the expected number of group operations used byA on input α is

Ω
(
N1/3) ,

where N = p = |α|.

Proof. Fix M = 2`. Suppose for the sake of contradiction that A never uses more than

t = cM1/3 group operations when computing the order of α ∈ Cp, for
√

M ≤ p ≤ M, where

c is a constant to be determined.

Fix a particular sequence τ of random coin flips used by A so that A′(α, τ) is a deter-

ministic algorithm. We will simulate the execution ofA′(α, τ), using random identifiers α0

for α and α−1 for 1G, and construct both an identification sequence α−1, α0, α1, . . ., and an

exponent sequence 0, 1, e1, . . ., forA′(α, τ) as we proceed. We extend our notion of exponent

sequences to include random group elements. Let ei = ρi if the ith call to the black box is

Brand(ρi), where ρi ∈ {0, 1}2` is a substring of the random bits in τ as described in Definition

1.6. We then carry out the simulation by choosing a distinct random identifier in {0, 1}`

for each new exponent that occurs in the exponent sequence. Note that we can always

compute the next exponent using the values of previously defined exponents. We continue

the simulation until either A′(α, τ) terminates successfully and outputs N, fails in some

fashion, or after t steps. In the latter two cases, let N = 0. We now pick a random prime

p in the interval (M1/2,M], so that ` = O(log |Cp|), and construct a randomized black box

B(Cp) for Cp = 〈α〉 as follows:

1. Simultaneously define I ⊆ {0, 1}` and the identification map B : Cp → I by letting

B(1G) = α−1,B(α) = α0, and lettingB(αi) = α j, where e j is the least exponent congruent

to i mod p, if any, and otherwise choosing a random unused identifier from {0, 1}`.

2. Define the function Brand : {0, 1}2` → I by Brand(ρ) = B(αρ).

Note that (2) ensures that Lemma 2.1 applies to our exponent sequence. This defines a

particular randomized black box B(Cp). Moreover, all the choices were made randomly
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and independently, and could have been made in any order. For the sake of uniformity,

let σ ∈ {0, 1}k be a sequence of random bits of some fixed length sufficient to determine

the random choices of any particular construction above. We are effectively padding our

random choices as required to obtain a uniform distribution over the values of σ. Each σ

generates a particular black box, but many σ may produce the same black box.

It is not necessarily the case that our simulation of A′(α, τ) actually corresponds to its

behavior with the black box B(Cp). This will only be true if the ei are all distinct modulo

p. The exponent sequence has length at most t, and the maximum size of any exponent

is at most 22`+t: each group operation either returns a random exponent less than 22`

or an exponent that is at most twice any previous exponent. Since ` = O(log t) and the

length of the exponent sequence is at most t, Lemma 2.2 implies that O(t3/ log t) primes

divide the difference of some pair of exponents. By the prime number theorem, there are

π(M) − π(
√

M) = Θ(M/ log M) primes in (M1/2,M], so we may choose the constant c such

that fewer than 1/3 of these primes divide the difference of any pair of exponents. It follows

that with probability at least 2/3, the exponents are all distinct modulo p and p , N, where

N is zero or the value output by A′(α, τ). For these cases, the black box B(Cp) will cause

A
′(α, τ) to behave as in the simulation above and fail to correctly compute |α|.

For any fixed τ, we have shown that, with probability at least 2/3, a randomly con-

structed black box will causeA′(α, τ) to be incorrect. We now use a pigeon-hole argument

to show that some black box causesA′(α, τ) to be incorrect for at least 2/3 of the values of τ.

Consider a 0-1 matrix with rows corresponding to values of τ and columns corresponding

to values of σ, where a 1 indicates a failure ofA′(α, τ) when using the black box generated

by σ. We have shown that every row is at least 2/3 full of 1’s. It follows that one of the

columns is at least 2/3 full of 1’s. For the black box corresponding to this column, A(α)

fails with probability 2/3, contradicting our hypothesis. Thus A(α) must use more than t

group operations for at least a constant fraction of the possible values of τ, implying an

expected running time of Ω(N1/3). �

Corollary 2.4. Every deterministic generic order algorithm has time complexity Ω
(
N1/3

)
. The

expected running time of any probabilistic generic order algorithm is Ω
(
N1/3

)
.

The proof of Theorem 2.3 constructs a black box that simulates a free cyclic group,

one for which no non-trivial relations exist. In essence, the proof shows that a generic
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algorithm cannot distinguish a random cyclic group with prime order from a free group

using O
(
N1/3

)
group operations, because it cannot find a non-trivial relation. This is a

stronger statement than Theorem 2.3. It may be expressed using the concept of pseudo-free

groups introduced by Rivest in [89].

Rivest considers a more general model of “computational groups” in which an algo-

rithm has access to the representation, but notes that the theory may also be applied to

black-box groups. In the terminology of [89] we could state our result as:

Cyclic groups are generic pseudo-free groups.

We use the term “generic” to refer to the model defined in Chapter 1 (uniquely encoded

black-box groups with random group elements). To make this statement precise, we

consider an infinite family of cyclic groups {C1,C2, . . .}. A random integer N ∈ [1,M] will

contain a prime factor large enough to ensure that no generic algorithm can distinguish CN

from Z+ in polynomial time with non-negligible probability. See [74] for related work on

the notion of pseudo-free groups.

There are two different algorithms commonly used to perform order computations that

both have complexity Θ
(
N1/2

)
. It is natural to ask whether the Ω

(
N1/3

)
lower bound of

Theorem 2.3 can be improved to Ω
(
N1/2

)
. The answer is an emphatic “no”, as will be

made evident in Chapter 4. This is in contrast to the discrete logarithm problem, where

we have tight Θ
(
N1/2

)
bounds. There is a key difference between order computation and

the discrete logarithm problem. It is enough for an order algorithm to find any reasonably

small exponent E such that αE = 1G; the order of α is then a divisor of E. If αE = β, however,

it need not be the case that DL(α, β) divides E, rather E ≡ DL(α, β) mod |α|.

2.3 Factoring Reduction

The task of factoring the exponent E may seem daunting, but if a generic order algorithm is

able to efficiently find exponents of moderate size, factoring an integer presents no major

challenge, as demonstrated by the following algorithm.

Algorithm 2.1. LetA(α) be any generic algorithm which computes a multiple of |α|, and let N be

an odd integer. The following probabilistic algorithm attempts to find a non-trivial factor of N:

1. Select a random integer x ∈ [1,N − 1]. If gcd(x,N) > 1, return gcd(x,N).
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2. Compute E←A(x) by simulating a black box for Z∗N. Let E′ be the odd part of E.

3. Set y← xE′ mod N. While y2 . 1 mod N, set y← y2 mod N.

4. If y ≡ ±1 mod N then FAIL, otherwise return gcd(y + 1,N).

This algorithm is essentially that used by Bach in [8] to reduce factoring to the discrete

logarithm problem.2 It is not difficult to see that if the algorithm succeeds, its output

is a non-trivial factor of N, since y2
≡ 1 mod N and y . ±1 mod N together imply that

y ≡ −1 mod q for some, but not every, maximal prime power q|N.

Proposition 2.5. Let N be an odd integer that is not a prime power. The probability that Algorithm

2.1 finds a non-trivial divisor of N is at least 1/2.

Proof. Let λ = λ(N) be the exponent of Z∗N (the lcm of |α| over α ∈ Z∗N), and let x and y be

as in Algorithm 2.1. Z∗N contains an element of order 2 (namely -1), so λ is even. We have

xλ/2 . 1 mod N =⇒ y = xλ/2,

since for such an x, both xλ/2 and y are the unique element of order 2 in the cyclic subgroup

〈x〉. Thus y is independent of the particular exponent E computed in step 2, and the

algorithm succeeds whenever xλ/2 . ±1 mod N.

Consider the image H of the (λ/2)-power map. H is a subgroup of Z∗N with even order

(the minimality of λ ensures H is non-trivial, and every non-trivial element of H must have

order 2). It suffices to show H contains a non-trivial element y . −1 mod N, since then at

least half the elements in H cannot be congruent to ±1 mod N, implying xλ/2 . ±1 mod N

for at least half the x ∈ Z∗N.

Let N = qM, where q is an odd prime power chosen to maximize the power of 2 which

divides φ(q) = |Z∗q|, and M , 1 is odd and coprime to q. Let a generate the cyclic groupZ∗q.

By the Chinese remainder theorem there exists x ∈ Z∗N satisfying:

x ≡ a mod q; x ≡ 1 mod M;

xλ/2 ≡ −1 mod q; xλ/2 ≡ 1 mod M.

2In [97, pp. 264-265] Shoup describes a similar algorithm for the case where E = λ(N) is given. Shoup cites
a deterministic algorithm of Miller [75] as the origin and ascribes the probabilistic version to folklore.
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Thus xλ/2 . ±1 mod N as desired. �

The proof above is a simplification of that found in [46, pp. 132-133]. In the case that N

is not a prime power, the success probability can be made arbitrarily high by repeating the

algorithm. If the algorithm never succeeds, then N is almost certainly a prime power3 and

the base can be easily extracted using a fast perfect-power algorithm: Bernstein’s algorithm

requires just slightly more than O
(
log N

)
arithmetic operations [12, 14].

Algorithm 2.1 is an efficient reduction. The black-box simulation may be accomplished

with one arithmetic operation on integers modulo N per group operation (modular in-

version is slightly more expensive than multiplication but can be done with O
(
n2
)

bit

operations). The remaining gcd, exponentiation, and squaring operations involve a total

of O
(
lg E

)
arithmetic operations.

Corollary 2.6. Given a generic algorithm A(α) which computes an exponent E of α with L(n)

bits using T(n) group operations (where n = lg |α|), there is a probabilistic algorithm which finds a

non-trivial factor of a composite integer N, with high probability, using O (T(n) + L(n)) arithmetic

operations modulo N (where n = lg N).

Unless the exponent E is O (N), applying Algorithm 3 to factor E may be expensive,

since O
(
T(L(n)) + L(L(n))

)
arithmetic operations would be required. Fortunately there

are more efficient factoring algorithms available. One particular method involves order

computations in the ideal class group Cl(−N) of the number field Q[
√
−N]. The same

approach taken by Algorithm 2.1 may be applied to probabilistically find an element with

order 2 in the class group. Using the quadratic form representation described in Chapter

10, such an element is highly likely to yield a non-trivial factor of N. The key advantage of

this approach is that the group Cl(−N) is substantially smaller than the group Z∗N used in

Algorithm 2.1, typically Θ
(
N1/2

)
.

In practice, if E = O
(
N2
)
, then E can easily be factored in less time than required by

the group operations to find E. Alternatively, if an algorithm can prove that E is the least

exponent of α, then E = |α| and no factorization is required.

3Note that Algorithm 2.1 effectively performs a Miller-Rabin primality test [75, 87].
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Chapter 3

Existing Order Algorithms

Chapter Abstract

There are two search techniques common to many generic algorithms: Pollard’s rho
method and Shanks’ baby-steps giant-steps approach. We consider the particular
challenges that arise when each is applied to order computations, where the un-
known value |α| is effectively unbounded. We examine two generic order algorithms
that represent the current state of the art, analyze their complexity, and discuss the
advantages and disadvantages of each.

We now consider some specific order algorithms. There are two general approaches com-

monly used: Pollard’s rho method [84] and the baby-steps giant-steps algorithm due to

Shanks [95]. Both methods are also applicable to the discrete logarithm problem and integer

factorization. Many variations of these algorithms have been considered in the literature

[112, 102, 40, 37]. We focus here on the specific issues involved in applying these techniques

to generic order algorithms.

The major challenge for order algorithms is the need to ensure that the running time is

actually a function of N = |α|. The upper bound M = 2` implied by the size of identifiers

makes it entirely straight forward to obtain O
(√

M
)

algorithms. However, even if M is as

tight as possible, it is often the case that |α| � |G| ≤M. Two typical examples are matrix and

permutation groups. If G = GLd(Fq) is the general linear group over a finite field, or any

large subgroup thereof, it may be shown [78] that |α| = O
(√
|G|
)

for all α ∈ G, and a similar

statement applies to the symmetric group [70]. Any meaningful measure of performance

for an order algorithm should be a function of N, not M.
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3.1 The Rho Method

Pollard’s rho algorithm [84] was originally conceived as a space-efficient way to compute

discrete logarithms in Z∗m. The application of Pollard’s method to generic group compu-

tations has been analyzed by Teske [110, 111, 109]. In [109] she gives a generic algorithm

for computing the structure of an arbitrary abelian group specified by a set of generators.

This algorithm can be applied to compute, in particular, the order of 〈α〉 (which is certainly

an abelian group, even if G is not). In this restricted case, only part of Teske’s algorithm is

needed and the constant factors in the expected running time can be improved.

The Main Idea

The rho method is a probabilistic generic algorithm which attempts to simulate a random

walk through a cyclic group G = 〈α〉. This is done by iterating an appropriately constructed

function f : G → G to generate a sequence α0, α1, α2, . . ., where α0 = α and αi+1 = f (αi).

The algorithm also computes its exponent sequence e0, e1, e2, . . ., so that αi = αei . Since G is

finite, it eventually happens that αi = α j for some i > j, after which the sequence will repeat

with period i− j. We denote the least such i by ρ.1 The algorithm uses a space-efficient cycle

detection method to find αi = α j for some i ≥ ρ, at which point E = |ei−e j|will be a non-zero

multiple of |α|. The exponent E can then be factored and a fast order algorithm applied as

previously discussed. Appropriately implemented, the resulting algorithm is a Las Vegas

algorithm: its output is always correct. The probabilistic choices made in constructing f

only impact the expected running time.

Assuming f is a random function, the process of iterating f may (up to the first repe-

tition) be modeled as a sequence of elements α1, α2, . . ., sampled independently and uni-

formly from a set of size N = |α|. We then define ρ to be the random variable corresponding

to the index of the first repeated element.2 Sobol shows in [99] that as N →∞ the random

variable ρ/
√

N has the asymptotic density function: p(x) = xe−x2/2. This implies

E[ρ] ∼
√
πN/2; var[ρ] ∼

(
2 −

π
2

) √
N. (3.1)

1The letter ρ is meant to be a graphical representation of such a sequence, whence the “rho” method.
2This model is analogous to filling a room with people one at a time until there are two with the same

birthday. The rho method is often called a “birthday paradox” algorithm for this reason.
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The number of iterations before a cycle is detected may be somewhat larger than ρ,

depending on the technique used. Brent’s method expects to detect a cycle within a

constant factor ≈ 1.6 of the optimal value while storing only a single group element [21];

Teske achieves a constant factor of ≈ 1.1 by storing 8 elements [109]. Using linear storage

(logarithmic in N), the cycle detection methods described in [93] bring the constant factor

arbitrarily close to 1. Henceforth we let X be a random variable representing the number

of iterations until a cycle is detected in a random walk, and assume there is a small positive

constant ε such that

E[X] ∼ (1 + ε)
√
πN/2; var[X] = O

(√
N
)
. (3.2)

The cycle detection methods cited above all satisfy these conditions, as does the next

method we consider.

Distinguished-Point Cycle Detection

Using only slightly more space, a particularly attractive cycle detection technique is the

distinguished-point method, attributed to Rivest [41]. The group identifier of each iterated

element is checked to see whether it has a distinguishing feature of some sort, e.g. contains

a certain sequence of trailing bits. More properly, a random hash function should be

chosen and the hashed value of the identifier checked, to avoid an unfortunate distribution

of identifiers. The distinguished elements are stored in a table, and the second time an

attempt is made to insert the same element, a cycle is found. The choice of distinguishing

property determines a tradeoff between space and the speed of cycle detection, but a

reasonably small table will bring ε close to 0.

The main attraction of the distinguished-point method is its suitability for large-scale

parallel computation, as described in [113]. Each processor uses the same iteration function,

but a different starting point α0 = αe0 , where e0 is a randomly chosen integer. When a

distinguished point is found, the group identifier and the associated exponent are submitted

to a central server. As soon as the same distinguished point occurs twice, the difference of

the two associated exponents will be a multiple of |α|, and almost certainly not zero. It is

not necessary to actually find a cycle of f ; each processor performs an independent random

walk and when a collision is detected, either within a single walk or between two walks,
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the order of α can almost always be determined.

One particular issue that arises with an unbounded search is choosing the distinction

probability. We want the probability low enough that the table of distinguished points is

reasonably small, ideally logarithmic in |α|, meaning the distinction probability should by

exponentially small. On the other hand, if the probability is too low, we risk never finding

any distinguished points. Indeed, if |α| is small, it may be that none of the elements of 〈α〉

are distinguished, in which case we will never detect a cycle.

This problem may be addressed by gradually decreasing the distinction probability as

the search progresses. We define a boolean predicate s(α, k) which takes a group identifier

α and an integer k indicating the index of α in the iteration sequence. Let c be an integer

constant, say c ≈ 10, and let h : {0, 1}` → {0, 1}` be a pseudo-random hash function on group

identifiers. Let z(x) denote the number of trailing zeros in x ∈ {0, 1}`. We define:

s(α, k)


1 if z

(
h(α)

)
≥ blg kc − c;

0 otherwise.
(3.3)

Initially every point is distinguished, but s(α, k) becomes gradually more selective as k

increases. The key feature of s(α, k) is that no new distinguished points are introduced: if

s(α, k) = 1, then s(α, j) = 1 for all j ≤ k.

We now argue that if s(α, k) is used to distinguish points then a cycle will be detected

shortly after its occurrence, with high probability. Let ρ be the index of the first repeated

element in the iteration sequence, so that αρ = αλ for some λ < ρ. For k < ρ in the interval

[2n−1, 2n), either all the points are distinguished, or we expect to find 2c distinguished points.

In the former case we will certainly detect a cycle as soon as it occurs, so we consider the

latter. It is shown in [99] that the expectation of the random variable ρ − λ is half that of ρ,

with similar variance. It follows that with high probability there are many (approximately

2c−1) points αk with λ < k < ρ for which s(αk, k) = 1. Half of these points, on average, will

still be distinguished when they are visited again; if j = k+ρ−λ, then we expect s(α j, j) = 1

for approximately 2c−2 of the points on the cycle. These points will all cause a cycle to be

detected, thus with high probability we will detect a cycle after (1 + ε)ρ iterations, where

ε is a small multiple of 2−c. The expected space required for the table is less than 2c lg N,

where N = |α|.
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The argument above can be made more explicit, but it suffices to know that for an

appropriate choice of c, we can be almost certain to detect a cycle within (1+ ε)ρ iterations.

The space required is small, and depends only on c and N = |α|.

Limiting Exponent Size

As noted earlier, it is important that the algorithm limit the size of the integers in the

exponent sequence, as these will determine the size of E. This issue does not arise in other

applications of Pollard’s rho algorithm where the order of the group is known and the

exponents can be reduced modulo |G| at each step. The original pseudo-random function

proposed by Pollard includes a squaring operation, which doubles the size of the exponents

each time it is applied. Pollard’s function also does not simulate a random walk in a cyclic

group as well as might be hoped [111]. Both these issues can be addressed with an r-adding

walk, as defined by Sattler and Schnorr in [91] (see also [92, 111]).

An r-adding walk is constructed by first choosing r random elements β1, . . . , βr ∈ 〈α〉

with known exponents which will be used by the function f . A randomized black box is

of no assistance here: the random elements returned might not lie in 〈α〉, and even if they

did, their associated exponent would be unknown. Instead, we select random integers

e1, . . . , er ∈ [1,M] where M ≥ Nδ0 � |α| for some δ0 > 1, and let βi = αei . The constraint

M � |α| ensures the βi will be nearly uniform over 〈α〉. Then a random hash function

h : {0, 1}` → {1, . . . , r} is chosen with the property that any large subset I ⊆ {0, 1}` will be

partitioned into r groups of roughly equal size, with high probability.3 The function f is

then defined by f (α) = αβh(α), where the hash function h is operating on the identifier α as

a bit-string in I, not as a group element.

The order algorithm below illustrates the rho method using an r-adding walk and

distinguished-point cycle detection. The parameter B is a bound on the number of iterations

after which the search will terminate unsuccessfully and return 0.

Algorithm 3.1 (Pollard Rho Method). Given α ∈ G, positive integers r, M, and B, a hash

function h : {0, 1}` → {1, . . . , r}, a selection predicate s(α, k), and a fast order algorithm A(α,E),

the following algorithm computes |α|:

3In practice, simple families of fast hash functions are used that may not be equidistributing. A poor choice
of hash function at worst slows down the algorithm.
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1. Initialize: For i from 1 to r, choose a random integer ei ∈ [1,M] and set βi ← αei .

Set β← α, K← 1, and k← 0.

2. Iterate: If k ≥ B return 0, otherwise increment k.

Set β← ββi and K← K + ei, where i = h(β). If s(β, k) , 1, repeat step 2.

3. Cycle?: Lookup β in the table, and if (β,K′) is found, go to step 4.

Store (β,K) in the table and go to step 2.

4. Match: Set E← K − K′, factor E, and returnA(α,E).

The fast order algorithmA(α,E) called in the final step requires a factored exponent of α,

a multiple of |α| whose factorization is known. Any of the fast order algorithms described

in Chapter 7 may be used. Considering the parameter r, Sattler and Schnorr show that

r ≥ 8 will generate a pseudo-random walk, provided that 〈α〉 is large enough [91], and

Teske finds r = 20 to be sufficient in all cases [109]. Each iteration involves a single group

operation, and the exponent K increases by at most M each step, meaning that the expected

value of E is O
(

M
√

N
)

. If M = O
(
Nδ
)
, with δ < 3/2, then E can be factored using fewer

arithmetic operations than the expected Θ
(√

N
)

group operations.

We would like to choose M so that

Nδ0 ≤M ≤ Nδ1 , (3.4)

where 1 < δ0 < δ1 < 3/2, but we don’t know N = |α|. If we choose M too small, then

the βi used by f will not be uniformly distributed over 〈α〉, potentially invalidating our

assumption that f approximates a random function. If we choose M too large, the resulting

exponent may require too much effort to factor. The solution is to start with a small M =M0,

fix a constant ε′ > 0, and once the number of iterations exceeds

B = (1 + ε + ε′)
√

(π/2)M1/δ0 , (3.5)

replace M by Mδ1/δ0 and restart the search. This can be accomplished via a routine which

calls Algorithm 3.1 in a loop, using (3.5) to set the parameter B.

This restart strategy is a minor modification of that used by Teske in [109]. The change

allows a tighter bound on the running time to be proven and keeps the exponents smaller.
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Proposition 3.1. Let N = |α|, 1 < δ0 < δ1 < 3/2, and assume f approximates a random function

whenever M > Nδ0 . If the restart strategy described above is used with Algorithm 3.1 then:

(1) The computed exponent E = O
(

Nδ1+
1
2

)
with high probability.

(2) The expected running time is bounded by 2(1 + ε + ε′)
√
πN/2 + o

(√
N
)

.

Proof. (1) We first show that, with high probability, anytime the algorithm restarts we have

M ≤ Nδ0 . If M > Nδ0 , then we may assume f has approximated a random function. Let X

be the random variable defined in (3.2). If the algorithm decides to restart, (3.5) implies

X > (1 + ε + ε′)
√
πM1/δ0/2 > (1 + ε + ε′)

√
πN/2. (3.6)

We may bound the probability of this event by applying Chebyshev’s inequality:

Pr
[
X > (1 + ε + ε′)

√
πN/2

]
≤ Pr

[∣∣X − E[X]
∣∣ ≥ (1 + ε + ε′)

√
πN/2 − E[X]

]
= Pr

[∣∣X − E[X]
∣∣ ≥ ε′√πN/2

]
≤

O
(√

N
)

(
ε′
√
πN/2

)2

= O
(

1/
√

N
)
. (3.7)

The values of E[X] and var[X] are taken from (3.2). In particular, at the time of the last

restart, M ≤ Nδ0 , thus the final value of M is at most Nδ1 with high probability. A simpler

version of the argument above implies that in the last stage X is within a constant factor

of its expected value Θ
(
N1/2

)
with high probability. Then E is the sum of Θ

(
N1/2

)
terms

each bounded by M ≤ Nδ1 , giving E = O
(
Nδ1+1/2

)
with high probability, proving (1).

(2) The algorithm’s execution consists of k = O
(
log log N

)
stages, with the value of

M being exponentiated by δ = δ1/δ0 at each stage. If we let A = (1 + ε + ε′)
√
π/2 and

B0 =M1/2δ0
0 , then the total number of iterations is given by

A
(

B0 + Bδ0 + B2δ
0 + · · · + B(k−2)δ

0

)
+ F, (3.8)

where F is the number of iterations in the final stage. Since the final stage did not reach

the restart condition, by (3.6) we have F ≤ (1 + ε + ε′)
√
πN/2, with high probability. The

sum of the other terms is dominated by T = AB(k−2)δ
0 , which we now consider. In the
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penultimate stage, if M > Nδ0 (this happens with low probability) then the expected value

of T conditioned on this event is certainly no greater than E[X], since in this scenario f

simulates a random walk. If M ≤ Nδ0 then (3.5) implies T ≤ (1 + ε + ε′)
√
πN/2 which

serves as a bound on E[T] in either case. The total number of group operations involved in

computing the βi is negligible: O
(
log N log log N

)
. Each iteration requires a single group

operation, thus the expected total number of group operations is

E[F] + E[T] + o
(√

N
)
= 2(1 + ε + ε′)

√
πN/2 + o

(√
N
)
,

which completes the proof of (2). �

As desired, the expected running time is bounded by a function of N = |α|, independent

of any upper bound M. Achieving this independence effectively doubles the expected

number of group operations.

Summary

As a generic order algorithm, the rho method has the following advantages:

1. The expected running time is approximately 2.5
√

N, using negligible space.

2. It can be efficiently adapted to parallel computation.

These virtues make it the algorithm of choice for very large N. Some disadvantages are:

1. It is a probabilistic algorithm whose expected running time depends on assumptions

that are not always met in practice.

2. It requires factoring E.

3. Restricting the search is difficult, even when constraints on N are known.

The last item is the most significant relative to the method we consider next. As examples

of where this might apply, suppose that we knew a lower bound on N, or simply that N was

an odd number. This information constrains the possible values of N even though it does

not constrain its size. It is not obvious how one might take advantage of this knowledge

using the rho method.
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3.2 Baby-Steps Giant-Steps

Originally developed as an algorithm for determining the class numbers of quadratic

number fields, Shanks baby-steps giant-steps method [95] is a generic algorithm well

suited to a variety of problems in group computation. It is one of the standard methods for

computing discrete logarithms, and is the basis of more general algorithms for determining

group structure [27]. Its flexibility lends itself to a wide variety of optimizations in specific

circumstances [102]. We focus here on the original problem that motivated the algorithm:

order computations.

In its most basic form, the baby-steps giant-steps algorithm is very simple, provided

we have an approximate upper bound M, which we can always take to be 2`.

Algorithm 3.2 (Shanks’ Baby-Steps Giant-Steps). Given α ∈ G and a positive integer M, let

b =
⌈√

M
⌉

and compute |α| as follows:

1. Baby Steps: Compute α1, α2, . . . , αb, storing each (α j, j) in a table.

If any α j = 1G, return j.

2. Giant Steps: Compute α2b, α3b, . . ., looking up each αi in the table.

When αi = α j, return i − j.

Many implementations use α−1 in the baby steps and replace i − j by i + j. There is

no particular advantage to doing this, and keeping the exponents positive simplifies the

discussion. The implementation of the lookup table is straight forward and does not require

any group operations.4

The correctness of the algorithm follows from the fact that αi = α j if and only if i − j is

a multiple of |α|. If |α| ≤ b this will be discovered in step 1, otherwise any value of m > b

can be written uniquely in the form m = i − j where i > b is a multiple of b and 1 ≤ j ≤ b.

The first case where αi = α j in step 2 will yield the least m = i − j that is a multiple of |α|,

namely |α|.

The enumeration of both baby and giant steps can be accomplished with a single group

multiplication per element. The total number of group operations is bounded by b + |α|/b,

which is at most 2
√

M assuming |α| ≤ M. As a function of N = |α|, however, the running

time may be Θ (N), since when N ≤
√

M the algorithm performs a sequential search.
4This is not true for the black-box groups of Babai and Szemeredi, which effectively require the algorithm

to perform an exhaustive search on the lookup table.
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Remark 3.1. If the operationBinv is faster thanBprod, then the elapsed time for Algorithm 3.2 may

be improved by letting b =
⌈√

M/2
⌉

and computing the giant steps α2b, α−2b, α4b, α−4b, . . .. This

will decrease the group storage by a factor of
√

2, increase the group operations by a factor of 3
√

2/4,

and decrease the elapsed time by a factor of up to
√

2. This same optimization may be applied to any

order algorithm based on the baby-steps giant-steps approach.

Unbounded Baby-Steps Giant-Steps

We face a problem similar to that we confronted with the rho method. We would like to

pick M ≈ N, but we don’t know N. We adopt a similar solution: start with a provisional

M0, then periodically increase it and “restart”. We have the advantage that we need not

discard the work we have already done, we simply increase the size of the giant steps

by taking some more baby steps. Baby steps are never wasted, and we continue taking

(bigger) giant steps wherever we left off. During each iteration, we maintain an optimal

1:1 ratio between baby and giant steps by taking the same number of each. There is some

flexibility in choosing the number of steps to take in each iteration. It may be a constant,

or it may grow (but not too quickly, as we shall see). We parameterize this with a growth

function d(k) which indicates the number of steps to take in iteration k + 1. The parameter

N0 is an optional lower bound which may be 0, but is useful when it is known that |α| > N0.

Definition 3.1. A growth function is an eventually increasing, positive integer function.

Algorithm 3.3 (Unbounded Baby-Steps Giant-Steps). Given α ∈ G, an integer N0 < |α|, and

a growth function d(k), compute |α| as follows:

1. Initialize: Set k← 0, b← 0, and g← max{N0, d(0)}.

2. Baby Steps: For j from b to b + d(k), compute α j and store (α j, j) in a table.

If any α j = 1G, return j, otherwise set b← b + d(k).

3. Giant Steps: For i = g + b, g + 2b, . . . , g + d(k)b, compute αi and do a table lookup.

If any αi = α j, return i − j, otherwise, set g← g + d(k)b, increment k, and go to step 2.

If |α| ≤ d(0), this will be discovered in the first set of baby steps. Otherwise, for every

integer m between N0 and g, the algorithm has computed a baby step α j and a giant step αi

such that m = i− j. The values of m are checked in increasing order, hence the least m = i− j

such that αi = α j will be found and is necessarily |α|.
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Proposition 3.2. Let d(k) be a growth function satisfying limn→∞
(
d(n+ 1)− d(n)

)
/d(n) = 0, that

is, ∆d ≺ d. Let |α| = N > N0 ≥ 0, let d0 = d(0), and let T(N) be the number of group operations

and S(N) the group storage used by Algorithm 3.3.

(1) If N −N0 ≤ d0 then T(N) = min(N, d0) + 1 and S(N) = min(N, d0).

(2) If d0 < N −N0 < d0(d0 + 1) then T(N) = d0 +
⌈

N−N0
d0

⌉
and S(N) = d0.

(3) If N −N0 ≥ d0(d0 + 1) then T(N) ∼ 2
√

2(N −N0) and S(N) ∼
√

2(N −N0).

Proof. In case (1) the algorithm terminates during the first set of baby steps if N ≤ d0, or on

the first giant step. In case (2) the algorithm terminates during the first set of giant steps,

and in both cases the proposition is easily verified. We now prove (3) in some detail.5

Let b(n) and g(n) respectively denote the values of b and g reached during the nth

iteration, where the first iteration has n = 1. These functions are defined by

b(0) = 0; b(n + 1) = b(n) + d(n);

g(0) = N0; g(n + 1) = g(n) + b(n + 1)d(n).

Assuming |α| > N0 + d0(d0 + 1), the algorithm terminates in step 3 at some stage t when

g(t − 1) ≤ |α| < g(t). (3.9)

The number of group operations will be at most twice the number of baby steps b(t) and

the group storage will be b(t). We proceed by bounding b(t) in terms of g(t).

Adopting the finite calculus notation of [52], we let
∑b

a f (x)δx denote a sum taken over

integers in [a, b) and use the functional operators∆ f (n) = f (n+1)− f (n) and E f (n) = f (n+1).

In this notation, ∆b = d and ∆g = (Eb)d = (Eb)∆b. For all n > 0 we have

g(n) =
∑n

0
∆g(x)δx + g(0) =

∑n

0
Eb(x)∆b(x)δx +N0

= b2(x)
∣∣∣n
0
−

∑n

0
b(x)d(x)δx +N0

= b2(n) −
∑n

0

(
b(x + 1) − d(x)

)
d(x)δx +N0

= b2(n) − g(n) +
∑n

0
d2(x)δx + 2N0,

5The proof is straight forward; the detail is intended to illustrate arguments used elsewhere.
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where we sum by parts (
∑

Ev∆u = uv −
∑

u∆v) in the second line. This yields

2(g(n) −N0) = b2(n) +
∑n

0
d2(x)δx. (3.10)

To complete the proof, we show b2(n) ∼ 2(g(n) −N0) (this allows N0 to depend on N), and

then show g(n) ∼ g(n + 1), which together with (3.9) implies the desired result. We make

use of the fact that for any growth functions f and g,

∆ f ≺ ∆g =⇒ f ≺ g. (3.11)

By the hypothesis of the theorem, ∆d ≺ d, and we are given that d and consequently b and

g are growth functions (as are sums or products of such functions). Since d = ∆b, we have

∆d ≺ ∆b, which implies d ≺ b and d2
≺ bd. By the product rule (∆(uv) = u∆v + Ev∆u),

∆b2 = b∆b + Eb∆b = bd + (b + d)d = 2bd + d2
≥ bd. (3.12)

It follows that d2
≺ ∆b2. Since d2(n) = ∆

(∑n
0 d2(x)δx

)
we may apply (3.11) to obtain

lim
n→∞

∑n
0 d2(x)δx
b2(n)

= 0, (3.13)

which by (3.10) implies 2(g(n) − N0) ∼ b(n)2 as desired. To show g(n) ∼ g(n + 1), we need

∆g ≺ g. Since g and ∆g are growth functions, by (3.11) it suffices to show ∆∆g ≺ ∆g:

∆∆g = ∆[(Eb)d] = ∆[(b + d)d] = (b + d)∆d + (Ed)(∆b + ∆d)

= b∆d + d∆d + (d + ∆d)(d + ∆d) = b∆d + 3d∆d + d2 + (∆d)2.

Every term on the right is ≺ bd ≤ (Eb)d = ∆g, hence ∆∆g ≺ ∆g, as desired. �

If we choose d0 ≥
⌈√

N −N0
⌉

the algorithm reduces to the standard version of Shanks’

algorithm with the upper bound M = d0(d0 + 1). In general, however, we will want d0 to

be some small constant, and assume N0 = 0.

Any well-behaved growth function that is subexponential will satisfy the hypothesis

of the theorem. In particular, a polynomial function will, but an exponential function will

not, as may be seen by the example d(n) = 2n. In this case the sum in equation (3.10) is
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not negligible and it is no longer true that g(n) ∼ g(n + 1). The net result is an O
(

3
√

N
)

running time using O
(

2
√

N
)

space (see Remark 3.2 below). In this case the algorithm is

essentially equivalent to the method of Buchmann, Jacobson, and Teske [27].6

Remark 3.2. We may abuse notation by using explicit constants within big-O expressions.7 Thus

the expression O
(
2
√
πN/2

)
may be read as 2

√
πN/2+ o

(√
N
)

or
(
2
√
π/2+ o(1)

)√
N. Any big-

O expression which includes an explicit multiplicative constant may be interpreted unambiguously

in this fashion.

In the simplest case, d(n) = 1, Algorithm 3.3 reduces to Terr’s version of the baby-

step giant-step algorithm, also known as the triangle-number method [108]. This algorithm

represents the fastest generic order algorithm in the literature. By the theorem above,

the same O
(

2
√

2N
)

running time is achieved for any reasonable d(n) whose growth is

subexponential, a fact that will be useful in what follows. As a practical matter, d(n) = 1

is not the best choice. A linear or quadratic function will result in essentially the same

number of group operations but will improve the localization of memory access by reducing

the number of transitions between baby steps and giant steps as the table gets large.

For large problem sizes, memory usage plays an important role in the performance of

Shanks algorithm; processing many baby steps at once is more efficient in most table

implementations.

Summary

The Shanks baby-steps giant-steps approach has the following features when applied to

order computation:

1. It is a deterministic algorithm with a running time of approximately 2.8
√

N.

2. It determines |α| precisely, rather than simply finding a multiple of |α|.

3. It is flexible. It can readily benefit from known constraints on N = |α|, as well as the

availability of a fast inverse operation.

6Buchmann et al. give an O
�
4N1/2

�
bound on the running time, but the worst case occurs when the

baby-step/giant-step ratio is 2:1, improving the constant to 3.
7This is oxymoronic of course, but it improves readability enough to justify the abuse. We will avoid this

in the statement of theorems.
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The deterministic running time and its flexibility give it an advantage over the rho method

when space is not a concern. For large problems however, space quickly becomes the

limiting factor, and it is unfortunately not as well suited to parallel implementation as the

rho method.

An Ω
(√

N
)

lower bound?

The expected running time of Algorithm 3.1, based on the rho method, is nearly the same as

the running time of Algorithm 3.3 which uses the baby-steps giant-steps approach; roughly

2
√

Nπ/2 ≈ 2.5
√

N versus 2
√

2N ≈ 2.8
√

N. It is natural to ask whether there is a lower

bound close to these values.

In [108], Terr proves a
√

2N lower bound for all “similar” methods based on an analysis

of the number of distinct positive integers which can be represented as the difference of

two numbers in a sequence. He considers sequences which are addition chains, but the

argument applies more generally.

Lemma 3.3. Let a1, a2, . . ., be a sequence of integers, and for every positive integer N, let c(N) be the

least m such that every positive integer k ≤ N is the difference ai − a j of two numbers in a1, . . . , am.

Then for every N, c(N) >
√

2N.

Proof. Let m = c(N). There are
(m

2

)
distinct pairs in a1, . . . , am, and each pair represents one

positive integer by their difference. Thus
(m

2

)
≥ N, implying m >

√
2N. �

Applying this to a generic algorithm, we may consider the exponent sequence associated

with an algorithm’s execution, and argue that until the algorithm finds αei = αe j for some

pair of exponents ei , e j, it is impossible for the algorithm to correctly output |α|. If it is

assumed that whenever αei = αe j for some ei , e j, we have ei − e j = |α|, then the lemma

above implies a lower bound of
√

2N group operations. This assumption is certainly true

for all the baby-steps giant-steps algorithms we have considered, and would seem to pose

a clear limitation on the baby-steps giant-steps approach.

However, as indicated by Lemma 2.1, the only necessary condition is that ei − e j be a

multiple of |α|, it need not equal |α|. This apparently minor detail is the enabling factor

behind the algorithms we present in the next two chapters.
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Chapter 4

The Primorial-Steps Algorithm

Chapter Abstract

We present a new generic order algorithm using the baby-steps giant-steps approach.
We begin with a bounded order algorithm with complexity o

(
M1/2

)
, then give an

unbounded version with comparable worst-case complexity but dramatically better
performance in most cases. For |α| = N uniformly distributed over [1,M], the
primorial-steps algorithm achieves a median complexity of O

(
N0.344

)
. For nearly

ten percent of the cases, the performance is O
(
N1/4

)
.

None of the order algorithms we have seen break the
√

2N log 2 barrier suggested

by the birthday paradox: a random sampling of large integers expects to accumulate this

many values before finding a pair that are congruent modulo N = |α|. The best of both the

rho method and baby-steps giant-steps algorithms come close, roughly within a factor of 2.

In this chapter we see how to beat the birthday paradox. We present an algorithm whose

performance is always o
(
N1/2

)
, often O

(
N1/3

)
, and occasionally even better.

The Basic Idea

Suppose we knew |α| were even. We could easily modify the baby-steps giant-steps

algorithm to compute only even powers of α, effectively improving the running time by

a factor of
√

2. Alternatively, we could simply run the algorithm as-is on the element α2,

achieving the same improvement. A similar argument could be made if we knew any

particular divisor of |α|.1

1Indeed, this is what makes fast order algorithms fast: they know all the divisors of |α|.
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Unfortunately, there is no way to be sure |α| is even. On the other hand, there is a

simple way to find a power of α whose order is odd: square α enough times, and we must

eventually get an element with odd order. We may use β = α2` , since we know |α| < 2`

(recall that group identifiers have length `), and computing β uses only ` group operations.

Once we have β with odd order, we can use a modified version of Algorithm 3.2 in which

baby steps land on odd powers of β and giant steps land on even powers of β, so that every

odd exponent can be expressed uniquely as the difference of a giant step and a baby step.

We can compute |β| using at most O
(√

2N
)

group operations,2 since |β| is no larger than |α|

(and may be smaller). This doesn’t quite give us |α|, but we know that |α| = 2hN′ for some

h ≤ `, hence 2` is a multiple of |αN′
|. We can determine h by squaring αN′ until we get 1G.

Note that we do not need to know the prime factors of N′.

The result is an algorithm which works on any α, whether its order is even or not, and

a running time bounded by O
(√

2N
)

(assuming ` = o
(√

N
)

, which is almost certainly

true, since ` = O
(
lg |G|

)
). Moreover, if it happens to be the case that |α| is even, the running

time improves further: O
(

1
√

N
)

or better depending on the power of 2 in |α|.

There is no reason to stop there. We can apply the same idea to obtain β = αE with order

coprime to 2 and 3 by letting E = 2`3b` log3 2c. The baby steps then consist of all powers of β

coprime to 6 up to some multiple of 6, say b, while the giant steps land on multiples of b. A

few extra group operations are required to cover the gaps between baby steps (computing

β2 and β4 suffices), and one extra group operation is needed to get the first giant step (the

last baby step plus one), but these are negligible. Once N′ = |β| is known, we can determine

|α| by computing |αN′
| using a fast order algorithm: we know E is an exponent of αN′ , and

we certainly know the prime factorization of E.3

More generally, we should compute β with order coprime to some primorial:

Pn = 2 ∗ 3 ∗ 5 ∗ · · · ∗ pw =
∏
p≤pn

p.

The notation x# =
∏

p≤x p is sometimes used to denote such a product. When x = pn is the

nth prime we adopt the following convention:

Definition 4.1. Pn denotes the product of the first n primes, where P0 = 1.

2O
�√

2N
�

means
�
1 + o (1)

�√
2N (see Remark 3.2).

3Recall that a fast order algorithm computes |α| given the factorization of a multiple of |α|. This can be done
very efficiently (see Chapter 7).
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4.1 Bounded Primorial Steps

We first give an algorithm for the case where an upper bound M is known. Recall that

the Euler function φ(n) counts the positive integers m ≤ n which are coprime to n. For a

primorial Pw, the value of φ(Pw) is simply
∏

p≤pw
(p − 1). The notation m ⊥ n indicates that

m and n are coprime (have no common divisor). Assume, for the moment, M′ =M.

Algorithm 4.1 (Bounded Primorial Steps). Given α ∈ G, M ≥ |α|, M′ ≤ M, and a fast order

algorithmA(α,E), compute |α| as follows:

1. Compute β: Maximize Pw s.t. Pw ≤
√

M′, then maximize m s.t. m2Pwφ(Pw) ≤M′.

Set b← mPw, set E←
∏

p≤pw
pblogp Mc, and compute β← αE.

2. Baby Steps: For j from 1 to b, if j ⊥ Pw, compute β j and store (β j, j) in a table.

If any β j = 1G, set N′ ← j and go to step 4.

3. Giant Steps: For i = 2b, 3b, . . ., compute βi and do a table lookup.

When βi = β j, set N′ ← i − j and go to step 4.

4. Compute |α|: Compute h←A(αN′ ,E) and return hN′.

The correctness of the algorithm is easily verified. For any p which divides N = |α|,

the greatest power of p dividing N is at most logp N ≤ logp M, hence |αE
| = N/gcd(N,E) is

coprime to Pw. If |αE
| ≤ b, this will be detected in step 2. Every integer N′ > b and coprime

to Pw can be written uniquely in the form N′ = i − j, where i > b is a multiple of b = mPw,

and j < b is coprime to Pw. The first case where βi = β j will yield N′ = i − j = |β|. Since

(αN′)E = (αE)N′ = βN′ = 1G, it follows that E is an exponent of αN′ . Computing h = |αN′
|

then gives hN′ = |α|, by the following lemma:

Lemma 4.1. Let α ∈ G, and let k be an integer. If n1 = |αk
| and n2 = |αn1 | then |α| = n1n2.

Proof. The hypothesis n2 = |αn1 | implies that n1n2 is an exponent of α. If n1n2 , |α| then

αn1n2/p = 1G for some prime p|n1n2. If p|n2 then αn1n2/p , 1G, since n2 = |αn1 | is the minimal

exponent of αn1 , so p must divide n1. Then αkn1/p has order p, since n1 = |αk
|, but n2 is not a

multiple of p, so αkn1n2/p , 1G. This implies αn1n2/p , 1G, which contradicts our supposition

that n1n2 , |α|, hence n1n2 = |α|. �
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Example 4.1.1. Let M = 10, 000 and suppose |α| is the prime 7883. Then Pw = 30, φ(Pw) = 8,

m = 6, b = 180, E = 213
∗ 38
∗ 55, and |β| = 7883. The 48 baby steps are:

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . . , 151, 157, 161, 163, 167, 179, 173, 179.

The auxiliary powers β2, β4, and β6 suffice to cover all the gaps, and one additional power β180 is

computed to begin the giant steps: 360, 540, 720, . . . , 7740, 7920. The algorithm finds β7920 = β37

and N′ = 7883 after taking 43 giant steps. In this case αN′ = 1G, so h = 1 and hN′ = 7883. A

standard baby-steps giant-steps search for |α| would use 100 baby steps and 77 giant steps.

Suppose instead |α| = 7566 = 2∗3∗13∗97. Then |β| = 1261, and only 7 giant steps are required

to find β1440 = β179 and N′ = 1261. Then h = A(αN′ ,E) = 6 and hN′ = 7566.

Complexity Analysis

The choice of Pw in step 1 is smaller than optimal. Ideally we want Pwφ(Pw) = M, not

P2
w = M, but pushing Pw too close to the optimal value can make it difficult to maintain

a 1:1 ratio of baby steps to giant steps in the worst case. Using a slightly smaller value

has negligible impact. The algorithm is optimized for the worst case, where |α| is close to

M and coprime to Pw. If |α| has some small factors, as in the second example above, the

number of giant steps is much smaller than the number of baby steps, which is not optimal.

This illustrates a further limitation of using an upper bound: even if |α| happens to be close

to M, |β| need not be. This limitation will be addressed by the next algorithm we consider,

but first we analyze the complexity of Algorithm 4.1.

The analysis of the primorial-steps algorithm necessarily involves the application of

some elementary number theory. The results we need are contained in Chapter 6. Of

particular interest is the value Pw/φ(Pw), the ratio of the size of the giant steps to the

number of baby steps. In the standard algorithm this ratio is always 1. In Algorithm 4.1,

Pw is chosen so that Pw ≤
√

M < Pw+1. Lemma 6.4 (Section 6.1) implies that

Pw/φ(Pw) ∼ eγ log log
√

M ∼ eγ log log M, (4.1)

where γ ≈ 0.5772 is Euler’s constant. The expression in (4.1) represents the asymptotic

advantage gained by the primorial-steps algorithm. While this approximation is valid as
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w pw Pw =
∏

p≤pw
p φ(Pw) =

∏
p≤pw

(p − 1) φ(Pw)/Pw Pw/φ(Pw)

1 2 2 1 0.5000 2.0000
2 3 6 2 0.3333 3.0000
3 5 30 8 0.2667 3.7500
4 7 210 48 0.2286 4.3450
5 11 2310 480 0.2078 4.8125
6 13 30030 5760 0.1918 5.2135
7 17 510510 92160 0.1805 5.5394
8 19 9699690 1658880 0.1710 5.8471
9 23 223092870 36495360 0.1636 6.1129
10 29 6469693230 1021870080 0.1579 6.3312

Table 4.1: The First Ten Primorials

M tends toward infinity, for practical values of M it is more appropriate to compute the

ratio directly. Ratios for the first ten primorials are listed in Table 4.1. The primorials form

sequence A002110 in the OEIS [98], and the values φ(Pw) form sequence A005867.

Proposition 4.2. If |α| < M and M′ =M, then Algorithm 4.1 uses at most

(
A1 + o (1)

)√
M/ log log M (4.2)

group operations, where A1 = 2e−γ/2 ≈ 1.4986. The group storage is at most half of (4.2).

Proof. Let m, P = Pw, and b = mP be the values computed in step 1 of Algorithm 4.1. Then

m2Pφ(P) ≤M < (m + 1)2Pφ(P). (4.3)

The number of baby steps is b′ = mφ(P), which may be bounded by

b′ = mφ(P) ≤
√

Mφ(P)/P. (4.4)

If g is the number of giant steps, step 3 will terminate with gb ≤ |β| < (g + 1)b. Since

|β| ≤ |α| < M, we may apply the right inequality in (4.3) to obtain

g ≤
|β|

b
≤

(m + 1)2Pφ(P)
mP

=

(
1 +

2
m
+

1
m2

)
mφ(P) ≤

(
1 +O

(
1
m

)) √
Mφ(P)/P, (4.5)
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where the last inequality follows from (4.4). By (4.3) and (4.1) we also have

(m + 1)2 >
M

Pφ(P)
≥

P2

Pφ(P)
= P/φ(P) ∼ eγ log log M, (4.6)

hence m is unbounded and 1/m = o (1). Adding (4.4) and (4.5) and applying (4.1) yields

b′ + g ≤ (2 + o (1))
√

Mφ(P)/P = (2e−γ/2 + o(1))
√

M/ log log M. (4.7)

This essentially completes the proof, as the group operations are dominated by this bound.

By Lemma 4.3 below, the gaps between baby steps up to P, and therefore all the gaps, can

be covered using O
(√

P
)
= O

(
M1/4

)
additional group operations. Step 1 uses O

(
lg E

)
=

O
(

lg2 M
)

group operations, since lg E = w lg M ≤ lg P lg M ≤ lg2 M. Any of the fast order

algorithms presented in Chapter 7 can complete step 4 in polylogarithmic time. �

The gaps between baby steps are generally quite small, being bounded by the largest

prime gap below
√

M, and a negligible number of group operations suffices to cover them.

Rather than give a tight bound, we prove a lemma that is more widely applicable. The

proof may be regarded as an application of the baby-steps giant-steps method.

Lemma 4.3. Let S be a sequence of integers 1 = s0 < s1 < · · · < sn = N. There is an addition chain

containing S of length at most

|S| +
√

2N +O
(
N1/3 lg N

)
,

which can be computed using O(
√

N lg N) arithmetic operations.

Proof. Let T = {t|t = si − si−1, 1 ≤ i ≤ n} be the set of gaps of S. The sum of the elements of T

is less than N. It follows that

|T| <
√

2N,

since any sum of k distinct positive integers is at least
∑k

i=1 i > k2/2. Now let m =
⌈
N1/3

⌉
,

and let U to be the addition chain {1, 2, 3, . . . ,m, 2m, 3m, . . . , (m − 1)m}.4 Then

|U| = O
(
N1/3) .

4We say a set is an addition chain if the ordered sequence of its elements is.
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Every positive integer up to N2/3
≤ m2 is either an element of U or the sum of a pair in

U. Fewer than N1/3 of the elements in T can be greater than N2/3, since the sum of the

elements in T is less than N. For each of these an addition chain of length O
(
lg N

)
can be

constructed using O
(
lg N

)
arithmetic operations via the binary exponentiation algorithm.

Let V be the union of these chains. Then T ∪U ∪ V is an addition chain and

|V| = O
(
N1/3 lg N

)
,

hence S ∪ T ∪U ∪ V satisfies the lemma. �

The Average Case

We wish to compare the average case performance of the bounded primorial-steps algo-

rithm and the standard baby-steps giant-steps method. We assume that |α| is uniformly

distributed over some interval [1,M]. Note that the optimal bound to use, knowing this

distribution,5 is not M, but some M′ < M that minimizes the average number of group op-

erations over values of |α| in [1,M]. For the standard baby-steps giant-steps algorithm the

optimal bound is M′ =M/2 and the average number of group operations is 2
√

M′ =
√

2M

(compared to 2
√

M). The optimal M′ to use in Algorithm 4.1 is given below.

Proposition 4.4. If |α| is uniformly distributed over [1,M], the average number of group operations

used by Algorithm 4.1 is at most (
A2 + o(1)

)√
M

log log M
, (4.8)

provided the input bound M′ = (ζ(2)/2)M ≈ 0.8225M is used, where A2 = e−γ
√

2ζ(2) ≈ 1.0184.

The average group storage is half of (4.8).

Proof. Assume for the moment that the bound M′ =M is used, and let r = Pw/φ(Pw), where

Pw is the value chosen in step 1 of Algorithm 4.1. By (4.1), r ∼ eγ log log M. Let κy(x) denote

the y-coarse part of x, the largest divisor of x whose prime factors all exceed y. If we set

y = pw then |β| = κy(|α|). The average number of group operations may be bounded by

1
M

M∑
x=1

(
b
r
+
κy(x)

b

)
=

b
r
+

(
1

bM

M∑
x=1

κy(x)

)
=

b
r
+
κy

b
, (4.9)

5In the bounded case it is reasonable to assume the distribution is known. In the unbounded case it is not.
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where b is the step size and κy is the mean value of κy(x) over x ∈ [1,M]. The term b/r is

the number of baby steps, and the term κy(x)/b is the number of giant steps required when

|α| = x. An asymptotic estimate for κy is derived in Section 6.5. To apply the estimate in its

most convenient form we need y = Θ
(
log M

)
. By the PNT (Theorem 6.2) we have

log Pw =
∑
p≤pw

log p = ϑ(pw) = ϑ(y) ∼ y, (4.10)

and since log Pw = Θ
(
log M

)
, we can now apply Corollary 6.17 to obtain

κy ∼
ζ(2)M

2eγ log log M
∼
ζ(2)M

2r
. (4.11)

It follows that (4.9) is asymptotic to

b
r
+
ζ(2)M

2br
, (4.12)

which is minimized when b =
√

Mζ(2)/2. If we use M′ =Mζ(2)/2 as our initial bound, this

will be true to within a factor of 1 + o(1), and the value of r will be effectively unchanged,

since r = Θ
(
log log M

)
. The average number of group operations will then be bounded by(

2+o (1)
)
b/r, of which half are baby steps, determining the group storage used. Substituting

r ∼ (eγ log log M) and b =
√

Mζ(2)/2 completes the proof. �

Table 4.2 compares the complexity of Algorithm 4.1 to the standard baby-steps giant-

steps method, Algorithm 3.2. The ratios compare the dominant terms in the complexity

of the two algorithms and apply to both time and space. The worst case occurs when |α|

contains no small prime factors, e.g. when |α| is prime.

The average case performance of Algorithm 4.1 may be improved by using a larger

value of E in step 1. This increases the value of y in the proof above, effectively decreasing

κ∗y. An average complexity of O
(
M1/2(log M log log M)−1/2

)
can be obtained with this

approach, however, the algorithm we next consider surpasses this bound.

The bounded primorial-steps algorithm is severely limited by not taking full advantage

of the situation when |β| < |α|. For larger values of E, it will often be the case that |β| � |α|.

Thus even if we know tight bounds on |α|, it is still essential to have an unbounded version

of the algorithm.
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Worst Case Average

M T1/T2 T2/T1 T1/T2 T2/T1

106 0.4624 2.1626 0.2742 3.6464
109 0.4304 2.3236 0.2376 4.2095
1012 0.4113 2.4313 0.2170 4.6090
1015 0.3981 2.5117 0.2033 4.9189
1018 0.3883 2.5755 0.1933 5.1721

Table 4.2: Bounded Primorial Steps (T1) vs. Bounded Baby-Steps Giant-Steps (T2)

4.2 Unbounded Primorial Steps

Algorithm 4.1 depends on M in two ways: M determines the choice of Pw, and M bounds

the prime powers in the exponent E. The latter dependence is effectively logarithmic in M.

For the moment we will accept this and use the identifier length ` to bound the power of

any prime factor of E. We will address the dependence on ` in the next chapter.

To address the major dependence on M, we can adapt Algorithm 3.3, where we use

a growth function d(k) to determine the number of steps to take in each iteration. Here

we definitely want d(k) to grow reasonably quickly, as the largest Pw we can use at any

stage will be limited by d(k). On the other hand, we must take care not to let d(k) grow too

quickly since, as we saw in Proposition 3.2, the optimal performance is achieved when d(k)

is sub-exponential. Using a quadratic growth function works well in practice.

One minor annoyance arises when switching from a multiple of Pw to a multiple of

Pw+1. We need to be sure to end our baby steps just below a multiple of Pw+1 and to start

our giant steps on a multiple of Pw+1, which my require a short ”stutter step” to handle the

transition. We also add the parameter L which bounds the prime factors of the exponent

E used to compute β = αE. This should be large enough to avoid unnecessarily restricting

Pw (`/2 suffices), but may be much larger.

Algorithm 4.2 (Unbounded Primorial Steps). Given α ∈ G, ` ≥ lg |α|, L > 0, a growth function

d(k), and a fast order algorithmA(α,E), compute |α| as follows:

1. Compute β: Let E =
∏

p≤L pblogp 2`c and compute β← αE.

2. Initialize: Maximize w s.t. Pw ≤ d(0) and pw ≤ L. Set k← 0, b← 0, and g← 0.
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3. Adjust Pw: If Pw+1 ≤ d(k) and pw+1 ≤ L then

a. Increment w, minimize b1 = mPw ≥ b, and minimize g1 = mPw ≥ g.

b. For j from b to b1, if j ⊥ Pw compute β j and store (β j, j) in the table.

If any β j = 1G, set N′ ← j and go to step 7, otherwise set b← b1.

c. Set i← g1, compute βi and do a table lookup.

If βi = β j, set N′ ← i − j and go to step 7, otherwise set g← g1.

Maximize m s.t. mPw ≤ d(k), then set s← mPw and s′ ← mφ(Pw).

4. Baby Steps: For j from b to b + s, if j ⊥ Pw, compute β j and store (β j, j) in a table.

If any β j = 1G, set N′ ← j and go to step 7, otherwise set b← b + s.

5. Giant Steps: For i = g + b, g + 2b, . . . , g + s′b, compute βi and do a table lookup.

If any βi = β j, set N′ ← i − j and go to step 7, otherwise set g← g + s′b.

6. Iterate: Increment k and go to step 3.

7. Compute |α|: Compute h←A(αN′ ,E) and return hN′.

To gain an understanding of the algorithm, it is helpful to suppose that in step 3a it

always happens that b and g are divisible by Pw, allowing steps 3b and 3c to be ignored.

With this in mind, the algorithm may be viewed as a simple integration of Algorithm 3.3

and Algorithm 4.1. As shown in the proof below, the number of group operations involved

in steps 3b and 3c is negligible.

Proposition 4.5. Let N = |α|, let ` ≥ lg N, and let L ≥ `/2. Let d(k) be a growth function satisfying

∆d ≺ d that is polynomially bounded above and below. If algorithm A(γ,E) has complexity

T(lg |γ|, lg E) at least linear in lg E, then Algorithm 4.2 uses at most

(
A3 + o (1)

)√
N/ log log N + T(lg N, `π(L)) (4.13)

group operations and
(
A3/2 + o (1)

)√
N/ log log N group storage. A3 = 2e−γ/2

√
2 ≈ 2.1194.

Proof. We begin by assuming that stutter steps do not occur, i.e. that step 3a always sets

b1 = b and g1 = g. We then show the asymptotic bounds are unaffected by stutter steps.
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Let w(n), s(n), and s′(n) be the values of w, s, and s′ derived from d(n), and define

r(n) = s(n)/s′(n) = Pw(n)/φ(Pw(n)). (4.14)

For all n we have Pw(n) ≤ d(n) < Pw(n)+1, hence r(n) ∼ eγ log log d(n) by Lemma 6.4. It follows

that r(n) ∼ eγ log log n, since d(n) is bounded by polynomial functions of n.

Following Proposition 3.2, let b(n) and g(n) be the values of b and g reached in the

nth iteration, so that in the final iteration t we have g(t − 1) ≤ N′ < g(t). Using the same

notation, we have b =
∑

s and g =
∑

(Eb)s′, with b(0) = g(0) = 0. If we define g̃ =
∑

(Eb)s,

then as in Proposition 3.2, we find b2 ∼ 2g̃. We also have

g̃(n) =
n−1∑
i=0

b(i + 1)s(i) =
n−1∑
i=0

b(i + 1)r(i)s′(i) =
n−1∑
i=0

r(i)∆g(i)

= r(n)g(n) −
n−1∑
i=0

g(i + 1)∆r(i), (4.15)

where we sum by parts in the last line. The RHS of (4.15) is dominated by the first term,

since ∆r is almost always zero and g(n) is polynomially bounded.6 Thus b2 ∼ 2g̃ ∼ 2rg,

and if we define b′ =
∑

s′, a similar argument shows b ∼ rb′. Therefore rb′ ∼
√

2rg and

b′ ∼
√

2g/r. But b′(t) is precisely the number of baby steps, g(t − 1) ≤ N′ < g(t), and, as in

Proposition 3.2, we have g(n) ∼ g(n + 1). Thus we have

b′ ∼
√

2N′/r(t) ∼
(

e−γ/2
√

2
) √

N′/ log log t ∼
(

e−γ/2
√

2
) √

N′/ log log N′, (4.16)

where the replacement of log log t by log log N′ is justified by the fact that N′ < g(t) is

polynomially bounded in t. Since N′ ≤ N, the number of baby steps is bounded by

(
e−γ/2

√

2 + o (1)
)√

N/ log log N, (4.17)

and the number of giant steps is no greater. As in Proposition 4.2, the group operations

needed to cover gaps between baby steps are negligible.

We now account for the possibility of stutter steps. Recall that Pw(n) ≤ d(n), thus

w(n) is logarithmically bounded, since 2m
≤ Pm, and bounds the number of stutter steps.

6This can be rigorously proven using Stieltjes integrals and asymptotic integration (see Section 6.5).
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Each stutter step uses no more than d(t) group operations, and the total d(t)w(t) is strictly

dominated by b′(t) since the function ∆b′ = s′ = s/r ≥ d/(2r) is within a polylogarithmic

factor of the function dw.

Finally, we account for the group operations used in step 1 and step 7. The size of

the exponent E is given by lg E = `π(L), thus the exponentiation in step 1 uses O (`π(L))

group operations. The complexity bound onA(αN′ ,E) then gives the desired result, since

|αN′
| ≤ |α| = N. The group storage is determined by the number of baby steps, which is at

most half the time bound. �

Unless L is very large, the first term in (4.13) dominates and the worst-case complexity

of Algorithm 4.2 is O
(√

N/ log log N
)
, within a constant factor of the bounded version. As

with the unbounded baby-steps giant-steps algorithm, we increased the running time by a

factor of
√

2 in order to remove the dependence on M. Thus a comparison of the worst-case

complexity of Algorithm 4.2 with Algorithm 3.3 will show the same ratios as listed in Table

4.2. The “average case”, on the other hand, is an entirely different story.

Average Complexity

The complexity of the primorial-steps algorithm is essentially determined by the order of

β = αE. If we suppose |α| is uniformly distributed over [1,M], then |β| will be substantially

smaller than |α| in many cases. The frequency with which this occurs (and the benefit when

it does) depends on the parameter L. In the extreme case, if we set L to
√

M, then |β| is

necessarily either 1 or the single prime factor of |α| >
√

M. On average, this will be smaller

than |α| by a factor of log M, but in nearly 1/3 of the cases β = 1G and no work is required

to determine |β|.

Unfortunately this value of L makes E = Θ
(
`π(L)

)
too large: it takes Ω

(√
M
)

group

operations to compute β = αE. However, a slightly more modest value of L, say L = M1/3,

achieves nearly the same result without increasing the average running time. This gives

a running time that is “often” O
(
N1/3

)
. More formally, an appropriate choice of L gives

an algorithm which uses only O (Mc) group operations for a constant fraction r(c) of the

possible values of |α| in [1,M]. In particular, for c = 1/3, we will find that r(c) ≈ 45%.

Before analyzing this phenomenon in more detail, we first consider the average per-

formance over uniformly distributed |α| in [1,M]. In what follows we assume that d(k) is
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always chosen to satisfy the conditions of Proposition 4.5. We also define

f∗(x) = A3
√

x/ log log x, (4.18)

for x ≥ 3. The function f∗(x) represents an asymptotic bound on the number of group

operations used by the main loop of Algorithm 4.2.

Proposition 4.6. If |α| is uniformly distributed over [1,M], ` = O
(
lg M

)
, and L = M1/u with

u > 2, then the average number of group operations used by Algorithm 4.2 is bounded by(
uA4 + o (1)

)√
M

log M(log log M)1/2 , (4.19)

where A4 ≈ 2.4.7 The average group storage is bounded by half of (4.19).

Proof. By Proposition 4.5, the function f∗(x) defined by (4.18) bounds the running time of

the main loop of Algorithm 4.2 in terms of x = |β|, which is the L-coarse part of |α|. As in

Section 6.1, we use κy(x) to denote the y-coarse part of x, the largest divisor of x whose

prime factors all exceed y. We wish to bound the mean value of f∗(κy(x)) over the interval

[0,M] with y = L. Applying Proposition 6.22, we find

1
M

M∑
n=1

f∗(κy(n)) ≤
(

uω(u)
s
+ o (1)

)
f∗(M)
log M

, (4.20)

where ω(u) ≤ e−γ + 0.005684 ≈ 0.5672, and s = 1/2 is the exponent of x in f∗(x). Setting

A4 = 0.5672 ∗ A3/s ≈ 2.4, where A3 is the constant from Proposition 4.5, gives

(
uA4 + o (1)

)√
M

log M(log log M)1/2 , (4.21)

which is the desired bound. Let ` = c lg M. The size of the exponent E is bounded by

lg E ≤ cπ(L) lg M = cπ(M1/u) lg M ∼
cuM1/u

log 2
, (4.22)

by the prime number theorem. Using any fast exponentiation algorithm, step 1 will use

O
(
M1/u

)
group operations. Using Algorithm 7.1 to perform the fast order computation in

7As noted in Section 6.5, this constant is not tight. Using the speculated bound (6.40), A4 ≈ 2.1.

67



step 7 will also use O
(
M1/u

)
group operations. These bounds are dominated by (4.21) for

u > 2. In no case is the group storage more than half the number of group operations. �

The bound above is not tight, but it gives a fairly accurate measure of the average

performance. It also hides a great deal. The average is dominated by the worst-case

running time of a small fraction of the values in [1,M]: large primes and other numbers

composed mostly of large primes. The order of β after all the primes up to L have been

removed from |α| is reasonably likely to be less than M2/3 (about 45% of the time). For these

cases the running time of Algorithm 4.2 is O
(
M1/3

)
.

More generally, for a given choice of L = M1/u, provided that |β| is O
(
M2/u log log M

)
,

Algorithm 4.2 will use O
(
M1/u

)
time and space. This will certainly occur whenever the

L-coarse part of |α| is smaller than L2. In this scenario, |α| can contain at most one prime

factor bigger than L, and all its prime factors are less than L2. Such a number is said to

be semismooth with respect to L2 and L. Semismooth numbers are discussed further in

Section 6.4, but for the moment it suffices to know that there is a function G(1/u, 2/u) which

computes the probability that a random integer in [1,M] is semismooth with respect to

M2/u and M1/u.

Proposition 4.7. Let T(N) be the number of group operations used by Algorithm 4.2 on input α

with |α| = N. If |α| is uniformly distributed over [1,M], ` = O
(
lg M

)
, and L = M1/u, there is a

constant c such that

Pr
[
T (|α|) ≤ cM1/u

]
≥ G(1/u, 2/u), (4.23)

for all sufficiently large M, where G(r, s) is the semismooth probability function (Definition 6.8).

Proof. Let L =M1/u. Choose c′ so that f∗(x) = A3
√

x/ log log x ≤ c′x2/u for all x ∈ [L,L2] and

so that steps 1 and 7 of Algorithm 4.2 require less than c′M1/u group operations (both steps

have linear complexity for ` = O
(
lg M

)
and L =M1/u as in Proposition 4.6). If the L-coarse

part of x = |α| is less than L2, then the complexity of Algorithm 4.2 will be less than cM1/u,

where c = 2c′. This occurs precisely when x is semismooth with respect to M2/u and M1/u,

and the proposition follows from the definition of G(r, s). �

Asymptotically, the constant c in the proposition can be made arbitrarily small by

choosing L slightly less than M1/u, say L =M1/u(log log m)−1/3. Of more practical relevance

are the values of σ(u) = G(1/u, 2/u) which are listed in Table 6.1 of Chapter 6, including
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σ(2.2) ≈ 90%, σ(2.9) > 50%, and σ(4) ≈ 10%. To better represent the “typical” performance

of Algorithm 4.2, we define the median complexity of a generic algorithm:

Definition 4.2. For a specified set of input values, the median complexity of a generic algorithm

is the least integer N for which the algorithm uses less than N group operations for at least half the

input values in the set.

Noting that G(1/u, 2/u) > 1/2 for u = 2.9 yields the following corollary:

Corollary 4.8. For |α| uniformly distributed over [1,M], ` = O
(
lg M

)
, and L =M1/3, the median

complexity of Algorithm 4.2 is O
(
M0.344

)
.

Before presenting a more general version of the primorial-steps algorithm which ad-

dresses the dependence on ` and the optimal choice of L, let us take a moment to reflect on

what we have found. Consider a hypothetical scenario in which we are asked to compute

|α| for some particular α ∈ G with unknown order N uniformly distributed over [1, 1024].

This scenario is clearly “hypothetical”, as any algorithm based on a baby-steps giant-steps

approach is likely to require more space than is reasonably available. Or so it would seem.

Table 4.3 lists running times for three unbounded order algorithms in this scenario. For

the rho method, the optimized version of Teske’s algorithm is used (Algorithm 3.1), with

an expected running time of ≈ 2.5
√

N. For the sake of simplicity, we assume the expected

running time always occurs and only consider the distribution of input sizes, not the coin

flips of the randomized algorithm. For the baby-steps giant-steps algorithm we use Terr’s

triangle method (Algorithm 3.3), with a running time of ≈ 2.8
√

N. These two options

represent the best choices among existing generic algorithms.

For the primorial-steps algorithm, we use Algorithm 4.2 with ` = lg M and L = M1/u

where u = 2.9. We will see how to remove the explicit dependence on M in the next

chapter, but for now we pick values to optimize the median complexity, at the expense of

the average performance, which would benefit from a larger value of L. We then apply

Propositions 4.5, 4.6, and 4.7 to compute the worst, average, and median complexity for

this choice of L. In the median case we can choose c′ ≈ 1 giving c ≈ 2 in Proposition 4.7.

The group storage is half the group operations in the first two cases, and between 1/3 and

1/4 in the median case.

We suppose that the black box performs 105 group operations per second, comparable to

several of the black boxes described in Chapter 11, and assume any auxiliary computations
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Algorithm Worst Average Median

Rho method 289 days 193 days 204 days
Baby-steps giant-steps 327 days 218 days 231 days
Primorial steps 117 days 8 days 63 min
Rho method - - -
Baby-steps giant-steps 23 Tb 15 Tb 16 Tb
Primorial steps 8 Tb 0.5 Tb 1 Gb

Table 4.3: Hypothetical Comparison of Order Algorithms with |α| ∈ [1, 1024]

done by the algorithms are negligible; this will be true in an efficient implementation of any

of these three algorithms. We assume 16 bytes suffice to store a group identifier along with

any table overhead for the baby-steps giant-steps and primorial-steps algorithms. This is

about 1/3 larger than the absolute minimum required, giving the black box some flexibility

and keeping the algorithms honest. We have not assumed fast inverses are available (see

Remark 3.1). This optimization could reduce the time and space listed for the baby-steps

giant-steps algorithm and the primorial-steps algorithm by up to 30%.

As indicated by the median case in Table 4.3, at least half the time the primorial-steps

algorithm computes |α| in about an hour using less than 1Gb of memory, easily achieved

on a typical personal computer (2007).

Skepticism in the face of such hypothetical scenarios is completely justified, as they

gloss over any number of issues that arise in practice. The reader is invited to peruse the

performance results in Chapter 11. Comparisons of computations using the primorial-steps

algorithm against published results for other generic algorithms show differences every bit

as dramatic as those in the table above.8 Indeed, the performance of the primorial-steps

algorithm on ideal class groups is substantially better than indicated by Table 4.3. The

observed median complexity for class groups of comparable size was better than O
(
N0.3

)
(see Chapter 11, Table 11.6), which would give a running time of a few minutes in the

scenario above.

While the median-case performance in Table 4.3 looks quite attractive, it is clear that

primorial-steps algorithm will run into space limitations on large problems, even in sit-

uations where the running time is tractable. This is a problem with baby-step giant-step

8Albeit on a necessarily smaller scale, due to the limited availability of results for large groups.
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methods in general: they run out of space before they run out of time. We will see how

to address this issue in the next chapter, achieving an algorithm with essentially the same

median performance, without space limitations.
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Chapter 5

The Multi-Stage Sieve

Chapter Abstract

We present a fully generalized order algorithm that nearly matches the performance
of the primorial-steps algorithm without requiring a prime bound to be specified.
The search phase of each stage is performed by a subroutine which may use either a
primorial-steps search or a rho search. In the latter case, the same O

(
N0.344

)
median

case performance is achieved using minimal space. We consider similarities with
certain algorithms for integer factorization, and show that any problem which can be
reduced to solving one of a sequence of random order computations can be solved
by a generic algorithm with subexponential complexity.

We wish to generalize the unbounded version of the primorial-steps algorithm to re-

move the dependence on the prime bound L. For a particular N = |α|, the best choice of

L depends on the multiplicative structure of the integer N. In the worst case, N is prime,

and there is no reason to choose L > 1
2 log N. This will ensure that an appropriately large

primorial P =
∏

p≤L p is used by Algorithm 4.2, and a smaller value may suffice (depending

on the function d(k)). In practice one rarely needs L > 30 if N is prime.

When N is composite, it is almost always worth making L big enough to ensure that

every prime in N but the largest is removed from N′ = |β|. To simplify the discussion,

we will suppose that N is square-free; taking prime-power factors into account does not

change the basic argument. To remove all but one prime factor from N, L should be as big

as the second largest prime factor of N. The cost of making L this large is felt in steps 1 and

7 of Algorithm 4.2, which use a total of about

2π(L) lg L ∼ 2L lg L/ log L = (2 log−1 2)L ≈ 3L
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group operations, assuming we use Algorithm 7.1 for the fast order computation in step 7.

The benefit of doing so is roughly

N1/2
− (N/L)1/2

≥ N1/2
−N1/4

≈ N1/2,

assuming we ignore the factor A3(log log N)−1/2, which is reasonably close to 1 and never

less than 1/2 for realistic values of N. Thus for any L up to about
√

N/3, we should be

prepared to exponentiate α by all the primes up to L in order to reduce N′ to a prime

number. Note that the argument applies to any particular N = |α|; it does not depend on

the distribution of |α|.

This is a somewhat startling conclusion, as it implies using millions, possibly billions,

of primes for large values of N. On the other hand, we would prefer not use any more than

the absolute minimum required. Unfortunately, we have no way to know when we have

reached that point, other than searching up to approximately L2 to see if we find N′ = |β|,

e.g. by running the main loop of Algorithm 4.2 up to this bound. If the search fails, we

know that either the largest prime divisor of N is greater than L2, or the second largest

prime divisor is greater than L. We cannot tell which is the case, so we assume the latter.

We need to work our way up in stages, alternating between exponentiating and search-

ing, never putting too much effort into either in any one stage. This requires some faith on

our part; we must be prepared to discard the effort put into searching, starting over with

a new β each time. It also means a slight sacrifice in the constant factors: if N is prime, all

of the exponentiations past L ≈ 30 are pointless, as are all the restarted searches. If we are

careful, the impact on the worst case will be a factor of about 2. This is a small price to pay

to ensure that we are close to the optimal choice of L in every case.

To minimize unnecessary exponentiations, we adopt the following strategy. Using a

small provisional value L1, we compute β1 = αE
1 and search to some initial bound B1 for

N1 = |β1|. If we don’t find N1 we know that |β1| > B1 and should be prepared to increase L1

to L2 =
√

B1/c, for some small constant c ≈ 3, in the hopes of making N2 = |β2| smaller than

N1. We then set a new bound B2 = b2B1, where the constant b ≥ 2 effectively determines the

growth rate of both Bi and Li. We continue in this fashion until we find Ni = |βi|. We then

apply a fast order computation to determine |αNi | using a factored exponent E (containing

powers of primes bounded by L) and output |α| = |αNi |Ni.
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Adopting a staged approach allows us to remove the dependence on the parameter

` in Algorithm 4.2. We let Ki denote the maximum prime pw that may arise during the

execution of Algorithm 4.2 up to the bound Bi. The value of Ki can be readily determined

from Bi and the growth function d(k).1 We will be satisfied to remove the prime power

bBicp = max{ph : ph
≤ Bi}

from |α| for each p ≤ Ki. This doesn’t guarantee |βi| is not divisible by some p ≤ Ki, but if it

is, then |α| is divisible by a large power of p and we will discover this in a later stage. This

happens very rarely and when it does we are assured a running time of O
(
N1/3

)
.

The main algorithm is given below. It uses the subroutine S(β,B) to search for |β| up

to the bound B. We use variables subscripted by i for the sake of exposition, but only the

values for the current stage need to be maintained.

Algorithm 5.1 (Multi-Stage Sieve). Given α ∈ G and constants b, c,L1,B1 ≥ 1, the following

algorithm computes |α|:

1. Initialize: If α = 1G, return 1, otherwise set E0 ← 1, β0 ← α, and i← 1.

2. Begin Stage i: If i > 1, set Bi ← b2Bi−1 and Li ←
√

Bi/c. Determine Ki and set

Ei ←
∏

p≤L q where q = bBicp for p ≤ Ki and q = bLicp for p > Ki.

3. Exponentiate: Compute βi ← βEi/Ei−1
i−1 .

4. Search: Compute Ni ← S(βi,Bi). If Ni = 0, increment i and go to step 2.

5. Compute |α|: Compute h←A(αNi ,Ei) and return hNi.

The correctness of the algorithm follows from Lemma 4.1 and the correctness of algo-

rithms S andA. AlgorithmA needs to know the factorization of Ei, so it may be useful to

keep track of the prime powers in Ei as they accumulate. Alternatively Ei may be implicitly

specified in terms of the bounds Li and Bi. The latter option is the more space efficient (Ei

may get very large). AlgorithmA can then recompute the prime powers ph of step 2 as it

needs them.

1There are only about ten values that arise in practice. A lookup table can easily be precomputed.
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5.1 Primorial-Steps Search

We now consider the search subroutine S(β,B). Note that even though we have a bound

B, the search is still effectively an unbounded search: we hope that |β| � B, and we want

the running time to depend on |β| not B. It is not necessarily the case that |β| is larger than

the previous bound; additional exponentiations may have reduced the order of β.2

Below is a primorial-steps search algorithm which implements S(β,B). This is essen-

tially Algorithm 4.2 with steps 1 and 7 removed, but we also address the possibility that

|β| is actually divisible by a prime in Pw. In this scenario we do not really expect to find |α|

in the current stage, but we account for the fact that a giant step could land on an integer

which is an exponent of β but not equal to |β| (if the element β0 = 1G is in the lookup table,

we will find a match). Alternatively, we could ignore this complication and pretend we

haven’t found |β|, but it seems foolish not to capitalize on our good luck. A fast order

algorithmA(α,E) is used in step 6 to handle this situation.

Algorithm 5.2 (Primorial Steps Search). Given β ∈ G, a bound B, and a growth function d(k),

compute β as follows:

1. Initialize: Maximize w s.t. Pw ≤ d(0). Set k← 0, b← 0, and g← 0.

Store (1G, 0) in a table.

2. Adjust Pw: If Pw+1 ≤ d(k) then

a. Increment w, minimize b1 = mPw ≥ b, and minimize g1 = mPw ≥ g.

b. For j from b to b1, if j ⊥ Pw, compute β j and store (β j, j) in the table.

If any β j = 1G, set N← j and go to step 6, otherwise set b← b1.

c. Set i← g1, compute βi, and do a table lookup.

If βi = β j, set N← i − j and go to step 6, otherwise set g← g1.

Maximize m s.t. mPw ≤ d(k), then set s← mPw and s′ ← mφ(Pw).

3. Baby Steps: For j from b to b + s, if j ⊥ Pw, compute β j and store (β j, j) in the table.

If any β j = 1G, set N← j and go to step 6, otherwise set b← b + s.

4. Giant Steps: For i = g + b, g + 2b, . . . , g + s′b, if i > B return 0, otherwise lookup βi.

If any βi = β j, set N← i − j and go to step 6, otherwise set g← g + s′b.
2We do know that |βi| is either 1 or greater than Li, but this is of minimal use.
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5. Iterate: Increment k and go to step 3.

6. Finalize: Factor N and returnA(β,N).

If Algorithm 5.2 uses t group operations, then N will be O
(
t2 log log t

)
, so the time

required to factor N in step 6 is negligible, and requires no group operations in any event.

5.2 Rho Search and Hybrid Search

It is not necessary to use Algorithm 5.2 to implement S(β,B). We can use Algorithm

3.1 based on the rho method instead. This increases the running time by a factor of

Θ
(
(log log N)−1/2

)
, but addresses the more significant obstacle of space limitations. The

exponentiations and fast order computations performed by Algorithm 5.1 can all be done

in polylogarithmic space (see Algorithm 7.1). The Ei are exponentially large, but they can

be stored implicitly as ranges of prime powers.

The worst-case performance is then no longer o
(√

N
)

, but from a practical point of

view we have only lost a factor of 2 or 3 and can still achieve O
(
N0.344

)
median complexity

with minimal space requirements. The constant factors are improved by the fact that we

do not need to implement the restart strategy described in Section 3.1; the multi-stage sieve

restarts even more frequently and uses a tighter bound.

To gain the best of both search methods, a hybrid approach may be used. Algorithm 5.1

can use a primorial-steps search in the early stages, and if space becomes limited, switch

to a rho search. This is easy to implement and gives good results. Small searches are

noticeably faster; the asymptotic behavior of theΘ
(
(log log N)−1/2

)
factor means that most

of the benefit is realized early, and the primorial-steps search has better constant factors

for small values of N. Large searches would be impractical without the rho method, so we

don’t mind the slight reduction in performance when N is large.

5.3 Complexity Analysis

To analyze the complexity of Algorithm 5.1, we consider the termination conditions. For

the sake of simplicity, suppose N = pqr, where p > q are prime and r contains no prime
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power greater than q (r is q-powersmooth). Algorithm 5.1 terminates in stage t with

Lt−1 < q∗ ≤ Lt, (5.1)

where q∗ = max(q,
√

p/c). To reach this point will require, at most, approximately

(log−1 2)(L1 + . . . + Lt) ≤
(

b2

b − 1

)
(log 2)−1q∗ (5.2)

group operations spent on exponentiations, since Lt = bLt−1 ≤ bq∗. If we let S(B) denote the

number of group operations used searching to the bound B, the total cost of searching is

S(B1) + . . . S(Bt−1) + S(p).

For simplicity, we suppose S(B) = a
√

B for some “constant” a which may also incorporate

the (log log B)−1/2 factor in the case of the primorial-steps search. Since Bi = (cLi)2 and
√

p ≤ cq∗, we then have approximately

ac
(

2b − 1
b − 1

)
q∗ (5.3)

group operations spent searching. The fast order computation at the end uses about

(log 2)−1Lt group operations, which may be bounded by

b(log2)−1q∗. (5.4)

The optimal choice of b is around 2, but depends on N, q∗, and which case one wishes to

optimize. The optimal choice of c is between 1 and 3, but depends on a and whether q2 > p,

since decreasing c potentially increases q∗ = max(q,
√

p/c). We will not attempt a precise

analysis of the constant factors, other than to note that they are all reasonably small. The

values of b and c used in the performance tests are given in Chapter 11. The key point is

that the total running time is bounded by a constant factor of q∗.

Definition 5.1. For any integer x, let q∗(x), be the least y such that the largest prime-power divisor

of x is at most y2 and the second largest prime-power divisor of x (if any) is at most y.

The value q∗(N) is a convenient upper bound on q∗ above. If q∗(x) = y then x has no
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prime factors greater than y2, and its second largest prime factor is at most y. Except for

the rare case of numbers containing large powers of small primes, q∗(x) is the least y for

which x is semismooth with respect to y2 and y (see Definition 6.7).3

Lemma 5.1. If the search algorithm S(β,B) has complexity O
(
B1/2

)
, then the complexity of

Algorithm 5.1 on input α ∈ G is O
(
q∗(N)

)
, where N = |α|.

Proof. For i > 1, let Li = bi−1√B1/c, as computed by step 1 of Algorithm 5.1, and let Lt be the

least Li ≥ q∗(N). Then |βi| ≤ q2
∗ (N), since all the prime powers in |α| for primes less than Lt

have been removed. It follows that the bound Bt = (cLt)2 > |βi|, since c > 1, and the search

in stage i will find |βi| (assuming |α| has not already been determined). Since q∗(N) satisfies

(5.1), it follows from the discussion above that the total number of group operations may

be bounded by a constant factor of the sum of (5.2), (5.3), and (5.4), with q∗ replaced by

q∗(N), yielding an O
(
q∗(N)

)
bound. �

The argument above can easily be extended to incorporate the (log log N)−1/2 factor in

the complexity bound for the primorial-steps algorithm.

Corollary 5.2. If a primorial-steps search is used by Algorithm 5.1 on input α ∈ G, its complexity

is o
(
q∗(N)

)
, where N = |α|.

We can now prove the main proposition, showing that the multi-stage sieve achieves

essentially the same average and median complexity as the primorial-steps algorithm (see

Propositions 4.6 and 4.7).

Proposition 5.3. Let T(N) denote the complexity of Algorithm 5.1 on input α ∈ G with |α| = N,

and assume algorithm S(β,B) has complexity O
(
B1/2

)
. If N is uniformly distributed over [1,M],

then for all sufficiently large M,

E[T(N)] = O

( √
M

log M

)
, (5.5)

and for any u > 2 there exists a constant c such that

Pr
[
T(N) ≤ cN1/u]

≥ G(1/u, 2/u), (5.6)

where G(r, s) is the semismooth probability function of Definition 6.8.
3If y = q∗(x), we could say x is “semipowersmooth” with respect to y2 and y.
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Proof. Applying Lemma 5.1, we prove (5.5) by bounding the expected value of q∗(N). Let

y =M1/3. For each x ∈ [1,M], either q∗(x) ≤M1/3 or q∗(x) ≤
√
κy(x) (see Definition 6.1). We

bound the expectation by summing over both cases, effectively overcounting. Thus

E[q∗(N)] ≤
1
M

∑
1≤x≤M

M1/3 +
1
M

∑
1<x≤M

√
κy(x) = O

(
M1/3) +O

( √
M

log M

)
= O

( √
M

log M

)
,

where we apply Proposition 6.22 to the function f (x) = x1/2 in the second sum. To prove

(5.6), we first note that the probability that N is divisible by the square of any number

greater than M1/3u is at most

1
M

∑
M1/3u<n≤M1/2

⌊
M
n2

⌋
≤

∑
M1/3u<n≤M1/2

1
n2 = O

(
M−1/3u) .

Therefore, we may assume that if N is semismooth with respect to N2/u and N1/u, then

q∗(N) ≤ N1/u with probability arbitrarily close to 1
(
if not then N contains a prime power

ph > N1/3u with h > 1 and is divisible by the square of a power of p greater than N3/u
)
. The

inequality (5.6) then follows from Lemma 5.1 and the definition of G(1/u, 2/u). �

Corollary 5.4. The median time complexity of Algorithm 5.1 using either a primorial-steps search

(Algorithm 5.2) or a rho search (Algorithm 3.1) is O
(
N0.344

)
. For the primorial-steps search, the

median space complexity is O
(
N0.344

)
, and for the rho search the space complexity in every case is

polylogarithmic in N.

5.4 A Generic Recipe for Subexponential Algorithms

Readers familiar with algorithms for integer factorization will have noticed similarities with

the multi-stage sieve. Pollard’s p − 1 method [83] may be viewed as an order computation

in the multiplicative group Z∗N, where N is the integer to be factored. In this algorithm,

a random a is chosen and then exponentiated by all the prime powers up to some bound

L to obtain b. If p − 1 is L-powersmooth for some p dividing N, then b ≡ 1 mod p. This

implies that d = gcd(b − 1,N) is not 1, and provided d , N (almost certainly the case), d is

a non-trivial divisor of N. This is called the first stage. If it fails, that is, gcd(b − 1,N) = 1,

then the algorithm moves to a second stage in which specific additional powers b′ = bp are

individually computed for primes up to some second stage bound B, typically B ≈ L log L.
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For each b′, gcd(b′ − 1,N) is computed in the hopes of finding a non-trivial divisor of N.

The first stage of Pollard’s p − 1 method is analogous to the exponentiation phase in

the multi-stage sieve algorithm, and the second stage corresponds to the search phase. In

the case of the multi-stage sieve, it effectively alternates between first and second stages,

to avoid spending an unnecessary amount of effort in the first stage. This is important

because it is able to search much further than the standard p − 1 algorithm, with B = L2

or B = L2 log log L in the case of the primorial-steps search. This makes it more likely that

the search phase is where the algorithm will actually succeed. The exponentiation phase is

necessary to make this possible, since it (hopefully) reduces the order of β to bring it within

reach of the search.

Subexponential Methods for Integer Factorization

The ideas embodied in Pollard’s p − 1 algorithm are carried further in more sophisticated

factoring algorithms, such as Lenstra’s elliptic curve method (see [37, 40]), the Schnorr-

Lenstra class group algorithm [92], and a similar class group algorithm known as SPAR,

after Shanks, Pollard, Atkins, and Rickert (see [31]). These algorithms are able to achieve

subexponential running times (in almost all cases) by attempting a random order compu-

tation which is related in some way to the integer whose factorization is being attempted.

The probability of success in any particular group is low, but by trying to solve many

random problems, they eventually succeed in finding one that is easy to solve. In each

group both a first and second stage are employed. In effect, they alternate between ex-

ponentiating and searching much like the multi-stage sieve algorithm, but switch groups

after an unsuccessful search rather than continuing in the same group.

The reason these algorithms are able to achieve subexponential performance has to do

with the distribution of smooth numbers discussed in Chapter 6. If they manage to find

a group element α with sufficiently smooth order, they will be successful. Assuming that

N = |α| is uniformly distributed over some appropriate interval, the probability that N is

N1/u-smooth is ρ(u) = u−u+o(1), by Theorems 6.13 and 6.14. If we suppose the effort required

to find |α| in such a case is O
(
N1/u

)
(this ignores the second stage), then the expected

running time is approximately

(
ρ(u)

)−1O
(
N1/u) = uu+o(1)N1/u = exp

(
1
u

log N + u log u + o (1)
)
. (5.7)
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This is minimized for u ≈
√

2 log N/ log log N, giving an expected running time of

L[1/2,
√

2] = exp
((√

2 + o (1)
)√

log N log log N
)
, (5.8)

where the notation L[a, c] = exp
((

c + o (1)
)
(log N)a(log log N)(1−a)

)
is a standard shorthand

for such asymptotic expressions. The value N = |α| in (5.8) is typically proportional to the

square root of the number being factored; in terms of the input value, the complexity is

L[1/2, 1]. Note that we did not consider the second stage in the analysis above. Doing

so improves the constant factors, but the asymptotic expression remains unchanged. In

practice, however, the second stage makes a great deal of difference; an efficient implemen-

tation of these algorithms must give it careful consideration. We consider this issue further

in the next section.

There are faster algorithms for factoring integers, but the ones mentioned above are most

similar to the multi-stage sieve and suggest a general method for obtaining subexponential

algorithms for any problem that can be reduced to random order computations.

A Generic Algorithm with Subexponential Complexity

Suppose we are given a sequence of problems to solve, each randomly selected from some

large set. We are not required to solve any particular problem, rather we will be measured

by the time it takes us to successfully solve one problem.

The factoring algorithms of the previous section construct such a situation by generating

a sequence of random groups associated with the integer to be factored, and then attempt

to compute the order of a random element in each group. In the case of the class group

method, the sequence of groups are ideal class groups in quadratic number fields with

discriminants that are multiples of the integer to be factored (see Chapter 10).

We may take the same approach with a generic algorithm using any finite group. The

transformation of the original problem into a sequence of random order computations may

involve the specific representation of the problem and the construction of associated black

boxes, but for any problem where such a transformation is possible, we can obtain a generic

solution with subexponential complexity.

Consider a sequence of order computations where both α and G may be random.

Provided |α| is uniformly distributed over some interval [1,N], we can apply Proposition
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5.3, which doesn’t depend on the group G. Suppose that we pick some u and attempt to

compute |α| for each problem instance until we have used O
(
N1/u

)
group operations, at

which point we give up and try the next problem. Our expected running time will then be

(G(1/u, 2/u))−1 O
(
N1/u)

group operations. Now clearly G(1/u, 2/u) > ρ(u), since any number which is N1/u smooth

is certainly semismooth with respect to N2/u and N1/u, so we may use the approximation

ρ(u) = u−u+o(1) as a lower bound on G(1/u, 2/u). If we choose u =
√

2 log N/ log log N as in

(5.8), we will obtain a running time of L[1/2,
√

2], subexponential in log N, and presumably

subexponential in the size of the original problem from which N was derived. As noted

above, in the case of integer factorization, N is proportional to the square root of the original

problem.

Proposition 5.5. Given a sequence of problem instances αi ∈ Gi, where each |αi| is uniformly

and independently distributed over [1,N], the expected number of group operations required by the

multi-stage sieve algorithm to solve one problem in the sequence is bounded by L[1/2,
√

2]. If a

primorial-steps search is used, the group storage is L[1/2,
√

2/2], and if a rho search is used, it is

polylogarithmic in N.

The proposition follows from the discussion above and Proposition 5.3. The running

time is proportional to the square of the number of problem instances attempted, hence

the space required is proportional to the square root of the time. This is useful, because it

means that a primorial-steps search can usually be applied.

When using Algorithm 5.1 to implement the subexponential method described above,

only a single stage is used. The value u is chosen based on the size of the problem and an

estimation of the success probability (see Remark 5.1). Once the choice of u has been made,

L1 and B1 are set appropriately, and the algorithm is instructed to terminate if the search

reaches B1 so that the next problem instance may be attempted. In the nomenclature of

factoring algorithms, L1 corresponds to the first stage boundary, and B1 corresponds to the

second stage boundary.
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The Importance of the Search Phase

When using ρ(u) as a lower bound on G(1/u, 2/u) in Proposition 5.5, we effectively dis-

counted the entire search phase of Algorithm 5.1. We could attempt a tighter analysis,

but asymptotic bounds are not especially useful in this instance. Implicit in the big-

O notation, is the assumption that u → ∞. This is theoretically true of course, since

u ≈
√

2 log N/ log log N, but in practice u is rarely greater than 10 and essentially never

above 20. Of far greater importance than the asymptotic relationship between G(1/u, 2/u)

and ρ(u), is their ratio over the range of typical values of u.

Table 6.1 lists values for both functions. We find that G(1/u, 2/u) is nearly 200 times

larger than ρ(u) when u = 10. Even for more pedestrian values of u which might arise

in the median case, G(1/u, 2/u) is nearly ten times ρ(u) when u = 3; fewer than 5% of the

numbers in a large interval are N1/3-smooth, but almost 45% are semismooth with respect

to N2/3 and N1/3.

In the case of subexponential algorithms where the value of u is larger, these differences

get magnified and the impact of the search phase becomes more pronounced. This also

applies to constant factors and the (log log N)−1/2 factor in the complexity of the primorial-

steps search. These all are effectively squared when solving a random sequence of problems,

since the expected running time is proportional to the square of the running time on a single

problem instance. The total difference made by the search phase when all these factors are

taken into account may be an improvement by a factor of more than 1000. This can easily

be the difference between a problem that is tractable and one that is not.

Remark 5.1. The difference in the probabilities implied byρ(u) and G(1/u, 2/u) noted above impacts

the optimal choice of u. Additionally, the distribution of |α| may not be uniform. The semismooth

probabilities observed for large class groups, for example, are noticeably better than predicted by

G(1/u, 2/u) (see Chapter 11). In practice it is often necessary to obtain an estimate for u empirically

to achieve the best running time. Either underestimating or overestimating u will have a deleterious

effect on performance.
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Chapter 6

A Number-Theoretic Interlude

Chapter Abstract

This chapter collects some useful results from classical number theory, and reviews
more recent work on the distribution of numbers with no small prime factors, and
those with no large prime factors. We also develop practical techniques that simplify
the analysis of algorithms whose complexity depends on these and other number-
theoretic distributions.

The complexity of generic order computations is intimately related to the multiplicative

structure of the natural numbers. It is often not the size of the numbers involved, but the

size of their prime factors, that determines the computational resources required. It is thus

useful to distinguish numbers based on the size of the primes they contain. Of particular

interest are numbers whose prime factors are all “small” (smooth numbers), and those

composed entirely of ”large” primes (coarse numbers).

6.1 The Basics

The fundamental theorem of arithmetic states that every natural number has a unique

prime factorization. Given a real number y, we may partition the prime factors of a natural

number according to their relationship with y.

Definition 6.1. Let y be a real number. For n = ph1
1 · · · p

hw
w with p1 < · · · < pw prime, define:

1. σy(n) =
∏
pi≤y

phi
i is the y-smooth part of n. If σy(n) = n then n is y-smooth.

2. κy(n) =
∏
pi>y

phi
i is the y-coarse part of n. If κy(n) = n then n is y-coarse.
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The function σy is completely multiplicative: σy(ab) = σy(a)σy(b) for any natural num-

bers a and b. The same is true of κy, and in every case we have n = σy(n)κy(n). Thus

each y splits every natural number into a y-smooth and a y-coarse part. We are especially

interested in the cases where one of these parts is trivial.

Definition 6.2. Let n denote a natural number and let x and y be real numbers.

1. Ψy(x) = {n ≤ x : κy(n) = 1} is the set of y-smooth numbers bounded by x. The set of all

y-smooth numbers is denoted Ψy.

2. Φy(x) = {n ≤ x : σy(n) = 1} is the set of y-coarse numbers bounded by x. The set of all

y-coarse numbers is denoted Φy.

The Riemann zeta function, ζ(s) =
∑
∞

n=1 n−s, plays a key role in the study of prime

numbers. We may define a restricted form of the zeta function whose sum is limited to

y-smooth numbers:

ζy(s) =
∑
n∈Ψy

1
ns . (6.1)

Equivalently, the function ζy(s) is the Dirichlet series for the characteristic function of Ψy.

Unlike the general zeta function, ζy(s) converges when s = 1, since

∏
p≤y

(
1

1 − p−1

)
=
∏
p≤y

(
∞∑

h=0

1
ph

)
=
∑
n∈Ψy

1
ns = ζy(1). (6.2)

The product on the left is evidently finite, and we have rearranged terms in a finite product

of absolutely convergent sums to obtain ζy(1). The equivalence of the product and sum

above is an example of an Euler product, and in general we have ζy(s) =
∏

p≤y(1 − p−s)−1.

The fact that ζy(1) converges while ζ(1) does not is yet another testament to the infinitude

of primes.

Definition 6.3. For n = ph1
1 · · · p

hw
w with p1 < · · · < pw prime:

1. µ(n) = (−1)w when n is square-free and 0 otherwise.

2. φ(n) counts the natural numbers m ≤ n such that m ⊥ n.

Note that µ(1) = φ(1) = 1. The relation m ⊥ n indicates that m and n are coprime (have

no prime factor in common). The function φ(n) is Euler’s “phi” function and represents
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the order of the multiplicative groupZ∗n. The function µ(n), the Möbius function, provides

a convenient way to compute φ(n):

φ(n) =
∑
d|n

µ(d)
n
d
= n

∏
p|n

(
1 −

1
p

)
. (6.3)

The central sum may be viewed as counting the numbers up to n that are coprime to n via

the inclusion/exclusion principle, justifying both equalities. We are particularly interested

in applying (6.3) to the case where P =
∏

p≤y p is a primorial number. The proportion of

coarse numbers in [1,P] may be expressed as

φ(P)
P
=
∏
p≤y

(
1 −

1
p

)
=
∏
p≤y

(
1

1 − p−1

)−1

=
1

ζy(1)
. (6.4)

An asymptotic value for (6.4) is given by Mertens’ theorem.

Theorem 6.1 (Mertens). For x ≥ 2,

∏
p≤x

(
1 −

1
p

)
=

1
eγ log x

+O

(
1

log2 x

)
,

where γ ≈ 0.5772 is Euler’s constant.

See [107, p. 17] for a proof. This implies ζy(1) ∼ eγ log y. The appearance of Euler’s

constant here is not too surprising, as it represents the asymptotic difference between log y

and
∑

n≤y
1
n , a partial sum of ζ(1).

The most important classical result for our work is the prime number theorem.

Theorem 6.2 (PNT). Let x be a real number, define ϑ(x) =
∑

p≤x log p, and let π(x) count the

primes less than or equal to x.

1. ϑ(x) = x +O
(

x
log x

)
.

2. π(x) = li(x) +O

(
x

log2 x

)
=

x
log x

+O

(
x

log2 x

)
.

where li(x) =
∫ x

2 log t dt is the logarithmic integral.

The function ϑ(x) is known as Chebyshev’s function. The two statements are easily

shown to be equivalent; we will have use for both. Various proofs of the prime number
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theorem can be found in many standard texts, see [77] for an elementary proof, or [2] for

an analytic proof. The error terms above are not the best possible, but suffice for our work.

For P =
∏

p≤x p, the prime number theorem (PNT) implies

log(P) =
∑
p≤x

log p = ϑ(x) ∼ x. (6.5)

The last classical result we mention is Bertrand’s postulate.

Theorem 6.3 (Bertrand’s Postulate). Let pn denote the nth prime. Then pn+1 < 2pn for all n.

Equivalently, the interval [n, 2n) always contains a prime. See [58, Theorem 418] for a

proof. We are now in a position to prove a useful corollary of the three theorems above.

Lemma 6.4. Let Pn =
∏

p≤pn
p be the product of the first n primes. If Pn ≤ x < Pn+1 then

φ(Pn)
Pn

∼
1

eγ log log x
,

where γ ≈ 0.5772 is Euler’s constant.

Proof. Applying Mertens’ theorem,

φ(Pn)
Pn

=
∏
p≤pn

(
1 −

1
p

)
∼

1
eγ log pn

. (6.6)

It suffices to show log x ∼ pn. By the hypothesis, log Pn ≤ log x < log Pn+1, hence

0 ≤ log x − log Pn < log Pn+1 − log Pn = log pn+1 < log pn + log 2, (6.7)

where the last inequality uses Bertrand’s postulate. By the PNT, log Pn = ϑ(pn) ∼ pn, thus

0 ≤ log x − log Pn < log log Pn + c, (6.8)

for any c > log 2. This implies log x ∼ log Pn ∼ pn, as desired. �

This lemma is used in Proposition 4.2 in Chapter 4. We note that the prime number

theorem is not required to prove the lemma above; ϑ(x) = Θ(x) suffices. We shall not be

restrained in our application of the PNT. It is often the most direct approach.
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The asymptotic formula for π(x) given by the PNT can be used to estimate sums over

primes. Since π(x) is monotonic, we may express the sum of any continuous function f (x)

taken over primes as a Stieltjes integral:1

∑
a<p≤x

f (p) =
∫ x

a
f (t)dπ(t). (6.9)

If we now apply the PNT to writeπ(x) = li(x)+ε(x), where ε(x) = li(x)−π(x) = O
(

x/ log2 x
)

,

we have an effective means to estimate the integral in (6.9). This technique may be applied

to any counting function for which we have an asymptotic formula.

Definition 6.4. Let S be a set of natural numbers. The counting function for S is cS(x) =
∣∣S∩[1, x]

∣∣.
The theorem below encapsulates the technique in a more general form. The case where

S is the set of primes appears in [90] and may also be found in [10].

Theorem 6.5. Let S be a set of natural numbers with counting function cS(x) = G(x)+ ε(x) where

G(x) =
∫ x

a0
g(x)dx for some g(x) continuous over [a0,∞). Let f (x) be continuously differentiable

over an open interval containing [a,∞). Then for x > a ≥ a0,

∑
a<n≤x;

n∈S

f (n) =
∫ x

a
f (t)g(t)dt +

[
ε(t) f (t)

]x
a −

∫ x

a
ε(t) f ′(t)dt.

Proof. Expressing the sum as a Stieltjes integral, we have

∑
a<n≤x;

n∈S

f (n) =
∫ x

a
f (t)dcS(t) =

∫ x

a
f (t)d

(
G(t) + ε(t)

)
=

∫ x

a
f (t)g(t)dt +

∫ x

a
f (t)dε(t),

where the existence of the integrals is guaranteed by the fact that cS(x) is monotonic and f (x)

and G(x) are continuous. Integrating the rightmost term by parts completes the proof. �

Theorem 6.5 is typically applied in cases where it is known that s(x) ∼ G(x) and the two

terms involving ε(x) can be bounded, leaving just the first integral.

1It suffices for f (x) to share no discontinuities with π(x) over the interval. See [1, Ch. 7] for a detailed
presentation of the Stieltjes integral.
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6.2 The Distribution of Coarse Numbers

Like the prime numbers, the coarse numbers have an associated counting function.

Definition 6.5. The function φ(x, y) = |Φy(x)| counts the y-coarse numbers bounded by x.2

The function φ(x, y) may be viewed as counting the natural numbers bounded by x

that are coprime to the primorial P =
∏

p≤y p. Counting these via the inclusion-exclusion

principal yields the Legendre formula:

φ(x, y) =
∑
d|P

µ(d)
⌊x

d

⌋
. (6.10)

Equation (6.10) may also be interpreted as counting the number of unmarked entries in a

sieve of Eratosthenes on the set of integers in [1, x] after all the primes up to y have been

processed.

The primorial-steps algorithm makes use of the fact that every natural number n ⊥ P

can be written uniquely in the form n = aP + r, where r < a is coprime to P. Since there are

φ(P) possible values r can take between multiples of P, we have

φ(aP + r, y) = aφ(P) + φ(r, y). (6.11)

Both equations (6.10) and (6.11) lead to explicit bounds for φ(x, y).

Theorem 6.6 (Legendre). For all real numbers x and y,

x
ζy(1)

− 2π(y)
≤ φ(x, y) ≤

x
ζy(1)

+ 2π(y),

where ζy(1) =
∏
p≤y

(
1

1 − p−1

)
∼ eγ log y.

Proof. Let P =
∏

p≤y p. The Legendre formula (6.10) implies:

φ(x, y) =
∑
d|P

µ(d)
⌊x

d

⌋
= x

∑
d|P

µ(d)
d
+ ε,

2The notation φ(x,n) is used in [88] to count the pn-coarse numbers, but the notation used here is generally
standard. One also sees π(x, y).
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where |ε| ≤ 2π(y). The error term arises from replacing bx/dc by x/d; we introduce an error

of at most |µ(d)| ≤ 1 for each of the 2π(y) divisors of P. Applying (6.3) and (6.4) gives

∑
d|P

µ(d)
d
=

1
P

∑
d|P

µ(d)
P
d
=
φ(P)

P
=

1
ζy(1)

,

which completes the proof. �

If x happens to be asymptotically larger than 2π(y) log y we obtain a tight estimate, but

the theorem applies in all cases. The estimate is clearly not correct for y near x, as shown

by the example φ(x, x) = 1 + π(x) ∼ x/ log x. Surprisingly, it is only off by a constant factor

of e−γ ≈ 0.5615 in this case, despite the fact that the error term is much larger than x/ log x.

In fact, the estimate in Theorem 6.6 is quite close to the true asymptotic value of φ(x, y) in

general, with φ(x, x) representing the greatest deviation.

We now consider the case that y = x1/u for some real u > 1. For u < 2, a y-coarse number

bounded by x can have at most one prime factor, hence

φ(x, y) = 1 + π(x) − π(y) =
x

log x
+O

(
x

log2 x

)
(for

√
x < y ≤ x/ log x). (6.12)

When u lies between 2 and 3, a y-coarse number bounded by x may have up to two prime

factors. To compute φ(x, y) in this case, we need the following lemma:

Lemma 6.7. Letφ2(x, y) count the numbers inΦy(x) with 2 (not necessarily distinct) prime factors.

Uniformly, for 1 < y <
√

x,

φ2(x, y) = log(u − 1)
(

x
log x

)
+O

(
x

log2 x

)
,

where u = log x/ log y > 2.

Proof. Every n counted by φ2(x, y) is the product of primes p and q with x1/u < p ≤ q ≤ x/p.

Summing over p gives

φ2(x, y) =
∑

x1/u≤p≤x1/2

(π(x/p) − π(p) + 1) =
∑

x1/u≤p≤x1/2

x
p log(x/p)

+O

(
x

log2 x

)
. (6.13)
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We now apply Theorem 6.5 to f (t) = x/
(
t log(x/t)

)
, with x fixed, summed over primes:

∑
xδ≤p≤x1/2

x
p log(x/p)

=

∫ x1/2

xδ

x
t log(x/t) log(t)

dt + ε(t) f (t)
∣∣∣x1/2

xδ
−

∫ x1/2

xδ
f ′(t)ε(t)dt. (6.14)

By the PNT, ε(t) = O
(

x/ log2 x
)

, and the last two terms are readily seen to be O
(

x/ log2 x
)

.

The first integral may be evaluated to yield

∫ x1/2

xδ

x
t log(x/t) log(t)

dt =
(

x
log x

)(
log log t− log log(x/t)

)∣∣∣x1/2

xδ
=

(
x

log x

)
log(u−1). (6.15)

Incorporating (6.15) and the error terms from (6.14) into (6.13) gives the desired result. �

Corollary 6.8. For x1/3
≤ y ≤ x1/2,

φ(x, y) =
(
1 + log(u − 1)

)( x
log x

)
+O

(
x

log2 x

)
,

where u = log x/ log y.

Roughly speaking, the corollary implies π(x) - φ(x, x1/u) - 1.7π(x) when u is between

2 and 3, and φ(x, x1/u) may be brought arbitrarily close to π(x) by choosing u close to 2.

The technique used in Lemma 6.7 can be applied inductively to compute φ(x, y) for

successively larger values of u. The result does not lead to a simple closed form. One is

led to define the function ω(u) satisfying the differential-difference equation

(
uω(u)

)′
= ω(u − 1) (u > 2),

with uω(u) = 1 for 1 ≤ u ≤ 2. The existence and uniqueness ofω(u) was shown by Buchstab

[30], who proved φ(x, y) ∼ uω(u)x/ log x. He also found that ω(u) converges rapidly to e−γ

as u → ∞, matching our expectation from Theorem 6.6. We restate these results more

generally in the following theorem.

Theorem 6.9 (Buchstab). Uniformly for 1 < y ≤ x/ log x,

φ(x, y) = ω(u)
(

x
log y

)
+O

(
x

log2 y

)
,

where u = log x/ log y ≥ 1, and ω(u) is Buchstab’s function.
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A proof of this theorem, along with related results, may be found in Tenenbaum’s book

[107], which devotes an entire chapter to the distribution of coarse numbers.

For u ≤ 3, equation (6.12) and Corollary 6.8 give precise asymptotic values for φ(x, y).

When u is greater than 3, the agreement between the bound in Theorem 6.9 and the bound in

Theorem 6.6 is extremely close, since ω(u) converges rapidly to e−γ. Explicit computations

[35] show that for u > 3 we have

−6.36653 × 10−4 < ω(u) − eγ < 5.68381 × 10−3, (6.16)

and for u > 8 the agreement is better than one part in a billion. It is never possible to

bound one by the other; Hildebrand shows in [60] that the value of ω(u)− e−γ changes sign

infinitely often as u → ∞. However, we may use the upper bound eγ + 0.006 implied by

(6.16), which is valid for all u ≥ 1.

6.3 The Distribution of Smooth Numbers

The counting function for smooth numbers is analogous to φ(x, y).

Definition 6.6. The function ψ(x, y) = |Ψy(x)| counts the y-smooth numbers bounded by x.

The 2-smooth numbers are exactly the powers of 2, hence

ψ(x, 2) = blg xc + 1 =
log x
log 2

+O (1) .

The case y = 3 was considered by Ramanujan [16] who found that

ψ(x, 3) ∼
log 2x log 3x
2 log 2 log 3

.

These bounds can be generalized by a geometric argument. Every number n ∈ Ψy(x) can

be written in the form n =
∏

p≤y phi
i , and we have log n =

∑
p≤y hi log pi. By counting the

points with non-negative integer coordinates bounded by an appropriate hyperplane in

Rπ(y), we can estimate ψ(x, y) when y is not too large.
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Theorem 6.10 (Ennola). Uniformly for 2 ≤ y ≤
√

log x log log x,

ψ(x, y) =
1

π(y)!

∏
p≤y

(
log x
log p

)(
1 +O

(
y2

log x log y

))
.

A proof of this theorem may be found in [48] and also in [107, III.4].

Tight asymptotic formulae for ψ(x, y) are difficult to obtain in a convenient form when

y ≈ log x; there is a distinct phase change in the behavior of ψ(x, y) in this region. The

following proposition gives a convenient upper bound when y = O
(
log x

)
.

Theorem 6.11. If y = O
(
log x

)
then ψ(x, y) = O (xε) for any ε > 0.

Proof. Any y-smooth number s ≤ x may be written as s = 2h13h2 · · · phw
w , where pw ≤ y is the

wth prime and the hi are non-negative integers, and we have

h1 lg p1 + h2 lg p2 + · · · + hw lg pw = lg s ≤ lg x.

Each s corresponds to a unique sequence of non-negative hi which satisfy the inequality

above. Fix ε > 0 and choose a constant k so that 1/k < ε. There exists a least v such that

lg pv ≥ k. We assume v < w since otherwise pw ≤ 2k is bounded by a constant, as is w, and

we have ψ(x, y) = O
(
(lg x + 1)w

)
= O (xε). For v < i ≤ w, the hi satisfy

hv+1 + · · · + hw < hv+1 lg(pv+1 − pv) + · · · + hw lg(pw − pv) <
lg s

lg pv
≤

lg x
k
,

and for i ≤ v we have hi ≤ lg x. Recalling that there are
(a+b

b

)
distinct ways to express a

non-negative integer n ≤ a as the ordered sum of b non-negative integers, we obtain

ψ(x, y) ≤ (lg x + 1)v
(⌊ lg x

k

⌋
+ w − v

w − v

)
< (lg x + 1)v2

lg x
k +w−v = (lg x + 1)vx1/k2w−v.

Since w = π(y) = O
(

y/ log y
)
= O

(
log x/ log log x

)
, we have 2w−v < ew < xc/ log log t for some

constant c, thus

ψ(x, y) = O
(

(log x)vx1/k+c/ log log x
)
= O (xε) ,

where 1/k < ε, and the constants v and c are independent of x. �

We now suppose y = x1/u with u ≥ 1. For u ≤ 2, ψ(x, y) can be readily computed.
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Theorem 6.12. Uniformly, for
√

x ≤ y ≤ x,

ψ(x, y) = (1 − log u)x +O
(

x
log x

)

where u = log x/ log y ≥ 1.

Proof. For
√

x ≤ y ≤ x, each n ∈ [1, x] −Ψy(x) is divisible by exactly one prime in (y, x].

ψ(x, y) = bxc −
∑

y<p≤x

⌊
x
p

⌋
= x

1 −
∑

y<p≤x

1
p

 +O (π(x)) , (6.17)

where the sums are over primes. We may evaluate the rightmost sum3 by applying Theorem

6.5 to the function f (t) = 1/t summed over primes to obtain

∑
y<p≤x

1
p
=

∫ x

y

1
t log t

dt +
ε(t)

t

∣∣∣x
y
+

∫ x

y

ε(t)
t2 dt.

By the PNT, ε(x) = O
(

x/ log2 x
)

and the two rightmost terms are both O
(
1/ log x

)
. The

first integral evaluates to log log x − log log y = log u, where u = log x/ log y. Substituting

back into (6.17) and applying the PNT gives the desired result. �

Theorem 6.12 is a special case of Theorem 6.13 below. As with φ(x, y), one can estimate

ψ(x, y) inductively for values of u > 2. No closed form for ψ(x, y) exists when u > 2 and we

are led to define the function ρ(u) satisfying the differential-difference equation

uρ′(u) + ρ(u − 1) = 0 (u > 1),

with ρ(u) = 1 for 0 ≤ u ≤ 1. The function ρ(u) was first investigated by Dickman [42] and

bears his name. Dickman proved the existence and uniqueness of ρ(u) and showed that

ψ(x, y) ∼ ρ(u)x for y = x1/u. The functionρ(u) converges to 0 very rapidly as u→∞, roughly

on the order of u−u, and this behavior makes it difficult to obtain explicit bounds forψ(x, y).

The function ρ(u) can be numerically computed. Efficient algorithms for computing both

ω(u) and ρ(u) are presented in [72], and a table of explicit values for ρ(u) can be found in

[54]. It is also possible to numerically approximate ψ(x, y) directly; an efficient algorithm

3The asymptotic formula
P

p≤x
1
p ∼ log log x is well known. The advantage illustrated by applying Theorem

6.5 is that it becomes trivial to derive such facts from the PNT even when they are not well known.
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may be found in [106]. The theorem below is a more precise version of Dickman’s result.

Theorem 6.13 (Hildebrand). Let ε > 0. Uniformly for x ≥ 2 and exp
(
(log log x)5/3+ε

)
≤ y ≤ x,

ψ(x, y) = ρ(u)x
(

1 +O
(

log(u + 1)
log y

))
.

A proof can be found in [107, III.4]. We also have the following theorem due to Canfield,

Erdös, and Pomerance [32].

Theorem 6.14 (Canfield et al.). Let ε > 0. Uniformly for 1 ≤ u < (1 − ε) log x/ log log x,

ψ(x, x1/u) = xu−u+o(u).

For more information on smooth numbers, we refer the reader to the comprehensive

work of Hildebrand [61, 62] and the survey by Granville [54].

6.4 Semismooth Numbers

Semismooth numbers are a refinement of smooth numbers that incorporate two bounds.

Definition 6.7. A positive integer is semismooth with respect to y and z if all its prime factors

are bounded by y and all but at most one are bounded by z. The function ψ(x, y, z) counts the

positive integers up to x which are semismooth with respect to y and z.

A number that is semismooth with respect to y and z is y-smooth, and is at most one

prime factor away from being z-smooth. The function ψ(x, y, z) arises in the analysis of

”large prime” variants of integer-factorization algorithms. Typically, one is in interested in

ψ(x, xs, xr) for some r < s, most commonly, r = 1/u and s = 2/u. Note that an integer which

is semismooth with respect to x2/u and x1/u is equivalently an integer whose x1/u-coarse

part is at most x2/u; in both cases it can have at most one prime factor in (x1/u, x2/u] and

none greater than x2/u.

The function G(r, s) estimates the probability that an integer in [1, x] is semismooth with

respect to xs and xr.

Definition 6.8. For 0 < r < s < 1, the semismooth probability function G(r, s) is defined by

G(r, s) = lim
x→∞

ψ(x, xs, xr)/x.
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Note that the order of r and s is reversed. Bach and Peralta show in [11] that G(r, s)

always exists, and give formulae that may be used to estimate G(r, s). These estimates are

most often applied in situations where r and s are quite small, as little as 1/10 or less. We

are interested in G(r, s) for larger values of r and s, say r = 1/u ≥ 1/3 and s = 2/u ≥ 2/3. The

case G(1/u, 2/u) is considered by Knuth and Trabb Pardo in [69], where they give tables

for some specific values of u. For u ∈ (2, 3], estimating G(1/u, 2/u) is particularly straight

forward.

Theorem 6.15. For 2 < u ≤ 3,

G(1/u/2/u) ≥ 1 −
(

log
u
2
+

1
2

log2 u
2
+ log 2 log

u
2
+ S(u)

)
,

where S(u) ≤ 0 may be bounded by

S(u) ≤
n−1∑
k=0

log
(

2n + (k + 1)s
2n + ks

)
log
(

n(s + 1) − ks
n(s + 2)

)
,

for any n, with s = u − 2.

Proof. Since u ≤ 3, no integer in [1, x] contains three primes greater than x1/u. We compute

G(1/u, 2/u) by counting the x2/u-smooth numbers in [1, x] which do not contain two primes

in (x1/u, x2/u]. By Theorem 6.12, the number of x2/u-smooth integers in [1, x] is

ψ(x, x2/u) ∼
(

1 − log
u
2

)
x. (6.18)

We need to subtract the x2/u-smooth integers with two prime factors in (x1/u, x2/u]:

∑
x1/u<p≤x2/u;

p≤q≤x/p

⌊
x
pq

⌋
. (6.19)

Dropping the floor in the sum introduces an error of O
(
x/ log x

)
, since the number of terms

in the sum is φ2(x, x1/3) = O
(
x/ log x

)
by Lemma 6.7. Dividing by x, we consider the sum

∑
x1/u<p≤x2/u;

p≤q≤x/p

1
pq
=

1
2

∑
x1/u<p≤x1/2;
x1/u
≤q≤x1/2

1
pq
+

∑
x1/u<p≤x1/2;
x1/2<q≤x/p

1
pq
+O

(
1

log x

)
, (6.20)
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where the error due to overcounting squares of primes is incorporated in the error term.

We make use of the approximation4

∑
y<p≤x

1
p
=

∫ x

y

1
t log t

dt +O
(

1
log x

)
= log

(
log x
log y

)
+O

(
1

log x

)
, (6.21)

as in the proof of Theorem 6.12. The first term in the RHS of (6.20) becomes

1
2

∑
x1/u<x≤x1/2

1
p

∑
x1/u<q≤x1/2

1
q
=

1
2

log2 u
2
+O

(
1

log x

)
. (6.22)

The second term in the RHS of (6.20) becomes

∑
x1/u<x≤x1/2;
x1/2<q≤x/p

1
pq
=

∑
x1/u<x≤x1/2

1
p

log
(

log x/p
log x1/2

)
+O

(
1

log x

)
(6.23)

= log 2 log
u
2
+

∑
x1/u<x≤x1/2

1
p

log
(

1 −
log p
log x

)
+O

(
1

log x

)
. (6.24)

Let S(u) be the limit of the sum on the right as x→ ∞. If we divide 6.18 by x and take the

limit as x → ∞ we have limx→∞ ψ(x, x2/u)/x = 1 − log(u/2). Subtracting (6.22) and (6.24)

gives the desired expression for G(2/u, 1/u).

We now bound S(u) by partitioning the interval (x1/u, x1/2) into n subintervals of the

form Ik = (x(2n+ks)/2nu, x(2n+(k+1)s)/2nu], where s = u − 2. We then have

∑
x1/u<x≤x1/2

1
p

log
(

1 −
log p
log x

)
≤

n−1∑
k=0

∑
p∈Ik

1
p

log
(

1 −
2n + ks

nu

)

=

n−1∑
k=0

log
(

2n + (k + 1)s
sn + ks

)
log
(

1 −
2n + ks

nu

)
+O

(
1

log x

)
.

As x→∞, the error term fits under the inequality. �

Theorem 6.15 can be used to generate a list of lower bounds for G(1/u, 2/u) with

2 < u ≤ 3 which are compared with lower bounds for ρ(u) in Table 6.1. The values for

u = 2.5 and u = 3.0 agree with those given by Knuth and Trabb Pardo in [69]. The values

of G(1/u, 2/u) for u from 3.5 to 6.0 are taken from [69], and from Bach and Peralta [11] for

u > 6. The values of ρ(u) are taken from Granville [54] who credits Bernstein. All numbers

4The error term can be made O
�
1/ log2 x

�
, but we don’t need to do so.
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u G(1/u, 2/u) ρ(u)

2.1 0.9488 0.2604
2.2 0.8958 0.2203
2.3 0.8415 0.1857
2.4 0.7862 0.1559
2.5 0.7302 0.1303
2.6 0.6738 0.1082
2.7 0.6172 0.0894
2.8 0.5605 0.0733
2.9 0.5038 0.0598
3.0 0.4473 0.0486
3.5 0.2238 0.0162
4.0 0.0963 4.910e-03
4.5 0.0365 1.370e-03
5.0 0.0124 3.547e-04
6.0 1.092e-03 1.964e-05
8.0 3.662e-06 3.232e-08

10.0 5.382e-09 2.770e-11

Table 6.1: Asymptotic Lower Bounds on Semismooth and Smooth Probabilities

are rounded down and represent asymptotic lower bounds as x→∞.

6.5 Applications

We now apply the results above to prove a number of theorems relevant to the analysis

of algorithms which depend on the distribution of coarse numbers. More specifically, we

investigate the distribution of the coarse parts of numbers and develop tools to estimate

sums over these coarse parts.

If we take the natural numbers in the interval [1, x] and remove from each number all

prime factors less than or equal to y, we may then ask for the average value of the remaining

numbers. Equivalently, we are interested in the average order of κy(n). When x = 30 and

y = 3 we obtain the sequence:

1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 11, 1, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 1, 25, 13, 1, 7, 29, 5,
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with mean value ≈ 7.53. As x tends to infinity we find that the mean value of κ3(n) over

[1, x] is asymptotic to x/4, or precisely half the mean value of n. More generally, we have

the following theorem:

Theorem 6.16. Uniformly for 1 ≤ y ≤ x,

1
x

x∑
n=1

κy(n) =
x
2

∏
p≤y

p
p + 1

+O
(

2π(y) log x
)
.

Proof. Every natural number n ≤ x can be written as n = σy(n)κy(n). Thus we have

x∑
n=1

κy(n) =
∑

s∈Ψy(x)

 ∑
r∈Φy(x/s)

r

 . (6.25)

We estimate the inner sum by using c(t) = φ(t, y) = G(t)+ ε(t) as a counting function forΦy,

where G(t) = t/ζy(1) and |ε(t)| ≤ 2π(y), by Theorem 6.6. Applying Theorem 6.5 with f (t) = t,

∑
0<r≤x/s

r∈Φy

r =
1

ζy(1)

∫ x/s

0
tdt + tε(t)

∣∣x/s
0 −

∫ x/s

0
ε(t)dt

=
x2

2ζy(1)s2 + 2π(y)O
(x

s

)
. (6.26)

Substituting into (6.25) and dividing by x yields

1
x

x∑
n=1

κy(n) =
x

2ζy(1)

∑
s∈Ψy(x)

1
s2 + 2π(y)

∑
s∈Ψy(x)

O
(

1
s

)

=
x

2ζy(1)

(
ζy(2) −O

(
1
x

))
+ 2π(y)O(log x)

=
xζy(2)
2ζy(1)

+O
(

2π(y) log x
)
, (6.27)

where we have bounded the tail of ζy(2) by the tail of ζ(2) = O (1/x). Finally, we may

express ζy(1) and ζy(2) as Euler products,

ζy(2)/ζy(1) =

∏
p≤y

1
1 − p−2

∏
p≤y

1
1 − p−1

−1

=
∏
p≤y

p
p + 1

, (6.28)

to complete the proof. �
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Corollary 6.17. Let 0 < c ≤ 1. If y = Θ
(
logc x

)
then

1
x

x∑
n=1

κy(n) ∼
ζ(2)x

2eγ log log x
,

where ζ(2)/(2eγ) ≈ 0.4618.

Proof. In the proof of Theorem 6.16 we may substitute ζy(1) ∼ eγ log y ∼ eγ log log x using

Mertens’ theorem and note that ζy(2)→ ζ(2) = π2/6 as y→∞. �

The application of many of the number-theoretic results of this chapter to the analysis

of algorithms can be greatly simplified by a method of asymptotic integration for estimating

the kind of integrals that frequently arise. Directly evaluating an integral like

∫ x

a

√
t log log t
log t

dt

may be difficult or impossible, but its asymptotic behavior is easily determined. The

technique developed here, an extension of the basic concept described by Bach in [10], uses

elementary analytic results, all of which may be found in Dieudonne’s text [43]. We begin

with the theorem which motivates the method [43, III.10.5].

Theorem 6.18 (Asymptotic Integration). Let f be a positive function continuously differentiable

over [a,∞). Suppose f ′(x)/ f (x) ∼ s/x for some non-zero real s > −1, or f ′(x)/ f (x) = o(1/x), in

which case let s = 0. Then ∫ x

a
f (t)dt ∼

x f (x)
s + 1

,

which is unbounded as x→∞.

Proof. For s , 0, the hypothesis implies (by integration) that log f (x) ∼ s log x. Thus

f (x) � xs−ε with s − ε > −1 and the integral is unbounded. Integrating by parts yields

∫ x

a
f (t)dt = t f (t)

∣∣x
a −

∫ x

a
t f ′(t)dt ∼ x f (x) − s

∫ x

a
f (t)dt, (6.29)

and solving for
∫ x

a f (t)dt gives the desired result. When s = 0 the hypothesis implies

| log f (x)| ≺ log x and thus f (x) � x−ε for any ε > 0 and the integral is again unbounded. In

this case the first term of (6.29) dominates and the formula holds with s = 0. �
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The case where s < −1 may also be analyzed, but we do not consider it here. As a simple

example, note that li(x) ∼ x/ log x is an immediate consequence of Theorem 6.18, and a

second application of the theorem to (li(x) − x/ log x) yields the error term O
(

x/ log2 x
)

.

As a matter of convenience, we adopt the following notation.

Definition 6.9. For any real number s, f ∈ [xs]a indicates that f (x) is a positive function contin-

uously differentiable over [a,∞) with f ′(x)/ f (x) ∼ s/x if s , 0, and f ′(x)/ f (x) = o(1/x) if s = 0.

When unspecified, a is assumed to be 1.

We note some useful properties of functions in [xs]a that justify the notation.

Theorem 6.19. For f ∈ [xs]a and g ∈ [xt]a the following hold:

1. If h(x) = f (x)g(x) then h ∈ [xs+t]a.

2. If h(x) =
(

f (x)
)r for some real r then h ∈ [xrs]a.

3. If h(x) = f (xr) for some real r then h ∈ [xrs]a.

4. If h(x) =
∫ x

a f (t)dt and s > −1 then h ∈ [xs+1]a.

5. If s < t then f ≺ g.

Proof. In each case h is clearly positive and continuously differentiable over [a,∞).

(1) We have h′/h = f ′/ f + g′/g. If s+ t , 0 then we have h′/h ∼ (s+ t)/x (this is true even

when one of s or t is zero). If s = −t then h′/h = o(1/x), and in either case h ∈ [xs+t]a.

(2) Assume r , 0. Then h′/h = r( f ′/ f ), hence h′/h ∼ rs/x when s , 0. If s = 0 then

h′/h = o(1/x), and in either case h ∈ [xrs]a. If r = 0 the statement is trivially true.

(3) Note that h′(x) = ( f (xr))′ = f ′(xr)rxr−1. Using the substitution y = xr we obtain

h′(x)
h(x)

=

(
f ′(y)
f (y)

)
ry

r−1
r ∼

(
s
y

)
ry

r−1
r =

rs
y1/r =

rs
x
.

(4) By Theorem 6.18, h(x) ∼ x f (x)/(s + 1). Thus h′/h ∼ (s + 1)/x and h ∈ [xr+1]a.

(5) For t > 0 we have log g ∼ t log x which implies log g ≥ (t − ε) log x for any ε > 0 and

suitably large x. If s , 0 then we similarly obtain log f ≤ (s + ε) log x. For a suitable choice

of ε we have f (x) ≤ xs+ε
≺ xt−ε

≤ g(x) as x → ∞. If s = 0 then we may bound f (x) by xε

and the same holds. If s < t = 0, we have f (x) ≤ xs+ε
≺ x−ε ≤ g(x) for suitable ε > 0 and

sufficiently large x. When s < t < 0 we instead show 1/g ≺ 1/ f by applying (2) with r = −1

to obtain the positive case already considered. �
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We now apply asymptotic integration to prove a more convenient form of Theorem 6.5.

Theorem 6.20. Let c(x) be a non-negative increasing function over [a0,∞). Suppose c(x) ∼ G(x),

where G(x) =
∫ x

a0
g(t)dt for some g ∈ [x0]a0 , and let f ∈ [xs]a for some s > −1 and a ≥ a0.

∫ x

a
f (t)dc(t) ∼

f (x)G(x)
s + 1

.

Proof. Letting c(x) = G(x) + ε(x), with ε ≺ G, we have

∫ x

a
f (t)dc(t) =

∫ x

a
f (t)dG(t) +

∫ x

a
f (t)dε(t). (6.30)

Since f is continuous and c and G are increasing, the integrals all exist. To evaluate∫ x
a f (t)dG(t) =

∫ x
a f (t)g(t)dt, we note that f g ∈ [xs]a and apply Theorem 6.18 to obtain

∫ x

a
f (t)g(t)dt ∼

x f (x)g(x)
s + 1

∼
f (x)G(x)

s + 1
, (6.31)

where the second relation is given by applying Theorem 6.18 to G(x) =
∫ x

a0
g(t)dt.

We complete the proof by showing that
∫ x

a f (t)dε(t) is dominated by (6.31). Integrating

by parts yields ∫ x

a
f (t)dε(t) = f (t)ε(t)

∣∣x
a −

∫ x

a
ε(t)d f (t). (6.32)

The first term is dominated by the RHS of (6.31), since ε ≺ G. The second term is dominated

by the LHS of (6.31), since if it diverges we have

∫ x

a
ε(t)d f (t) =

∫ x

a
ε(t) f ′(t)dt ∼ s

∫ x

a

ε(t) f (t)
t

dt ≺ s
∫ x

a

G(t) f (t)
t

dt ∼ s
∫ x

a
f (t)g(t)dt,

and otherwise it is bounded and (6.31) is not. �

Any counting function satisfies the requirements of c(x) in the theorem above, thus we

have the following corollary.

Corollary 6.21. Let S be a set of natural numbers with counting function cS(x) ∼ G(x), where

G(x) =
∫ x

a0
g(t)dt for some g ∈ [x0]a0 , and let f ∈ [xs]a for some s > −1 and a ≥ a0. Then

∑
a<n≤x

n∈S

f (n) ∼
f (x)G(x)

s + 1
.
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As a simple example, the corollary implies
∑

p≤x p2 ∼ x3/(3 log x) when applied to the

prime counting function. This is not unexpected, but it is nice to have a rigorous proof

of the fact. As a less simple example, the distribution of numbers with exactly two prime

factors is given by the counting function π2(x) ∼ x log log x
log x [58, Thm 437]. We may apply the

corollary using π2(x) ∼ G(x) =
∫ x

3
log log t

log t dt to immediately obtain

∑
pq≤x

√
pq ∼

2x3/2 log log x
3 log x

.

We are now ready for the main goal of this section: a proposition which gives approxi-

mate bounds on functions summed over the coarse parts of numbers.

Proposition 6.22. Fix u > 1 and let y = x1/u. If f ∈ [xs] for some s > 0, then

(
1 + o (1)

) uω(u) f (x)
(s + 1) log x

≤
1
x

x∑
n=1

f
(
κy(n)

)
≤
(
1 + o (1)

)uω(u) f (x)
s log x

,

where ω(u) is the Buchstab function.

Proof. Let a = x1−ε with ε < 1/u. We group the terms by coarse part and split the sum at a:

1
x

x∑
n=1

f
(
κy(n)

)
=

1
x

∑
r∈Φy(x)

ψ
(x

r
, y
)

f (r)

=
1
x

∑
r∈Φy(x)

r≤a

ψ
(x

r
, y
)

f (r) +
1
x

∑
r∈Φy(x)

r>a

⌊x
r

⌋
f (r). (6.33)

Note that r > a > y implies x/r < y, hence every number up to x/r is y-smooth in the second

sum. We bound the first sum by replacing ψ(x/r, y) with x/r and applying Corollary 6.21

to the function f (t)
t ∈ [xs−1] using the trivial counting function c(t) = t:

1
x

∑
r∈Φy(x)

r≤a

f (r)ψ
(x

r
, y
)
≤

∑
r∈Φy(x)

r≤a

f (r)
r
∼

f (a)
s
. (6.34)

By part 3 of Theorem 6.19, f (a) = f (x1−ε) ∈ [x(1−ε)s], and since f (x)/ log x ∈ [xs], part 5 of the

same Theorem implies f (a) ≺ f (x)/ log x. Thus the first sum in (6.33) is o
(

f (x)/ log x
)
.

We now consider the second sum in (6.33). Let φy(t) denote φ(t, y) for fixed y. We then

write φy(t) = uω(u)li(t) + ε(t) for some ε(t). Note that uω(u) does not depend on t. We
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evaluate the second sum as

1
x

∑
r∈Φy(x)

r>a

⌊x
r

⌋
f (r) ≤

∑
r∈Φy(x)

r>a

f (r)
r
=

∫ x

a

f (t)
t

dφy(t) (6.35)

= uω(u)
∫ x

a

f (t)
t log t

dt +
∫ x

a

f (t)
t

dε(t). (6.36)

We may estimate the first integral by asymptotic integration of f (t)
t log t ∈ [xs−1] to obtain

uω(u)
∫ x

a

f (t)
t log t

dt ∼
uω(u) f (x)

s log x
, (6.37)

which represents the main term in the upper bound of the proposition. If we had replaced⌊ x
r

⌋
in (6.35) by 1 instead of x

r we would have derived a lower bound, with s replaced by

s + 1. We now bound the second integral in (6.36).

Theorem 6.9 implies that for a < t ≤ x we have φy(t) ∼ u(t)ω
(
u(t)
)
t/ log t where

u(t) =
log t
log y

=

(
1 − δ(t)

)
log x

log y
=
(
1 − δ(t)

)
u, (6.38)

and δ(t) satisfies t = x1−δ(t). For t ∈ (a, x] we have δ(t) ≤ ε. Since the choice of ε > 0 was

arbitrary, we may force δ(t) arbitrarily close to u as a < t ≤ x all tend toward infinity. It

follows that ε(t) = o
(
t/ log t

)
. Integrating by parts we have

∫ x

a

f (t)
t

dε(t) =
f (t)ε(t)

t

∣∣∣x
a
−

∫ x

a
ε(t)d

(
f (t)
t

)
. (6.39)

It is readily verified that both terms are o
(

f (x)/ log x
)

using ( f (t)/t)′ ∼ (s − 1) f (t)/t2 (since

f ∈ [xs]) and applying asymptotic integration to the integral on the right. �

Recall that ω(u) ≈ e−γ and is never more than e−γ + 0.006. Additional explicit bounds

on ω(u) may be found in [35].

Neither of the bounds in Proposition 6.22 is tight. We expect, by analogy with

1
x

x∑
n=1

ns
⌊x

n

⌋
=

1
x

x∑
n=1

x/n∑
m=1

ns ∼
1
x

x∑
n=1

1
s + 1

(x
n

)s+1
=

xs

s + 1

x∑
n=1

1
ns+1 ∼

xsζ(s + 1)
s + 1

,
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that the true asymptotic value in Proposition 6.22 may be

1
x

x∑
n=1

f
(
κy(n)

)
∼

uω(u)ζ(s + 1) f (x)
(s + 1) log x

, (6.40)

but we will not attempt to prove this here.
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Chapter 7

Fast Order Algorithms

Chapter Abstract

We consider the problem of computing |α| given the prime factorization of an integer
N for which αN = 1G, and generalize this notion to include incomplete factorizations
of N with w coprime factors. We present two new algorithms, one with complexity
linear in n = lg N, but not in m = lg |α|, for use when n� m, and one with complexity
O
(
n log w/ log log w

)
. We also give a generic multi-exponentiation algorithm that

is particularly well suited for use with fast order algorithms, and provide some
performance comparisons.

Fast order algorithms are given additional information to facilitate the computation of

|α|. Such information is often available when the order of G, or some group containing

G, is known, since this determines a multiple of |α|. Matrix groups over finite fields and

permutation groups are typical examples, as are the integers modulo p. Alternatively,

a multiple of |α| may become known as a result of general order computations, as seen

in previous chapters. Given sufficient information, it is possible to compute |α| quite

efficiently. Indeed, some of the performance tests in Section 7.7 involve groups with more

than 1010,000 elements, and the exponents generated by the multi-stage sieve may include

millions of factors.

The efficiency of fast order computations is important in smaller groups as well; such

computations lie at the heart of many generic algorithms. Computational group theory

often addresses problems of group recognition and membership which may be efficiently

solved with the aid of an order oracle. This may involve statistical methods which perform

order computations on a large sample of group elements. For many well known groups,

the set of prime factors that may divide the order of any element is small, and fast order

107



algorithms may be applied. See [5, 6, 63, 94, 49, 50] for examples.

There are other situations where fast order algorithms are applicable. The problem of

finding a primitive root (a generator) in a cyclic group with known order may be solved

with a fast order computation. In some cases, representation-specific information can be

applied to assist a generic order computation. The algorithm of Cellar and Leedham-Green

for determining the order of a matrix over a finite field is an example [33]. Their algorithm

uses the matrix representation of α to determine an exponent of |α|, then applies a fast order

algorithm which uses this exponent to compute |α|.

7.1 Factored Exponents and Pseudo-Order

The complexity of fast order algorithms depends on the specificity of the information

available regarding |α|. Typically we are given either a set containing the prime factors

of |α|, or a factored exponent of α, an integer N such that αN = 1G, along with its prime

factorization. The latter case may be viewed as a generalization of the former: if S contains

the prime factors of |α|, the implicit bound given by the size of identifiers implies that

N =
∏
p∈S

pblogp 2`c

is a factored exponent of α. The complexity of fast order computations depends not only

on the size of N, but, more critically, on its factorization. For N of a given size, the more

factors N has, the more difficult computing |α| will be. This is the reverse of the situation

with general order computations, where the prime order case is typically the most difficult.

Here we will be particularly concerned with highly composite N.

It is possible that the complete factorization of a known exponent may not be available.

For example |G|may be known, but not the prime factorization of |G|; if G = Z∗p, we know

that |G| = p − 1, but it may not be feasible to completely factor p − 1. Another example is a

matrix group over a finite field. The order of the general linear group of dimension d over

the finite field with q = ph elements is given by

∣∣GLd(Fq)
∣∣ = d−1∏

i=0

(
qd
− qi

)
.
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The prime factors of |G| for any subgroup G ⊆ GLd(Fq) lie among p and the divisors of

pn
− 1, for various n. Considerable effort has been expended to find factorizations of such

numbers, and for specific values of p complete factorizations are known for many values

of n [23]. Even when the complete factorization is unavailable, a partial factorization

containing only a few coarse composites is usually known.

These examples motivate a useful generalization. A factorization of N into powers

of integers which are (pair-wise) coprime may serve as a useful substitute for a complete

prime factorization of N. Typically these coprime factors will either be primes or very coarse

composites (numbers with no small prime factors), but for our purposes, coprimality is the

essential criterion.

Definition 7.1. An integer N such that αN = 1G, together with a factorization N = nh1
1 · · · n

hw
w

satisfying ni ⊥ n j for i , j, is called a factored exponent of α. An integer M of the form

M = ne1
1 · · · n

ew
w which divides N is called a compatible divisor of N. The pseudo-order of α

relative to the factored exponent N is the least compatible divisor M such that αM = 1G, and is

denoted |α|N .

When we use the notation |α|N, a specific factorization of N is assumed to have been

given. The set of compatible divisors of N and the set of exponents of α are both closed

under the gcd operation. The integer |α|N is the unique minimal member of both sets.

Definition 7.2. A fast order algorithm A(α,N) is a generic group algorithm which computes

|α|N, given a factored exponent N of α.

For a more formal definition, we may apply the model presented in Chapter 1.1 We

define a generic group relation R(~x, ~y), where ~x encodesα, the ni, and the hi, and ~y represents

the integer |α|N. The relation R(~x, ~y) holds precisely when |α| divides N, the ni are pair-wise

coprime, and y = |α|N. We then define a fast order algorithm to be a generic algorithmA(~x)

which computes R(~x, ~y) according to the definitions given in Section 1.2. For convenience

we may writeA(α,N) instead ofA(~x), with the factorization of N = nhi
i · · · n

hw
w implicit.

When the prime factorization of N is given, |α|N necessarily coincides with |α|. If |α|

is a compatible divisor of N then we also have |α|N = |α|, but in general they may differ.

If the prime factorization of N is not available, computing |α|N is often just as good as

computing |α|. As pointed out by Celler and Leedham-Green [33], the pseudo-order of α is
1This degree of formality is not generally required, but it is important to know that it can be done.
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sufficient to determine whether |α| divides any integer M. If |α| divides M but |α|N does not,

gcd(M, |α|N) must split one of the given factors of N, and |α|N can then be recomputed using

a refined factorization of N. Babai and Beals show that a wide range of problems for matrix

groups can be solved by generic algorithms using pseudo-orders, provided the factors of

N come from an appropriate set of “pretend-primes” [5]. More generally, suppose the

given factorization of N consists entirely of primes and composites which have resisted all

attempts of factorization. If it is known that |G| contains an element of order ni for each

given factor ni of N, then for a random α ∈ G it is highly probable that |α|N = |α|.2

7.2 A Linear-Time Algorithm for Large Exponents

We begin our consideration of fast order computations with a specialized algorithm that

is particularly relevant to the general order algorithms presented in this thesis. When the

size of N, the factored exponent, is much larger than lg |α|, it is possible to compute |α| in

time linear in n = lg N. This is the algorithm of choice for use with the primorial-steps and

multi-stage sieve algorithms when the bound L is large. In this case, the factored exponent

is the product of all the primes (or prime powers) less than L, which may potentially involve

millions of factors, even though |α| likely contains no more than ten or twenty of these.

The main task of this algorithm is to identify the minimal subset of the factors of

N = N1 . . .Nw whose product M is an exponent of α. If the Ni are primes, M is the order of

α, but in general the Ni will be prime powers (or pseudo-prime powers) and M will be a

new factored exponent of αwhich is much smaller than N. Any of the fast order algorithms

presented in the following sections may then be used to compute |α| given M.

We first give a simple version that stores O (w) group elements, then discuss how to

make it to more space efficient.

Algorithm 7.1. Given a factored exponent N = q1 . . . qw of α ∈ G, the algorithm below computes

an exponent M of α, whose factors are a minimal subset of {q1, . . . , qw}.

1. Initialize: If α = 1G, return 1, otherwise set β1 ← α, i← 1, and M← 1. Let q0 = 1.

2. Exponentiate: While βi , 1G, compute βi+1 = β
qi
i and set i← i + 1.

3. Prepare: Set M← qi−1 and t← i − 1.
2This is clearly true when G is abelian, but would need to be precisely stated and proven in general.
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4. Find Factor: If t = 1, return M. Otherwise do a binary search on j ∈ [1, t − 1] to find

the greatest j s.t. βM
j , 1G. If no such j exists, return M.

5. Include Factor: Set M← q jM and t← j, then go to step 4.

The correctness of the algorithm may be shown inductively. After step 3, M is an

exponent of βt, and this remains true each time step 5 is executed. When the algorithm

returns, βt = β1 = α, thus M is an exponent of α. Each factor q j in M contains a prime

divisor of the order of some element of 〈α〉, which must divide the order of α. The q j are

coprime, so M contains precisely the minimal subset of {q1, . . . , qw} required.

To reduce the space, we modify step 1 to only save β1 and every kth value of βi. In

step 4 we do a binary search on the saved values of βi corresponding to i ∈ [1, t − 1], then

recompute up to k − 1 of the discarded βi values to find the desired j ∈ [1, t − 1] in step 4.

Proposition 7.1. Let m = lg M and n = lg N. Let v and w be the number of factors qi in M and N

respectively. Let b be the largest value of lg qi. Then if k is the parameter described above, Algorithm

7.1 uses at most (
1 + o (1)

)(
n + v(m + kb) lg(w/k)

)
group operations, and stores w/k +O (1) group elements.

Proof. Using a fast exponentiation algorithm, the exponentiations in step 2 require a total

of
(
1 + o (1)

)
n group operations. Step 4 is executed v times, each binary search involves(

1 + o (1)
)

lg(w/k) exponentiations of the exponent M with size at most m, and less than k

exponentiations of size b are required to recompute the βi in the gaps. The storage bound

is immediate. �

When k = 1, we can drop b from the time bound to obtain

(
1 + o (1)

)
(n +mv lg w). (7.1)

Proposition 7.1 can be used to compute the exact complexity of Algorithm 7.1 in specific

instances, but we are most interested in the case where b and m (and necessarily v) are

logarithmic or nearly logarithmic in n. This occurs, for example, when N is the product

of all the primes (or prime powers) up to some L ≈ (|α|)c for some c > 0. In this case we

111



can choose k to make the space required quite small without significantly impacting the

running time, by taking k = n/(bv log n), for example.

Corollary 7.2. If m and b are polylogarithmic in n, then for appropriate k, Algorithm 7.1 uses(
1 + o (1)

)
n group operations and polylogarithmic space.

7.3 The Classical Algorithm

We now consider more conventional fast order algorithms, beginning with the classical

solution.3

Algorithm 7.2 (Classical Algorithm). Given a factored exponent N = nh1
1 · · · n

hw
w = N1 · · ·Nw of

α, compute |α|N as follows:

1. Compute αi ← αN/Ni for i from 1 to w.

2. For each i, find the least qi = nei
i such that αqi

i = 1G by successively computing

αi ← αni
i until αi = 1G.

3. Return
∏w

i=1 qi.

The algorithm above is easily seen to be correct, but it is useful to examine why. We

may regard the algorithm as a search through the set of compatible divisors of N for the

value x = |α|N. For every compatible divisor y , x, the algorithm either finds αz = 1G for

some z that is a multiple of x but not y, or it finds αz , 1G for some z that is a multiple of y

but not x. Given that N is a factored exponent of α, it must then be the case that x = |α|N,

even though the algorithm does not necessarily compute αx. This is the main task of fast

order algorithms: they must distinguish |α|N among the compatible divisors of N.

While perhaps not immediately apparent, the complexity of Algorithm 7.2 is essentially

determined by step 1. Each of the exponentiations in step 2 involving the exponent ni can

be performed using no more than 2
⌊
lg ni

⌋
group operations. Each ni is used at most hi

times, so the total number of group operations performed in step 2 is bounded by 2 lg N.

This value is linear in n = lg N and does not depend on w. The constant 2 may be brought

arbitrarily close to 1 by using any of several generic algorithms for fast exponentiation.

3The material contained in the remainder of this chapter also appears in the author’s paper [105].
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All but possibly one of the w exponentiations in step 1 involve an exponent of size

Θ (n). If these exponentiations are performed independently, Θ (nw) group operations will

be required. Note that w may be as large as n/ log n, as occurs when N is the product of

the first w primes, so in general the complexity of step 1 will be Θ
(
n2/ log n

)
in a naive

implementation. We will see how to improve the performance of step 1 significantly, but

in every case it will dominate the complexity.

7.4 Improvements

We now focus our attention on the specific problem of computing
[
αN/N1 , . . . , αN/Nw

]
, where

N = N1 · · ·Nw. We don’t require that the Ni be coprime, but in step 1 of the classical

algorithm they always will be. As noted above, a naive implementation usesΘ (wn) group

operations, where w = Θ
(
n/ log n

)
in the worst case. If the prime factorization of a random

integer N ∈ [1,M] is given, we have w = Θ
(
log log N

)
= Θ

(
log n

)
[58, Thm. 430-431].4

Thus the classical algorithm uses O
(
n2/ log n

)
group operations in general, andΘ

(
n log n

)
group operations for a random N (the prime factorization is assumed for random N).

The classical algorithm may be improved by noting that the exponentiations performed

in step 1 all involve the base α. There are several generic fixed-base multi-exponentiation

algorithms [73, 51, 13] which can compute w exponentiations of a common base using

O
(

n + w n
lg n

)
group operations (including any precomputation). By applying any of these

algorithms, the running time of the classical algorithm can be improved to O
(

n2/ lg2 n
)

in

general, and Θ (n) for a random value of N.

Remark 7.1. While convenient, the notion of a “random” value of N should be used carefully in the

context of fast order algorithms. If N = |G|, where G is a random group chosen uniformly among the

non-isomorphic groups with order at most M, then N is most definitely not uniformly distributed

over [1,M]. Indeed, it is conjectured [86] that the order of almost all groups is a power of 2; among

the nearly 50 billion non-isomorphic groups with order less than 2000, more than 98% have order

210, and most of the remaining groups have order 3 ∗ 29 [15]. In practice, fast order algorithms are

typically used in situations where G is known to have some particular structure, which will often

mean that N has many small factors. The order of a random subgroup of the symmetric group Sn,

for example, has many more distinct factors than a random integer in [1,n!].

4Both the average and median value of w are Θ
�
log n

�
.
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Celler and Leedham-Green have an efficient method for computing the order of an

invertible matrix over a finite field [33]. Their algorithm takes advantage of the specific

structure of the general linear group GLd(Fq) to find an exponent of α. At the core of their

method is a generic order algorithm which may be used with any group. They use the same

basic structure as the classical algorithm, but replace step 1 with the recursive procedure

described below. In anticipation of things to come, their “divide-and-conquer” algorithm

has been rewritten as a “clumping” algorithm.

Algorithm 7.3 (Celler, Leedham-Green). Given α ∈ G and positive integers [N1, . . . ,Nw],

A
(
α, [N1, . . . ,Nw]

)
recursively computes [α1, . . . , αw], where αi = αN/Ni and N =

∏w
i=1 Ni.

1. Base: If w = 1, set α1 ← α and return.

2. Partition: Put N1, . . . ,Nw into v = dw
2 e blocks of size at most 2.

Let M1, . . . ,Mv be the block products.

3. Recurse: Set [β1, . . . , βv]←A
(
α, [M1, . . . ,Mv]

)
.

4. Exponentiate: Set αi ← β
M j/Ni
j , where block j contains Ni.

Example 7.3.1. A
(
α, [2, 3, 5, 7]

)
might compute:

β1 = α
35, β2 = α

6, α1 = (β1)3, α2 = (β1)2, α3 = (β2)7, α4 = (β2)5.

A naive implementation would compute: α1 = α105, α2 = α70, α3 = α42, α4 = α30.

The partition chosen by the algorithm does not materially impact the running time. The

depth of the recursion is Θ
(
lg w

)
, and at each level the product of all the exponents used

in step 4 is less than N. Thus Θ (n) group operations are used at each level (n = lg N), and

Θ
(
n lg w

)
in all. If we replace step 1 of the classical algorithm with Algorithm 7.3, we obtain

a fast order algorithm that uses O
(
n lg n

)
group operations in general, andΘ

(
n lg lg n

)
for

a random N.

The latter bound is, perhaps surprisingly, worse than the comparable bound for the

classical algorithm when fixed-base multi-exponentiation is used. Fixed-based methods

can be applied to Algorithm 7.3, but since just two exponentiations are performed for each

base, the number of group operations is only reduced by a constant factor.
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7.5 The Snowball Algorithm

To develop an algorithm which improves both Algorithm 7.3 and the classical algorithm

with multi-exponentiation, we need a recursive structure which maximizes the impact of

multi-exponentiation. In essence, any time we exponentiate a group element α using a b-bit

exponent, we can perform O
(
lg b
)

additional exponentiations of α for free. In the classical

algorithm, too many exponentiations are done with the same base, while algorithm 7.3

performs too few.

The ideal situation would be to always use k = Θ
(
lg b
)

exponentiations of a common

base. More precisely, given a constant c ≈ 2, we wish to choose the largest k such that

cost(k, b) ≤ cb, (7.2)

where cost(k, b) is the number of group operations required to perform k exponentiations of

a common base, using exponents containing at most b bits. For a fixed c, we may determine

k from b by defining

fc(b) = max{k : cost(k, b) ≤ cb}. (7.3)

For most multi-exponentiation algorithms, fc(n) ∼ lg n for an appropriate value of c. The

algorithm presented in Section 7.6 has fc(n) = lg n +O(1), for all c > 2.

Given integers N1, . . . ,Nw, if we pack k integers into a block, say M = N1 · · ·Nk,

rather than just two as in Algorithm 7.3, we will exponentiate α using the exponents

M/N1, . . . ,M/Nk. These exponents are all bounded by M, so we may take b = dlg Me in the

cost function above. The actual sizes of the exponents will be smaller than b, but this does

not materially impact the implementation or analysis of the algorithm. Arranging the Ni

in increasing order makes it convenient to pack them into contiguous blocks that produce

exponents of roughly the same size.

We want to maximize the value of k, so we will pack exponents into optimal blocks

whenever possible. An optimal block B is a contiguous block of exponents which cannot

be extended without exceeding the cost ratio. That is, every contiguous block containing B

as a proper prefix has cost(k, b) > cb, where b is the total number of bits in the block. To make

this determination for blocks at the end of the input array, we assume a dummy input equal

to the last input. If this dummy input can be added to the block without exceeding the cost
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ratio, then the block is not considered optimal.5 Any inputs which cannot be conveniently

packed into optimal blocks are placed into singleton blocks, effectively deferring their

processing to a later stage of the recursion. As the recursion deepens, the size of the inputs

grows, making it possible to use larger and larger values for k. These ideas are captured in

the “snowball” algorithm:

Algorithm 7.4 (Snowball). Let c be a constant and let cost(k, b) be the cost function of Algorithm

7.5. Given α ∈ G, and integers N1, . . . ,Nw with Ni > 1, algorithmA
(
α, [N1, . . . ,Nw]

)
recursively

computes [α1, . . . , αw], where αi = αN/Ni , N =
∏w

i=1 Ni.

1. Base: If w = 1, set α1 ← α and return.

2. Analyze: Let N1 ≤ . . . ≤ Nw, and maximize b = lg(N1 · · ·Nk) such that cost(k, b) ≤ cb.

Let Nmax be the largest Ni such that lg Ni < b.

3. Partition: Put N1, . . . ,Nk in a block, construct optimal blocks using Nk+1, . . . ,Nmax,

and place unused Ni into singleton blocks. Let M1, . . . ,Mv be the block products.

4. Recurse: Compute [β1, . . . , βv]←A
(
α, [M1, . . . ,Mv]

)
.

5. Exponentiate: Set αi ← β
M j/Ni
j for Ni in block j, using Algorithm 7.5 with base β j.

When implementing the algorithm above, it is important to note that in step 2 it is

possible to have a = lg(N1 · · ·N j) and b = lg(N1 · · ·Nk) with cost( j, a) > ca while cost(k, b) ≤ cb,

even though j < k. The process of maximizing b must start with b = w and then reduce b.

The same comment applies when constructing optimal blocks: the largest possible block

must be considered first. The partition constructed in step 3 will either be a single block

containing all the exponents (when k = w), or it will consist of one or more optimal blocks

and singleton blocks. The singleton blocks will include all Ni > Nmax and possibly some

Ni ≤ Nmax which remain because constructing an optimal block requires going past Nmax.

Example 7.4.1. On inputs α ∈ G and [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31], Algorithm 7.4 might

initially determine k = 3, Nmax = 29, and partition the Ni into products:

M1 = 2 · 3 · 5, M2 = 7 · 11 · 13, M3 = 17 · 19 · 23 · 29, M4 = 31.
5This is a minor optimization; omitting this check and simply considering end blocks optimal does not

significantly impact the performance of the algorithm.
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The next recursive call sets k = 4 and clumps all the Ni into a single block with product N, reaching

the base case. The algorithm then computes:

β1 = α
N/M1 , β2 = α

N/M2 , β3 = α
N/M3 , β4 = α

N/M4 ,

using a single multi-exponentiation with base α. One additional multi-exponentiation operation is

performed for each of the βi to compute the eleven required output values:

α1 = (β1)3·5, α2 = (β1)2·5, α3 = (β1)2·3, α4 = (β2)11·13, α5 = (β2)7·13, α6 = (β2)7·11,

α7 = (β3)19·23·29, α8 = (β3)17·23·29, α9 = (β3)17·19·29, α10 = (β3)17·19·23, α11 = β4.

Before analyzing the complexity of the snowball algorithm, there are a few details

worth noting. All the group operations occur in step 5, and we need only consider the non-

singleton blocks, since if block j is a singleton block, then M j/Ni = 1 and the exponentiation

is trivial. With the possible exception of the very last block constructed, all the non-singleton

blocks are optimal blocks containing fc(b) inputs, where b is the total number of bits in the

block. Note that the algorithm would be effectively unchanged if only one non-singleton

block were constructed in each recursive call.

Proposition 7.3. Let c be a constant, and let fc(b) = max{k : cost(k, b) ≤ cb} satisfy fc(b) ∼ lg b

and fc(b) ≥ 2 for all b. Let n = lg N, where N = N1 · · ·Nw.

(1) Algorithm 7.4 uses O
(

n lg w
lg lg w

)
group operations and O (w) group storage.

(2) Algorithm 7.4 uses O (n) group operations when w is polylogarithmic in n.

Proof. We assume the algorithm forms just one non-singleton block in each recursive call

and that the input array is always in increasing order. We claim we may also assume the Ni

are all approximately the same size and thus n/ lg N1 = Θ (w). Suppose not, and consider

the impact of increasing lg Ni by δwhile decreasing lg N j by δ and holding lg N and w fixed.

We may choose i, j, and δ so that the sorted order of the inputs is unchanged. We then

have i < j, and note that the input Ni will get packed into a non-singleton block at least as

many times as N j. Since the bound on the cost is linear in the size of the exponents, this

change can only increase the total cost bound. Thus the cost is maximized when the Ni are

approximately the same size, which we now assume to be the case.
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To analyze the algorithm, we divide the recursive calls of the algorithm into rounds. We

begin by recording the values E1 = N1, k1 = k, and F1 =M1 computed in the first recursive

call, and start the second round when the smallest input N1 is greater than or equal to F1, at

which point we record the values E2 = N1, k2 = k, and F2 =M1. We proceed in this fashion

until the algorithm terminates in round t. Each call in a given round, except possibly the

last, forms a non-singleton block out of distinct inputs present at the start of the round.

It follows that the total size of all the non-singleton blocks formed during a round is at

most 2n and the number of group operations is no more than 2cn (in fact, close to cn). To

complete the proof, we bound the number of rounds, t.

Note that Fi ≥ Eki
i ≥ Fki

i−1, since Fi is composed of k factors, all ≥ Ei. At the start of round

i we must have Ei ≥ Fi−1, by definition. Thus we have

N ≥ Ft ≥ Fkt
t−1 ≥ Fkt−1kt

t−2 ≥ · · · ≥ Fk2···kt
1 ≥ Ek1···kt

1 = Nk1···kt
1 , (7.4)

which implies

k1k2 · · · kt ≤ n/ lg N1 = O (w) , (7.5)

since we assumed n/ lg N1 = Θ (w) above. This proves (2), for if w is polylogarithmic in n

we have w = O
(

lgd n
)

for some constant d and k1 = Θ
(
lg n
)
, implying t = O (1). To prove

(1), we note that ki = fc(lg Fi) ≥ fc(ki lg Ei), and therefore

ki+1 ≥ fc(ki+1 lg Ei+1) ≥ fc(ki+1 lg Fi) ∼ fc(lg Fi) + lg ki+1 = ki + lgi+1, (7.6)

since fc(b) ∼ lg b. The value lg Fi grows as i increases, hence so does fc(lg Fi), and (7.6)

implies that there is a constant s for which the sequence ks, ks+1, . . . kt is strictly increasing.

It follows from (7.5) that (t − s + 1)! ≤ ks · · · kt = O (w), and thus t = O
(

lg w
lg lg w

)
as desired.

The time bound in (1) follows.

To prove the space bound, we forget our assumption that only one non-singleton block

is constructed in each call and note that, as written, the algorithm will complete each round

within two recursive calls. The top level uses O (n) group storage and the space required

decreases by more than a constant factor every two calls, thus the total storage within the

recursion is O (n), and none of the calls to Algorithm 7.5 exceed this bound. �

The constant factors contained in the bounds above are small; the number of group
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operations is close to cn lg w
lg lg w in practice. With the algorithm presented in the next section,

c is just slightly larger than 2. As noted earlier, the size of the exponents used in step 5

of the Algorithm 7.4 is less than the value b used in the cost function, since the exponent

M j/Ni has one factor removed. As a result, the effective constant is less than 2 in practice.

7.6 A Fast Algorithm for Multi-Exponentiation

The exponentiations performed by the snowball algorithm typically involve small-to-

moderate values of b and k, and in general k ≈ lg b. While many algorithms have good

asymptotic performance as either b or k tend to infinity, few are ideal when b and k are

small or k/ lg b is constant.

The multi-exponentiation algorithm below is based on the transpose (dual) of an al-

gorithm originally due to Straus [104] for computing a monomial αe1
1 · · ·α

ek
k of multiple

group elements (see also [76] or [73, Algorithm 14.88]). The transpose computes multiple

powers of a single group element (see [80] or [13] on the transposition of exponentiation

algorithms). Rather than transposing the operations of Straus’ algorithm, we give a direct

implementation.

Algorithm 7.5. Given α ∈ G, positive integers E1, ...,Ek with dlg Eie ≤ b, and a positive integer s,

the following algorithm computes [αE1 , . . . , αEk]:

1. Let d =
⌈ b

s

⌉
and write Ei =

∑d−1
j=0 Ei j2sj as a d-digit number in base 2s.

Let v( j) = [E1 j,E2 j, . . . ,Ekj], and for all vectors x ∈ {0, . . . , 2s
− 1}k, set βx ← 1G.

2. For j from 0 to d − 1, compute α2sj
and if v( j) is non-zero set βv( j) ← βv( j)α2sj

.

3. For m from k(2s
− 1) down to 2, for each z with weight m, if βz , 1G then choose

non-zero x and y such that x + y = z and set βx ← βxβz and βy ← βyβz.

4. Return [βe(1), . . . , βe(k)], where e(i) denotes the ith unit vector.

The weight of a vector is defined to be the sum of its digits, thus the vectors x and y chosen

in step 3 will necessarily have lower weight than z. It is preferable to choose x and y so

that βx and βy are non-trivial (not 1G), but any choice will work. It is straight-forward to

prove that Algorithm 7.5 is correct (see Proposition 7.4), but it is perhaps best understood

by example.
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Example 7.5.1. For inputs 795 and 582, k = 2 and b = 10, and let s = 2 so that d =
⌈ b

s

⌉
= 5.

Writing the exponents in base 2s = 4, we have

E1 = 3 0 1 2 3;
E2 = 2 1 0 1 2.

The vectors v( j) can now be read down the columns corresponding to the powers 4 j, with 40 on the

right. The βv( j) computed in step 2 may be written with base-4 exponents as:

β32 = α
100014 , β21 = α

000104 , β10 = α
001004 , β01 = α

010004 .

Step 2 squares α eight times and performs one non-trivial multiplication involving β32. Step 3

computes:

β21 = β21β32 = α
100114 , β11 = β11β32 = α

100014 ,

β11 = β11β21 = α
200124 , β10 = β10β21 = α

101114 ,

β10 = β10β11 = α
301234 , β01 = β01β11 = α

210124 ,

using five non-trivial multiplications (the operation β11β32 is trivial). The output is then [β10, β01].

Written in decimal, the complete addition chain of length fourteen is

1, 2, 4, 8, 16, 32, 64, 128, 256, 257, 261, 277, 518, 582, 795.

For comparison, the standard binary exponentiation algorithm would use twenty-six

group operations in the example above. If we had set s = 1, fifteen group operations would

have been used.6

For larger values of k, unless b is very large we will use s = 1 and the vectors will be

binary strings. This case is the transpose of what has been referred to as “Shamir’s trick”

([47], see also [97, Ex. 3.28]), which we illustrate with a slightly larger example.

Example 7.5.2. For inputs [31415, 27182, 13171], k = 3 and b = 15. Let s = 1, so d = d b
s e = 15.

Writing the exponents in binary, we have

E1 = 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1;
E2 = 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0;
E3 = 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1.

6In general, s = 1 is a better choice for exponents of this size, but not in this case.
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The vectors v( j) can be read down the columns corresponding to powers of 2 j, with 20 on the right.

The βv( j) computed in step 2 may be written with binary exponents as:

β001 = α
0000001010000002 , β010 = α

0000000000010002 , β100 = α
0000000100000002 ,

β101 = α
0010000000100012 , β110 = α

1001000000001002 , β111 = α
0100010001000102 .

Step 2 squares α fourteen times and performs eight non-trivial multiplications. Step 3 computes:

β110 = β110β111 = α
1101010001001102 , β001 = β001β111 = α

0100011011000102 ,

β100 = β100β110 = α
1101010101001102 , β010 = β010β110 = α

1101010001011102 ,

β100 = β100β101 = α
1111010101101112 , β001 = β001β101 = α

0110011011100112 ,

using six group operations. The output is then [β100, β010, β001]. The complete addition chain is

1, 2, 4, 8, 16, 32, 64, 128, 256, 320, 512, 1024, 2048, 4096, 4112, 4113, 8192, 8704,
8736, 8738, 9058, 13171, 16384, 18432, 18436, 27174, 27182, 27302, 31415

Individual binary exponentiation of the three exponents in the example above would

require sixty-seven group operations rather than twenty-eight. If we had used s = 2, thirty

group operations would have been performed.

We now prove the correctness of the algorithm and bound its complexity.

Proposition 7.4. Given inputs α ∈ G, positive integers E1, . . . ,Ek, and a positive integer s,

Algorithm 7.5 outputs [αE1 , . . . , αEk].

Proof. We adopt additive group notation in this proof, so we write kα rather than αk and 0

in place of 1G. Let b be the number of bits in the largest Ei, and let d =
⌈ b

s

⌉
, where s is any

positive integer. The ith desired output may be written as

Eiα =
d−1∑
j=0

Ei j2sjα =
d−1∑
j=0

[v( j)]i2sjα, (7.7)

where the v( j) are the k-place vectors defined in step 1 of Algorithm 7.5. We may regroup

the terms of the sum according to the values βx computed in step 2 to obtain

Eiα =
∑

x
xiβx, (7.8)
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where the sum is over all x ∈ {0, . . . , 2s
− 1}k, since βx = 0 for any x not equal to some v( j).

We now show that the sum in (7.8) is effectively unchanged by step 3 of the algorithm.

If z = x + y, the contribution of the terms involving x, y, and z is

xiβx + yiβy + ziβz = xiβx + yiβy + (xi + yi)βz = xi(βx + βz) + yi(βy + βz).

Thus if we add βz to both βx and βy and then suppose βz is set to 0, the sum is unchanged.

At the completion of step 4, the only non-zero terms of the sum that remain have x with

weight 1 and xi non-zero. The only such x is the unit vector e(i), thus (7.8) implies Eiα = βe(i),

which is the value returned by the algorithm. �

Proposition 7.5. For k inputs with at most b bits and window size s, Algorithm 7.5 uses at most

cost(k, b) = b + db/se + 2sk
− 2k − 2 (7.9)

non-trivial group operations and 2sk +O (1) group storage.

Proof. Let d =
⌈ b

s

⌉
. A total of (d − 1)s ≤ b − 1 squarings of α are performed in step 2,

along with up to d multiplications involving the elements βx. Step 3 performs at most two

multiplications for each of the 2sk
− k − 1 vectors with weight greater than one. Thus the

total number of group operations is bounded by

b − 1 + db/se + 2(2sk
− k − 1). (7.10)

We now show that (7.10) overcounts the non-trivial group operations by at least 2sk
− 1.

Every βx which takes on a non-trivial value during the algorithm’s execution is at some

point the output of a group operation of the form βx = βxγ, with inputs βx = 1G and γ , 1G.

Note that unit vectors (vectors with weight one) all must take on a non-trivial value at

some point since the input exponents are non-zero and we may assume α , 1G (otherwise

every operation is trivial). If the value of βx is never non-trivial and x has weight greater

than one, then we have included two operations in (7.10) which did not occur. Thus, for

each of the 2sk
− 1 non-zero vectors, we have included at least one distinct group operation

in (7.10) which was either trivial or did not occur. Subtracting 2sk
− 1 yields the desired

time bound. The space bound is immediate since there are 2sk
− 1 group elements βx. �
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In the worst case, βx is non-trivial for every non-zero vector x, and the cost estimate

above is tight. In this situation the particular choice of x and y in step 3 of Algorithm 7.5 is

immaterial.

For specific values of k and b, the optimal s can be determined via the cost function. In

particular, for s = 1 we have the following corollary.

Corollary 7.6. Let c > 2 be a constant and let fc(n) = max{k : cost(k,n) ≤ cn}, where cost(k,n) is

the cost function of Algorithm 7.5 given by (7.9) with s = 1.

(1) fc(n) ≥ 3 for all n.

(2) fc(n) = lg n +O(1).

(3) If k = fc(n) then Algorithm 7.5 uses O (n) storage.

Proof. Assume c > 2. Setting s = 1, Proposition 7.5 implies

cost(k,n) = 2n + 2k
− 2k − 2.

Thus cost(3,n) = 2n < cn and fc(n) ≥ 3 for all n, proving (1). For (2), we note that fc(n)

maximizes k subject to:

2n + 2k
− 2k − 2 ≤ cn

2k
(

1 −
2(k + 1)

2k

)
≤ (c − 2)n = εn,

where ε = c − 2 > 0. Note that k is unbounded as n→∞, and in particular, for sufficiently

large n we may assume k > 3. Taking logarithms, we have

k + lg
(

1 −
2(k + 1)

2k

)
≤ lg n + lg ε

k ≤ lg n + lg ε − o (1) = lg n +O (1) ,

which proves (2). For (3), we note that for k = lg n + O (1) and s = 1, the space used by

Algorithm 7.5 is, by Proposition 7.5, 2sk = 2lg n+O(1) = O (n). �

By way of comparison, we consider a commonly used multi-exponentiation algorithm:

the fixed-base windowing method originally proposed by Yao [115] and generalized by
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c = 2 1
4 c = 2 1

2

n fc(n) f ′c (n) fc(n) f ′c (n)

8 1 3 2 3
32 2 4 2 4
128 3 5 4 6
512 4 7 5 8
2048 6 9 7 10

Table 7.1: Comparison of Multi-Exponentiation Packing Functions

Brickell et al. [22] (see also [73, Algorithm 14.109]). Including precomputation, the total

number of group operations is approximately

cost(k, b) = b + k
(
db/se + 2s

− 2
)
− 1. (7.11)

The optimal window size is typically s ≈ lg b− lg lg b. When b = 32 and k = 4, the fixed-base

windowing method requires 99 group operations, while Algorithm 7.5 uses at most 70. For

b = 512 and k = 7 we have 1442 versus 1136.

In terms of the packing function fc(n), for an appropriate choice of c the cost function in

(7.11) gives fc(n) = lg n− lg lg n+O (1), compared to the bound fc(n) = lg n+O (1) given by

Proposition 7.5. This results in significant differences in the values of fc(n) relating to the

sizes of exponents that arise in practice. This is shown in Table 7.1, where fc(n) corresponds

to the fixed-base windowing method and f ′c (n) corresponds to Algorithm 7.5. Recall that

fc(n) represents the maximum number of n-bit exponents that can be exponentiated using

no more than cn group operations, so larger values of fc(n) are better, and we want c to be

as small as possible.

In the field of exponentiation algorithms, where performance comparisons typically

involve small percentages, these are significant differences. In the case of the snowball

algorithm, these differences are magnified by the fact that the algorithm is quite sensitive

to the values of k in the early stages of the recursion. Once k begins to increase, it does so

rapidly. Algorithm 7.5 causes this to happen sooner. If we start the snowball algorithm

with an arbitrary number of 16-bit inputs, the size of the inputs at each level of the recursion

may be approximated by the recurrence n0 = 16, ni+1 = k ∗ ni where k is maximized subject
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to cost(k,ni) ≤ cn. The cost function for the standard windowing method gives the sequence

16, 32, 96, 384, 2304, 20736, . . . ,

whereas the cost function for Algorithm 7.5 produces the sequence

16, 80, 560, 5600, 78400, 1411200, . . . ,

effectively reducing the depth of the recursion (and the running time) by more than 50%.

The snowballs grow a lot faster on a hill that is slightly steeper at the start.

Note that both sequences grow super-exponentially; this is what gives the snowball

algorithm its advantage. By comparison, the sequence of exponent sizes in the recursive

algorithm of Celler and Leedham-Green is the geometric sequence

16, 32, 64, 128, 512, 1024, . . . .

7.7 Performance Comparisons

Table 7.2 lists performance test results for several of the fast order algorithms presented

in this chapter. Each test computed |α| for random α ∈ G given the prime factorization of

an exponent N of G. The numbers listed under each algorithm count group operations,

where “Classic+” indicates the classical algorithm with multi-exponentiation, and “CLG”

indicates the algorithm of Celler and Leedham-Green (Algorithm 7.3). For cyclic groups,

|CN | = N was used as the exponent. In the random case, Bach’s algorithm was used to

generate random integers with known factorizations [9]. For the symmetric groups Sm,

the exponent N =
∏

p pblogp mc was used. The constant c = 2.1 was used in the snowball

algorithm.

The major points worth noting are that the snowball algorithm is generally about twice

as fast as the algorithm of Celler and Leedham-Green, and both are much faster than the

classical algorithm, even for fairly moderate values of w.
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Group n w Classic Classic+ CLG Snowball

CN 256 5.8 1,854 613 848 496
(random N) 1,024 6.7 8,743 2,382 3,446 1,914

4,096 8.2 44,243 9,294 16,619 8,393
16,384 9.3 204,924 35,742 56,925 32,501

C541# 730 100 108,331 17,684 7,397 3,839
C1223# 1704 200 508,534 69,662 19,890 10,303
C2741# 3,886 400 2,327,008 273,813 51,237 25,148
C6133# 8,716 800 10,446,504 1,078,709 128,099 64,578
C13499# 19,292 1,600 46,273,593 4,255,475 312,786 141,364
C29433# 42,253 3,200 202,764,477 16,662,597 748,904 340,374
S100 136 25 4,891 1,215 750 344
S400 574 78 66,095 11,368 4,924 2,029
S1600 1,144 251 863,727 112,066 24,648 7,954

Table 7.2: Performance Comparison of Fast Order Algorithms
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Chapter 8

Computing the Exponent of a Group

Chapter Abstract

We apply order algorithms to compute the group exponent, λ(G), of abelian and
certain non-abelian groups. We then show how to compute the minimal exponent
of a given set of elements in any group, and use this to prove the Order Compu-
tation Theorem: all order computations performed by a generic algorithm can be
accomplished using essentially the same number of group operations as a single
computation on an element with order λ(G).

We call an integer N for which αN = 1G an exponent of α. For α ∈ G the order of the

group is necessarily an exponent of α, thus |G| is an exponent of every α ∈ G. However |G|

is not necessarily the least number with this property.

Definition 8.1. The exponent of a finite group G is the least positive integer N for which αN = 1G

for all α ∈ G. The exponent of G is denoted λ(G).

The exponent of a group is the least common multiple of the orders of all its elements,

and therefore divides any common multiple, including |G|. It follows from the Sylow

theorems that λ(G) is divisible by each prime p dividing |G|, since G must contain an

element of order p. When G = Zm, the exponent of G may be computed via the Carmichael

function, λ(m), which is defined recursively for positive integers by letting λ(1) = 1 and

λ(2h) = 2h−2;

λ(ph) = φ(ph) = ph
− ph−1 for prime p;

λ(ab) = lcm
(
λ(a), λ(b)

)
when a ⊥ b.
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Group |G| λ(G) Notes

Z∗91 72 12 Multiplicative group of integers mod 91
S7 5,040 420 Permutations of seven elements
GL2(F7) 2016 336 2x2 non-singular matrices over F7

E(x3 + 42x + 1,F101) 96 24 Elliptic curve y2 = x3 + 42x + 1 over F101

Cl
(
Q
√
−4004

)
40 10 Ideal class group of Q

√
−4004

Table 8.1: Orders and Exponents of Some Finite Groups

When G is cyclic, we have λ(G) = |G|, and for abelian groups, the converse holds. In

general, λ(G) and |G|may be quite different, as seen in Table 8.1.

8.1 Computing λ(G)

A simple approach to computing λ(G) is to compute the orders of a random sample of

group elements and output their least common multiple. Clearly this will work if the

sample is large enough, but can we determine the exponent of the group with probability

bounded above 1/2 using a small sample, preferably one of constant size? In general, the

answer is ”no”, as may be seen by considering the symmetric group Sp for prime p. The

probability of finding a random element with order p is only (p− 1)!/p! = 1/p, and we need

to find all the prime powers up to p. To have a good chance of correctly determining λ(Sp),

we would need a fairly large sample, certainly more than constant size.

On the other hand, if we only wanted a set of generators, we could pick just three

random elements and be fairly confident we could generate the entire group. This is true

of many non-abelian groups. The expected number of random elements needed to generate

any finite simple group is at most 2 + o (1), as conjectured by Dixon [44] and proven by

Liebeck and Shalev [71] (see Pak [81] for more general results). Unfortunately the orders

of a set of generators may give little information regarding the exponent the group. The

group Sn, for example, can be generated entirely by elements of order 2.

Given a set of generators for an abelian group, however, we can easily compute λ(G).

The least common multiple of their orders will be an exponent of every generator, and

thus an exponent of any product of generators, since G is commutative. The minimum

number of elements required to generate an abelian group may be as large as lg |G|, as
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when G is the direct product of cyclic groups of order 2. In general, the expected number

of random elements required to generate an abelian group is r + σ, where r ≤ lg |G| is the

size of the smallest generating set, and the constant σ ≈ 2.1184, as shown by Pomerance

in [85]. Thus, O
(
lg |G|

)
random elements suffice to determine the exponent of an abelian

group G. However, only two are necessary, with probability at least 6/π2 > 1/2.

Theorem 8.1. Let α and β be uniformly random elements of a finite abelian group G.

Pr
[
lcm

(
|α|, |β|

)
= λ(G)

]
>

6
π2 (8.1)

Proof. Recall that every abelian group is isomorphic to a direct product of cyclic groups.

Thus we may represent G using a basis of independent elements of prime-power order

γ1, . . . , γn, so that each α ∈ G has a unique exponent vector [e1, . . . , en] whose ith component

is an integer modulo |γi|. Let p1, . . . , pw be the primes dividing G. If phi
i is the maximum

power of pi equal to some |γ j|, then the exponent of G is simply

λ(G) = ph1
1 · · · p

hw
w . (8.2)

For α uniformly distributed over G, ei is uniformly distributed over the integers modulo

|γi|. In particular, if |γi| = ph and ei ⊥ ph, then |α| will be divisible by ph. This occurs with

probability
φ(ph)

ph =
ph
− ph−1

ph = 1 − p−1. (8.3)

Thus for each maximal ph dividing λ(G), the order of α is divisible by ph with probability

at least 1 − p−1, since there is at least one γi with order ph. The probability that either α

or β has order divisible by ph is then at least 1 − p−2. If this is true for all p|λ(G), then we

have lcm(α, β) = ph1
1 · · · p

hw
w = λ(G) as desired. Since the ei are independently distributed,

the probability that ph divides one of |α| or |β| for every p|λ(G) is at least

∏
p|λ(G)

(
1 − p−2) >∏

p

(
1 − p−2) = 1

ζ(2)
=

6
π2 , (8.4)

which completes the proof. �

The theorem implies that we can compute the exponent of an abelian group with an

exponentially small probability of error using just a constant number of random order
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computations.1. While this simple approach will work, it is needlessly inefficient. Even if

the sample size is a small constant, as implied by the theorem above, it will still need to be

a constant substantially larger than 1. In order to achieve a satisfactory level of confidence

in the output, it may be necessary to perform 20 or more order computations. This is

unnecessary; essentially only “one” order computation is required.

We start by selecting a random α1 ∈ G, and compute E = e1 = |α1|, which is a divisor

of λ(G). We then select a random β ∈ G, but rather than computing the order of β, we

compute the order of α2 = βE, and let e2 = |α2|. By Lemma 8.2 below, E = e1e2 is also a

divisor of λ(G). If α2 is the identity element, then e2 = 1 and the order computation was

trivial. Otherwise our new E is a larger divisor of λ(G), and the cost of finding it depends

on e2, not E. In the event that we only make a little progress, we only have to do a little

work. In fact, our fondest hope is that we get many small ei rather than one big one.

The algorithm continues in this fashion until the identity element is obtained repeat-

edly (as many times as required to achieve the desired level of confidence), at which point

E = λ(G) with high probability (for suitable G). At most a logarithmic number of non-

trivial exponentiations are required, thus the total cost of the exponentiations is negligible

compared to the order computations. The result is an algorithm whose computational

complexity is effectively no worse than the cost of performing just a single order compu-

tation on an element with order λ(G). It may be substantially better than this if λ(G) is

composite and we get lucky.

Algorithm 8.1 (Randomized Exponent Algorithm). Given an integer parameter r > 1 and a

randomized black box for the group G, the probabilistic algorithm below outputs a divisor of λ(G).

1. Initialize: Let E← 1 and t← 0.

2. Sample: Set α← βE for a random β in G.

3. Trivial?: If α = 1G, increment t and if t ≥ r return E, otherwise go to step 2.

4. Compute |α|: Compute |α|, set E← |α|E, and go to step 2.

The correctness of the algorithm follows inductively from the lemma below.

Lemma 8.2. Let β be an element of a finite group G. If e divides λ(G) then |βe
|e also divides λ(G).

1Similar but weaker statements may be made for some non-abelian groups (see Proposition 8.4)
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Proof. Suppose e divides λ(G), and let d = |βe
|. Then d divides λ(G), and if de does not, then

there is a prime power ph which divides de but not λ(G). We claim that this cannot be so.

Such a p must divide both d and e, and ph - λ(G) implies that ph - |β|. It follows that de/p

is an exponent of β (since de is) and therefore d/p is an exponent of βe. But this contradicts

the fact that d = |βe
| is the minimal exponent of βe. �

Algorithm 8.1 always outputs a divisor of λ(G), but we would like to bound the proba-

bility that the algorithm fails to output λ(G). We first consider the abelian case.

Proposition 8.3. Let G be a finite abelian group. If E is the value output by Algorithm 8.1 then

Pr[E , λ(G)] <
1

2r−2 ,

where r ≥ 2 is the input bound to the algorithm.

Proof. When Algorithm 8.1 terminates, it has found random elements β1, . . . , βr for which

E is an exponent. If every maximal prime power ph dividing λ(G) divides the order of

some βi, then we have e = λ(G). Following the proof of Theorem 8.1, the probability that

ph divides the order of βi is 1 − p−1, independently for each βi. Thus the probability that ph

divides the order of some βi is 1 − p−r. The probability that every maximal prime-power

divisor of λ(G) divides some βi is then

∏
p|λ(G)

(1 − p−r) >
∏

p
(1 − p−r) =

1
ζ(r)

, (8.5)

where we note that r > 1, so the infinite product converges. Thus we have

Pr[E , λ(G)] < 1 −
1
ζ(r)
=
ζ(r) − 1
ζ(r)

≤ ζ(r) − 1 =
∑
1≤n

n−r
− 1 = 2−r +

∑
2<n

n−r, (8.6)

since ζ(r) > 1. We now bound the sum using a Stieltjes integral:

∑
2<n

n−r =

∫
∞

2
t−rdbtc =

∫
∞

2
t−rdt −

∫
∞

2
t−rd{t} ≤

∫
∞

2
t−rdt =

21−r

r − 1
≤ 21−r. (8.7)

Substituting into 8.6 and noting that 2−r + 21−r < 22−r completes the proof. �

A more general, but weaker, proposition can be applied to certain non-abelian groups.

131



Matrix groups of low dimension are one example. The exponent of the group GL2(Fp) is

λ(GL2(Fp)) = p · lcm(p − 1, p2
− 1),

and a similar formula holds for GLd(Fq) [78]. The order of GL2(Fp) can be effectively

computed by Algorithm 8.1 (which of course doesn’t know p), because there is a reasonably

high probability of obtaining a random element with order divisible by any particular prime

power in λ(G).

Proposition 8.4. Fix ε > 0, and suppose G is a group where each prime power dividing λ(G)

divides a random element of G with probability at least ε. Let E be the value output by Algorithm

8.1. There exists an r = O
(
log log(N)

)
, where N = λ(G), such that

Pr[E , λ(G)] = O

(
1

lgk N

)
,

for any constant k.

Proof. The probability that a maximal prime power that divides λ(G) does not divide the

order of any of the r random elements whose order divides E is at most (1 − ε)r. Noting

that there are at most lgλ(G) = lg N prime powers that divide λ(G) and applying a union

bound yields

Pr[E , λ(G)] ≤ lg N(1 − ε)r.

For any constant k, we may choose r = c log log N (where c depends on k and ε) to satisfy

the proposition. �

The proposition above can be generalized by considering non-constant ε, e.g. ε inversely

proportional to log |G|, requiring larger values of r.2

8.2 Order Complexity Bounds

We now consider the running time of Algorithm 8.1, which is the principal item of interest.

We will show that the complexity is essentially dominated by the equivalent of a single

2It might be interesting to classify finite groups based on the divisibility of element orders by prime powers.
For a given group G, what is the minimum probability that ph

‖λ(G) divides a random element?
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order computation. Given the variety of complexity bounds proven in Chapters 4 and 5, it

is useful to have a generic bound T(N) that may represent any of these results.

A key feature of all these bounds is that it is always easier (or at least never harder)

to compute |α| and |β| separately than to compute the order of a single element γ with

|γ| = |α||β|. Thus we have T(a) + T(b) ≤ T(ab). This can be derived from the analytic

properties of the functions used in many of the bounds (e.g.
√

a+
√

b = O
(√

ab
)

), but this

is misleading. If T(N) is the number of group operations required to compute |α| = N, it

may well be the case that T(N + 1) � T(N), e.g. if N is prime and N + 1 highly composite,

which is certainly not true of
√

N. The fact that T(a)+T(b) ≤ T(ab) indicates a fundamental

connection between the complexity of order computations and the multiplicative structure

of integers. This illustrates another distinctive property of generic order computations.

Assuming an algorithm has no information about G or α, the complexity of computing |α|

is entirely a function of the integer N = |α|, independent of the group G.3

Definition 8.2. An order complexity bound T(N) is a function that bounds the complexity of

computing the order of α in the cyclic group 〈α〉 � CN, and satisfies T(a) + T(b) ≤ T(ab) for all

integers a, b > 1 when the product ab is sufficiently large.

Proposition 8.5. Let T(n) be any order complexity bound. The complexity of Algorithm 8.1 is

bounded by

T
(
λ(G)

)
+O

(
r lgλ(G) + lg2 λ(G)

)
, (8.8)

where r is the input bound on the number of times the algorithm may compute 1G.

Proof. Let e1, . . . , ek be the sequence of non-trivial values of ei computed by Algorithm 8.1.

Then each ei is an integer greater than 1 and e1 · · · ek divides λ(G), by Lemma 8.2. Thus

k ≤ lgλ(G), and the number of exponentiations is bounded by r+k ≤ r+ lgλ(G). The cost of

each exponentiation is O
(
lg E

)
= O

(
lgλ(G)

)
, since E ≤ λ(G), which implies the right-hand

term in 8.8. For sufficiently large λ(G), the cost of the order computations is bounded by

T(e1) + · · · + T(ek) ≤ T(e1 · · · ek) ≤ T(λ(G)),

which is the left-hand term in 8.8, completing the proof. �

3The complexity of computing |α| in the cyclic group generated by α is never any easier (in terms of group
operations or group storage) than computing |α| in G.
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Corollary 8.6. If r is polylogarithmic inλ(G) and T(N) is an order bound satisfying T(N) = O (Nc)

for some c > 0, then the complexity of Algorithm 8.1 is bounded by
(
1 + o (1)

)
T
(
λ(G)

)
.

The appropriate complexity bound T(N) to use in Corollary 8.6 depends on whether

one is interested in the worst, average, or median complexity of Algorithm 8.1. All of

the bounds given in Chapters 4 and 5 may be applied, to both time and space, including

bounds of the form T(N) = O
(
N1/u

)
implied by Propositions 4.7 or 5.3.

Remark 8.1. In the expression T
(
λ(G)

)
, a particular integer N = λ(G) is referred to. If λ(G)

happens to be highly composite, Algorithm 8.1 will benefit. This is true even though it may never

compute the order of an element α with |α| = λ(G). Indeed, in non-abelian groups no such element

may exist. Similar comments apply in the next section to λ(S).

8.3 Computing λ(S)

We now give a deterministic exponent algorithm which computes the least common mul-

tiple of the orders of a set of group elements S. Its output is the minimal exponent of the

input set, which we denote λ(S). If S generates an abelian group G, we have λ(S) = λ(G),

but the algorithm correctly computes λ(S) in any case, whether G is abelian or not.

Algorithm 8.2 (Set Exponent Algorithm). Given a set of group elements S = {β1, . . . , βk} ⊆ G,

the algorithm below computes E = λ(S), the least common multiple of |βi| over βi ∈ S.

1. Initialize: Set E← 1 and i← 1.

2. Exponentiate: Set α← βE
i .

3. Compute |α|: Compute |α| and set E← |α|E.

4. Loop: If i < k, set i← i + 1 and go to step 2, otherwise return E.

The correctness of the algorithm follows from Lemma 8.2.

Proposition 8.7. Let T(n) be any order complexity bound. The complexity of Algorithm 8.2 is

bounded by

T
(
λ(S)

)
+O

(
|S| lgλ(S)

)
,

where S is the set of input elements in G.
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The proof of the proposition is a simplification of the argument in Proposition 8.5.

Unless S is exponentially large, the running time is dominated by T
(
λ(S)

)
. This effectively

means that the running time of the algorithm is the same as if it were given a single element

with order λ(S), even though such an element may not exist in G. An order complexity

bound T(N) is defined for all positive integers N.

Corollary 8.8. Suppose |S| is polylogarithmic in λ(S). If T(N) is an order bound with T(N) =

O (Nc) for some c > 0, the complexity of Algorithm may be bounded by
(
1 + o (1)

)
T
(
λ(S)

)
.

8.4 The Order Computation Theorem

Corollary 8.8 has significant implications. Once the exponent of the group is known,

any subsequent order computations can be accomplished in near linear time using a fast

order algorithm such as the snowball algorithm (Algorithm 7.4). In fact, an even stronger

statement can be made, which leads us to the central theorem of this thesis. We first define

a fast order complexity bound.

Definition 8.3. A fast order complexity bound T(N) is a function that bounds the complexity

of computing the order of α ∈ CN given the prime factorization of N.

Theorem 8.9 (Order Computation). Let S ⊆ G be the set of all group elements whose order is

computed by a generic algorithm at some point during its execution. The total complexity of all

order computations may be bounded by

(
1 + o (1)

)
T1
(
λ(S)

)
+
∣∣S∣∣T2

(
λ(S)

)
where T1(N) is any order complexity bound and T2(N) is any fast order complexity bound.

Proof. Any generic algorithm can implement Algorithm 8.2 in a dynamic fashion by main-

taining a factored exponent E = λ(S0), where S0 ⊆ S contains the elements whose order

has been determined. Set E ← 1 initially, and each time an order computation for a new

β ∈ S is required, first compute α = βE. If α = 1G then E is an exponent of β which can

be used for a fast order computation. Otherwise, compute m = |α| using a general order

algorithm, factor m, and set E ← mE, updating its factorization appropriately. The new E
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is a factored exponent of S0 ∪ {β} and can be used in a fast order computation to determine

|β|. The algorithm then sets S0 ← S0 ∪ {β} and continues.

The total cost of all the general order computations is T1(|α1|) + · · · + T1(|αk)|, where the

αi are elements with order greater than 1, and E = λ(S) is the product of their orders. We

then have

T1
(
|α1|
)
+ · · ·T1

(
|αk|
)
≤ T1

(
|α1| · · · |αk|

)
= T1

(
λ(S)

)
,

for all sufficiently large values of λ(S).

We may assume that no fast order computations are repeated, since the results can be

saved using no group storage (and in any event less space than required by the elements

of S). The complexity of all fast order computations is then
∣∣S∣∣T2

(
λ(S)

)
. �

Remark 8.2. The cost of factoring N deterministically is O
(

N1/4 log2 N
)

arithmetic operations,

and many faster probabilistic algorithms exist. Even when T(N) is less than this bound, the property

of N that makes order computations easier (divisibility by small primes) also makes factoring easier.

One way to see this is to note that an order computation in the groupZ∗N, which has order φ(N), is

easier (for all the algorithms presented in Chapters 4 and 7) than an order computation in CN, since

φ(N) =
∏

ph‖N ph−1(p − 1) has more small prime factors than N does.

Corollary 8.10. Let T(N) be an order complexity bound satisfying T(N) = O (Nc) for some c > 0.

If S is a set of group elements with |S| polylogarithmic in λ(S), the total cost of computing the order

of every element in S is
(
1 + o (1)

)
T(N).

If an algorithm is working in just a subgroup H ⊆ G, the theorem and corollary imply

that the complexity of its order computations depends only on λ(H), which is an upper

bound on λ(S) for any S ⊆ H, and does not depend on λ(G). This can be important in many

situations, particularly with non-abelian groups. Note that the computation of λ(S), as in

Algorithm 8.2, does not depend on G being abelian, nor do the fast order computations.

The implication of the Order Computation Theorem is that all the order computations

of a generic algorithm can be satisfied for essentially the cost of a single order computation

on an element with order λ(G). In fact, this is the worst-case scenario. In many non-abelian

groups there is no single element with order λ(G), and we will at most compute the order

of several elements whose product is λ(G).

In abelian groups, we can say that the total cost of all order computations is essentially

the same as the expected cost of a single random order computation. In any abelian group
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where λ(G) is large, a random element will have order N large enough that the cost of all

subsequent order computations, which will involve elements with order at most λ(G)/N,

will be dominated by the cost of the first. If λ(G) is not large, neither is the cost of order

computations.

The practical consequence of the Order Computation Theorem is that the remarkable

performance of the primorial-steps and multi-stage sieve algorithms given in Chapters 4

and 5 may be exploited to solve a wide variety of problems based on order computations.

This leads to much faster algorithms not only for computing λ(G), but also for the next

problem we consider, determining the structure of an abelian group.
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Chapter 9

Computing the Structure of an

Abelian Group

Chapter Abstract

We use the group exponent λ(G) to compute the structure of an abelian group G. In
most cases the group structure can be computed using no more than

(
1+ o (1)

)√
2|G|

group operations. Given a bound M = |G|δ on the size of the group, we can almost
always compute the structure of G using O

(
|G|δ/4

)
group operations once λ(G)

is known. Combined with the results of the previous chapter, this gives a total
complexity that is essentially the same as a single order computation in G.

From the structure theorem for finitely generated abelian groups, we know that every

finite abelian group G is isomorphic to a direct product of cyclic groups of prime-power

order. This product is unique up to the order of the factors. For the multiplicative group

of integers modulo 105 we have

Z∗105 � C2 ⊗ C4 ⊗ C6 � C2 ⊗ C2 ⊗ C4 ⊗ C3.

Alternatively, we may express G uniquely as a product of cyclic groups C1 ⊗ · · · ⊗ Ck with

the order of Ci dividing the order of Ci+1, as in

Z∗105 � C2 ⊗ C2 ⊗ C12.

It is straight forward to convert between these two forms of representation. The divisor

representation minimizes the number of factors, while the prime-power representation
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minimizes the size of the factors. Typically the divisor representation is favored, espe-

cially by algorithms whose complexity depends on the number of generators required to

represent the product of cyclic groups. We will find it more useful to work with the prime-

power representation, however. Note that we can easily construct a set of generators for

the divisor representation from a set of generators for the prime-power representation by

combining generators appropriately.

The ultimate challenge for a generic algorithm working in an abelian group is to ex-

plicitly construct the representation of G as a product of cyclic groups. By this we require

the algorithm to not only identify the order of each factor group, but to also output a

corresponding set of generators which form a basis for the group.

Definition 9.1. A basis for a finite abelian group G is an ordered set (vector) of group elements,

~α = [α1, . . . , αk] with the property that every β ∈ G can be uniquely expressed in the form

β = ~α~e = αe1
1 · · ·α

ek
k , with 0 ≤ ei < |αi| for 1 ≤ i ≤ k. The vector ~e is the exponent vector of β.

Note that, by definition, α0 = 1G. It will be convenient to use set or vector notation

interchangeably, thus we may write 〈~α〉 to denote the subgroup generated by the elements

of the vector ~α. This subgroup may also be considered the span of ~α.

Given any element of the form β = ~α~e = αe1 · · ·αek , where the ei are arbitrary integers, we

can express β uniquely by reducing the ei modulo |αi|. A basis provides an isomorphism

between G and the corresponding Z-module of exponent vectors. An algorithm which

finds a basis for G has effectively determined the structure of G.

Definition 9.2. A generic algorithm is said to compute the structure of an abelian group G if it

outputs a basis for G, along with the order of each element in the basis.

Every basis for G generates G, but not every generating set is a basis. Any ~α which

generates G does have the property that every β ∈ G can be expressed in the form β = ~α~e,

since G is abelian, however, this representation is unique only when ~α is a basis. Non-

unique representations imply the existence of a relation on ~α.

Definition 9.3. A (non-trivial) relation on a vector of group elements ~α = [α1, . . . , αk] is an

exponent vector ~e = [e1, . . . , ek] with some ei . 0 mod |αi| for which ~α~e = 1G. A vector ~α for which

no (non-trivial) relations exist is said to be independent.
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A basis, then, is an independent vector which generates the group, and any independent

vector is a basis of the subgroup it generates. We will assume that each entry in an

exponent vector is reduced modulo the order of the corresponding element. Thus a non-

trivial relation is simply a non-zero exponent vector, and all relations under discussion are

assumed to be non-trivial.

9.1 Existing Algorithms

There are a number of existing generic algorithms that compute the structure of an abelian

group. Most are based on Shanks’ baby-steps giant-steps algorithm (see [27, 28] and also

[37, Algorithm 5.4.1]), but Pollard’s rho method can be used to obtain a more space efficient

solution [109]. These algorithms are typically given a set S of generators for G, or they may

construct a set of generators by choosing random elements from G. Their main task is to

find a set of relations on S which can be used to determine a basis. Given a sufficient set

of relations, these can be arranged in a matrix and the Smith normal form (SNF) can be

computed using standard methods, as in [37, Algorithm 2.4.14]. The SNF of a non-singular

integer matrix A is the unique diagonal matrix D = UAV, where U and V are unimodular

(determinant±1) and the diagonal entries of D correspond to the orders of the cyclic factors

in the divisor representation of G. The transformations to A represented by U and V can

then be used to determine a basis using combinations of elements in S.

These algorithms generally have a running time of Θ
(
|S|
√
|G|
)
. Some algorithms also

have an exponential dependency on the size of the minimal basis for G, which can cause

the running time to be substantially worse in rare cases [27], but more recent developments

have addressed this issue [28].

9.2 Using λ(G) to Compute Group Structure

We use some of the same basic tools as existing algorithms, but take a slightly different

approach. Our starting point will be to compute λ(G), the exponent of G. This can be done

by either Algorithm 8.1 or Algorithm 8.2 using approximately T
(
λ(G)

)
group operations,

where T(N) represents the cost of computing the order of α when |α| = N (see Definition

8.2). If the primorial-steps algorithm is used, T
(
λ(G)

)
= o
(√
|G|
)
, and may be much smaller.
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Our challenge is to use λ(G) to efficiently construct a basis for G, ideally using no

more than T
(
λ(G)

)
group operations. Given a bound on the size of |G|, we will be able to

accomplish this in almost every case, resulting in a dramatically faster generic algorithm

for abelian group structure (see performance results in Chapter 11). Even without a bound

on |G|, for almost all groups the expected running time will be, at worst, approximately
√

2|G|, independent of the size of the basis.

The exponent λ(G) gives us a wealth of information regarding the structure of G. It

tells us which primes divide |G|, and allows us to readily obtain elements in the p-Sylow

subgroups of G, which we denote Hp. The subgroup Hp consists of the elements in G whose

order is a power of p. The decomposition of G into cyclic factors of prime-power order may

be partitioned into decompositions of the Hp. The utility of λ(G) is that it not only tells us

which Hp exist, it gives us λ(Hp) (the largest power of p dividing λ(G)), and it allows us

to generate uniformly random elements of Hp by computing αλ(G)/λ(Hp) for random α ∈ G.

Alternatively, given a set of generators for G, we can use the same method to obtain a set

of generators for Hp. To compute the structure of G, it suffices to compute the structure of

each Hp.

Breaking the problem down in this way has two distinct advantages. The first is

that working in a group of prime-power order makes the process of computing a basis

substantially simpler: it is easier to find minimal relations, and computing the Smith

normal form of the relation matrix is easier when all the elements involved have orders

that are powers of p. In fact, we will find we can avoid matrix operations entirely. The

second advantage is that the groups Hp will often be much smaller than G. Note that this

is true even when G is cyclic, provided it has composite order.

9.3 Discrete Logarithms

The main obstacle that remains is the discrete logarithm problem. In order to determine

the structure of Hp, we need to be able to test when a set of elements is independent, and

when it is not, to find relations. This will typically involve computing the vector form of

the discrete logarithm, DL
(
~α, β
)
.

In [96] Shoup shows that for a generic algorithm, the complexity of computing DL(α, β)

in a group of prime order p isΩ
(√

p
)
. In the same paper, Shoup proves a similar bound for
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DL
(
~α, β
)
. When ~α consists of r > 1 elements, all with order p, the complexity of computing

DL
(
~α, β
)

is Ω
(
pr/2
)
. Somewhat surprisingly, the latter bound is the more problematic of

the two for our purposes. Happily, this case arises infrequently, as G rarely contains a large

subgroup Hp whose order is divisible by p2. Let us consider how we may avoid computing

DL(α, β) for elements with large prime order, given just a little information about |G|.

If λ(G) contains a large prime factor p, then either p2 divides |G|, in which case
√

p =

O
(
|G|1/4

)
, or λ(G) and |G| are approximately the same size. If we have even a weak upper

bound on |G|, say, M = O
(
G3/2

)
, then by comparing p2 to M we can determine whether it is

possible for p2 to divide |G|. If p is large relative to |G|, say p > |G|2/3, then p2 will be greater

than M, in which case Hp must be a cyclic group with order p, and any non-trivial element

will serve as a generator.

It is possible that a suitable bound M may be determined simply from the size of the

identifiers, if the black box is reasonably efficient in its encoding of group elements. In

practice it is typically possible to obtain M by other means, usually with a bound tighter

than |G|3/2. In the case of ideal class groups, we know M = O
(
|G| log |G|

)
(see Chapter 10),

and for groups of points on elliptic curves over the field Fq, we have the tighter bound

given by Hasse’s theorem [57]: |G| ≤M = q + 2
√

q + 1.

9.4 Abelian Group Structure Algorithm

We now present a probabilistic generic algorithm for computing a prime-power basis of an

abelian group G (see Remark 9.1 regarding a deterministic version). Whenever a random

element of Hp is called for, a random element of G is obtained from the black box and

αλ(G)/λ(Hp) is computed. The parameter c specifies the confidence level requested in the

output for the probabilistic case. The algorithm is designed to ensure that the output is

correct with probability at least 1 − 2−c, provided the black box returns uniformly random

elements of G. The bound M is optional and may be set to ∞. If at any point during the

algorithm’s execution it determines that the existence of any new independent elements

would necessarily result in |G| > M, the algorithm terminates and returns the basis it has

computed. The functions Expand(~α, β,~r) and DL
(
~α, β
)

are computed by Algorithms 9.2 and

9.3 which follow. The notation ~a← ~b ◦ ~c indicates that the j-place vector ~b and the k-place

vector ~c should be concatenated to obtain a ( j+ k)-place vector ~a. We use the same notation
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when ~c is a single element.

Algorithm 9.1 (Abelian Group Structure). Given a randomized black box for an abelian group

G, an integer c > 1, and a bound M ≥ |G|, the algorithm below returns a basis ~γ = [γ1, . . . , γn] and

a vector ~m = [m1, . . . ,mn], where mi = |γi| is a prime power.

1. Exponent: Use Algorithm 8.1 to compute λ(G) with parameter c + 2, then factor the

integer λ(G). Choose p to minimize λ(Hp) and set ~γ← ∅.

2. StartHp: Let ~α = (α1) be a non-trivial random element of Hp. Set cp ← dlogp 2c
e.

3. Sample: If p|〈~γ ◦ α〉| ≤ M, attempt to compute DL
(
~α, β
)

for cp random elements

β ∈ Hp, and whenever a failure occurs, proceed to step 4. Otherwise go to step 6.

4. Get Relation: Determine the least q = p j > 1 for which ~e = DL(~α, β−q) exists. If q = |β|,

set ~α← ~α ◦ β and go to step 3, otherwise set ~r← ~e ◦ q and continue.

5. Expand Basis: Set ~α← Expand(~α, β,~r) and go to step 3.

6. End Hp: Set ~γ← ~γ ◦ ~α. Update p to correspond to the next largest value of λ(Hp), if

any, and go to step 2, otherwise return ~γ and ~m with mi = |γi|.

The first step of the algorithm computes the factored exponent λ(G). Thus all element

orders required by the algorithm or its subroutines (in particular DL
(
~α, β
)
) may be obtained

via fast order computations. In practical implementations it may be appropriate to store

computed orders with the corresponding group elements to avoid recomputing them

unnecessarily. Random elements from Hp are sampled in step 2 using λ(G) as described

above. Note the computation of cp; this parameter effectively determines the number of

discrete logarithm operations that must be performed in order for the algorithm to be

confident that it has a basis that generates (spans) the entire subgroup Hp. If p is large,

there is no need to retry c times, the much smaller value cp will suffice. If ~α does not

generate Hp, then the subgroup 〈~α〉 contains at most a 1/p fraction of the elements in Hp.

A random β ∈ Hp is unlikely to be a member of 〈~α〉, resulting in the failure of DL
(
~α, β
)

and

an enlargement of 〈~α〉.

The function Expand(~α, β,~r) returns a basis for the subgroup 〈~α, β〉, which is necessarily

larger than 〈~α〉 by a factor of at least p (although the new basis need not contain more
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elements). The total number of iterations of the algorithm is at most lg |G|. The running

time of the algorithm is essentially dominated by the cost of the largest discrete logarithm

operation which depends on the size of the largest Hp and on the bound M. We consider

this further in the next section (see Proposition 9.5), but first we complete the presentation

of the algorithm.

Remark 9.1. If a set of generators S ⊆ G is available, Algorithm 9.1 can be made deterministic by

replacing random elements with an enumeration of the set S for each Hp. This is worth doing if it

is believed that ∑
p|λ(G)

∣∣∣{t : t = sλ(G)/λ(H) , 1G, s ∈ S
}∣∣∣ < ∑

p|λ(G)

(cp + rp), (9.1)

where rp is the rank (number of cyclic factors) of Hp. On the other hand, if S is large it may be more

efficient to use random elements (unless a deterministic result is required), either from a randomized

black box, or by taking random combinations of elements in S.

9.5 Expanding a Basis in a p-Group.

The function Expand(~α, β,~r) takes an independent set ~α in Hp and a group element β ∈ Hp

not in 〈~α〉, and uses the relation ~r to construct a basis for the subgroup 〈~α, β〉. Note that

~α is necessarily a basis for 〈~α〉, so this may be viewed as expanding the basis to a larger

subgroup of Hp.

This process can be accomplished by computing the Smith normal form of an appro-

priate matrix, however, because we are working in a p-group (every element’s order is a

power of p), a simpler and more efficient approach is possible.

Any relation ~r on a vector ~α of elements of Hp (in an abelian group) can easily be

converted into a relation ~r∗ on some ~α∗, where ~α∗ generates the same subgroup as ~α and

the non-zero entries in ~r∗ are all powers of p. This is useful because it means that for

any non-zero pair of entries in ~r∗, one divides the other, and there is some non-zero entry

which divides every entry. This effectively eliminates most of the transformations typically

required when computing the Smith normal form, enabling us to work directly with ~r∗.

We assume that the orders of all group elements are known, and that relations contain

non-negative integers reduced modulo the orders of the corresponding elements (if not,

this can be done in step 1).
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Algorithm 9.2 (Expand Basis). Given a basis ~α = [α1, . . . , αk−1] for a p-group in an abelian group

G, an element β ∈ G− 〈~α〉 with order ph > 1, and a k-place relation ~r on ~α ◦ β with rk > 1 minimal,

the recursive algorithm Expand(~α, β,~r) returns a basis ~γ for the subgroup 〈~α, β〉.

1. Construct p-relation: For each non-zero ri not a power of p, let q be the largest power

of p dividing ri and set αi ← α
ri/q
i and ri ← q.

2. Adjust β?: If rk divides every ri, set β← β
∏

1≤i<k α
ri/rk and return ~γ = ~α ◦ β.

3. Adjust ~α: Choose a least r j which divides every ri and set α j ← βrk/r j
∏

1≤i≤k α
ri/r j .

4. Reduce?: If α j = 1G, remove α j from ~α. If ~α = ∅, return ~γ = [β].

5. New Relation: Determine the least q = ph > 1 for which ~e = DL(~α, β−q) exists.

If q = |β|, return ~γ = ~α ◦ β.

6. Recurse: Set ~r← ~e ◦ q and return Expand(~α, β,~r).

The algorithm is guaranteed to terminate in less than k recursive calls, since any time it

recurses it has reduced k by 1 and will not recurse when k = 2. To prove the correctness of

Algorithm 9.2, and to prove that Algorithm 9.1 actually minimizes rk, we need the following

lemma.

Lemma 9.1. If ~α is a basis for a p-group in G with k − 1 elements and β ∈ Hp − 〈~α〉, then the least

integer rk for which a relation ~r on ~α ◦ β exists, is a power of p.

Proof. Let ~r be a relation on ~α ◦ β with rk minimal. Suppose for the sake of contradiction

that rk = p js for some s ⊥ p. Let t be the multiplicative inverse of s modulo q, where q = |β|

is a power of p. Then for some integer m,

(βrk)t = βp jst = βp j(mq+1) = (βq)p jmqβp j
= βp j

.

The relation ~r implies that βrk ∈ 〈~α〉, and so is βp j
, since it is a power of βrk . But then there

exists a relation on ~α ◦ βwith p j < rk as its k-th entry, since ~α is a basis for 〈~α〉, contradicting

the minimality of rk. �

Proposition 9.2. Given inputs ~α, β, and~r satisfying the conditions of Algorithm 9.2, the algorithm

returns a basis for the subgroup 〈~α, β〉.
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Proof. We consider the algorithm step by step.

Step 1: Note that ri/q is relatively prime to |αi|, since it is not divisible by p, hence αri/q
i

has the same order as αi and 〈αri/q
i 〉 = 〈αi〉. It follows that at the end of step 1, ~α is still a

basis for 〈~α〉, and the relation is updated correctly, since
(
α

ri/q
i

)q
= αri

i . Lemma 9.1 implies

that rk must be a power of p, so rk and β are unaffected by step 1.

Step 2: Let β∗ be the updated value of β. Then β ∈ 〈~α, β∗〉, and ~γ = ~α ◦ β∗ generates the

subgroup 〈~α, β〉. The vector ~γ is independent, since ~α is and any relation ~s on γwould have

0 < sk < |β∗| = rk, but then βsk ∈ 〈~α〉, which contradicts the minimality of rk.

Step 3: Let α j∗ be the updated value of α j and ~α∗ the updated value of ~α. We have

α j ∈ 〈~α∗, β〉 so 〈~α∗, β〉 = 〈~α, β〉. The vector ~α∗ is independent, since a relation ~s on ~α∗ would

have 1 < s j < r j, but this implies (βrk/r j)s j ∈ 〈~α〉 contradicting the minimality of rk.

Step 4: Removing 1G from ~α does not change the subgroup 〈~α, β〉, and if ~α = ∅ then

γ = [β] is clearly a basis.

Step 5: Lemma 9.1 implies that it suffices to check for relations on βq with q a prime

power. If q = |β| then γ = ~α ◦ β is independent and clearly generates 〈~α, β〉.

Step 6: The recursive call is correct by induction; we have effectively handled the base

cases above. �

9.6 Vector Form of the Discrete Logarithm

A generic algorithm computing DL
(
~α, β
)

attempts to find an exponent vector~e for β relative

to the independent vector ~α. It will be successful if and only if β ∈ 〈~α〉, and if it succeeds

then ~e ◦ 1 is a relation on ~α ◦ β−1.

We use a variant of the baby-steps giant-steps method to compute DL
(
~α, β
)
, as shown

in Algorithm 9.3. The rho method may also be used, as in [109] (see Remark 9.3).

The algorithm is based on stepping through the set of possible exponent vectors for β by

considering them as numbers in a mixed-radix representation. The low order digits count

baby steps, and the high order digits count giant steps. The only minor inconvenience

occurs in the ”center” digit, which is at position c in Algorithm 9.3 below. The possible

values of the digit ec are also searched in standard baby-step giant-step fashion, with each

giant step advancing by s. It is critical that the maximum value mc − 1 occurs as a giant

step each time the digit ”rolls-over”, so this must be handled explicitly.
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Algorithm 9.3 (Vector Discrete Logarithm). Given a basis ~α = [α1, . . . , αk] for an abelian

subgroup of G, with mi = |αi|, and β ∈ G, the following algorithm computes ~e = DL
(
~α, β
)
:

1. Initialize: Let M =
∏

mi/2 and choose c such that
∏

i<c mi ≤
√

M <
∏

i≤c mi.

Choose s such that s
∏

i<c mi ≤
√

M < (s + 1)
∏

i<c mi.

2. Baby Steps: Compute δ← αe1
1 · · ·α

ec
c with integers ei ∈ [0,mi) for i < c and ec ∈ [0, s).

Store each δ in a lookup table together with the vector ~eδ = [e1, . . . , ec].

3. Giant Steps: Compute γ ← β−1αe′c
c α

ec+1
c+1 · · ·α

ek
k where e′c ranges over integer multiples

of s in [0,mc) and the value mc − 1, and the ei range over integers in [0,mi) for i > c.

Lookup each γ in the table, and if γ = δ, return ~e = [e1, . . . , ec−1, e∗c, ec+1, . . . , ek], where

~eδ = [e1, . . . , ec] and e∗c = e′c + ec mod mc. If no such γ is found, return ∅.

The giant steps can almost all be accomplished with a single multiplication by δ = αs
c.

The element δ should be computed just once, along with a δ′ for handling the step to αmc−1
c

at the end of the digit range. It is best to arrange the inputs so that the mi are in increasing

order to minimize the number of ”carry” operations, since each carry requires an extra

group operation.

Remark 9.2. Algorithm 9.3 optimizes performance over uniformly distributed exponent vectors,

since it is designed for use by the randomized group structure algorithm. To optimize worst-case

performance, set M =
∏

mi rather than M =
∏

mi/2 in step 1.

Remark 9.3. We present a baby-steps giant-steps algorithm because it is simpler and slightly faster

than the rho method. When an upper bound on |G| is available, as in Proposition 9.5, we can

generally avoid large discrete log computations and the space requirements do not pose a problem.

When this is not true and the problem is large, the rho method should be used.

9.7 Complexity Analysis

We now consider the complexity of Algorithm 9.1, starting with the worst case scenario.

This occurs when G = H2, that is, every element of G has order a power of 2. In this

situation, computing λ(G) is easy, requiring at worst O
(
|G|1/4

)
group operations using the

multi-stage sieve, and O
(
log |G|

)
group operations if the primorial-steps algorithm is used

directly. Unfortunately, in this scenario there may be no way to avoid some large discrete
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log operations, even when a tight bound on |G| is known. If M ≤ 2|G| we may only need

one large discrete log operation, but in general we will need to perform c unsuccessful

discrete log operations to be satisfied that we have found all of G, thus the complexity is

O
(√
|G|
)
, but the constant factor will be roughly c.1 A similar situation applies whenever

G consists almost entirely of a single Sylow subgroup Hp, however, the constant factor

quickly improves as p grows.

In the propositions below, we use an order complexity bound T(N), defined in 8.2, to

bound the complexity of all order computations performed by Algorithm 9.1 by T
(
λ(G)

)
,

applying Theorem 8.9. The total number of fast order computations will be logarithmic in

|G|, making their cost negligible.

Proposition 9.3. Let T(N) be an order complexity bound and let Hp be the largest Sylow subgroup

of the abelian group G. Then the expected number of group operations used by Algorithm 9.1 with

input parameter c is bounded by(⌈
c

lg p

⌉
+

1
√

p − 1
+

1
√

p(p − 1)

) √
2|Hp| +

(
1 + o (1)

)
T
(
λ(G)

)
+O

(
|G|1/4

)
.

Proof. It follows from Theorem 8.9 that the complexity of all the order computations per-

formed by Algorithm 9.1 may be bounded by

(
1 + o (1)

)
T
(
λ(G)

)
+O

(
|G|1/4

)
. (9.2)

Thus we need only consider the cost of computing discrete logarithms (the other group

operations are negligible). Let Hp be the largest Sylow subgroup of G. Every other Sylow

subgroup must have size less than |G|1/2, and the total cost of all the discrete logarithms

computed in these subgroups is O
(
|G|1/4

)
, thus we only consider Hp.

Each unsuccessful call to DL(~α, β) enlarges the subgroup spanned by ~α by a factor of at

least p. The total cost of all successful calls may be bounded by

√
2|Hp|/p +

√
2|Hp|/p2 + · · · + 1 ≤

(
1

√
p − 1

) √
2|Hp|. (9.3)

Algorithm 9.1 makes cp successful calls to DL(~α, β) with ~α a basis for Hp, and at most an

expected 1/pk successful calls with ~α a basis for a subgroup of size |Hp|/pk for 1 ≤ k ≤ logp Hp.

1If a set of generators is used the complexity will be O
�
(|S| − r)

√
|G|
�

where r is the rank of Hp.
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The total cost of all unsuccessful calls is thus bounded by

cp

√
2|Hp| +

1
p

√
2|Hp|/p +

1
p2

√
2|Hp|/p2 + · · · + 1 ≤

(
cp +

1
√

p(p − 1)

) √
2|Hp| (9.4)

From step 2 of Algorithm 9.1, we have cp = dlogp2c
e = dc/ lg pe, and the proposition follows

by summing (9.2), (9.3), and (9.4). �

In most situations, the largest prime dividing |G| is not bounded by a constant, and the

bound in Proposition 9.3 is at most

(
1 + o (1)

)√
2|G|, (9.5)

since T(λ(G)) = o
(√
|G|
)

when the primorial-steps algorithm is used for order computa-

tions. We also have the following explicit bounds:

Corollary 9.4. Let G by an abelian group and assume c ≥ 3. If |G| is divisible by a prime greater

than 2c then Algorithm 9.1 uses less than
(
2 + o (1)

)√
2|G| group operations. If |G| is divisible by

two primes greater than c2, then Algorithm 9.1 uses less than
(
1 + o (1)

)√
|G| group operations.

We now consider the more attractive scenario where we have a rough bound M on the

size of G. Any bound M = O
(
|G|2−ε

)
will be useful, provided that G does not contain a

large p-Sylow subgroup for some small p.

Proposition 9.5. Let T(N) = O
(
Nδ
)

be an order complexity bound with 1/4 ≤ δ ≤ 1/2. Given

M = O
(
|G|4δ

)
, the complexity of Algorithm 9.1 is either polynomial in lg |G| or bounded by

(
1 + o (1)

)
T
(
λ(G)

)
,

provided that |Hp| = o
(
T2
(
λ(G)

))
for all p ≤ |G|2δ, where Hp denotes a p-Sylow subgroup of the

abelian group G.

Proof. By Theorem 8.9, all the order computations fit within the specified bound, assuming

that T
(
λ(G)

)
= Ω

(
lg2
|G|
)

covers all the fast order computations. If this is not the case then

λ(G) is polylogarithmic in |G|, as is every p dividing |G| and every |Hp|, by the hypothesis

of the proposition. In this scenario, the complexity of Algorithm 9.1 is polynomial in lg |G|.

If p ≤ |G|2δ, then the hypothesis of the proposition ensures that the cost of discrete

logarithm computations in Hp is dominated by T
(
λ(G)

)
, so assume p > |G|2

δ
. Then p2 > M,
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and Algorithm 9.1 never needs to perform a discrete logarithm operation in Hp, since the

first non-trivial element found will be known to generate Hp. �

Remark 9.4. In almost every “naturally” arising distribution of abelian groups, including ideal

class groups, elliptic curves, and the integers modulo m, the conditions of Proposition 9.5 are met

(or believed to be met) by all but an exponentially small fraction of the groups with orders of a given

size. For a “random” group from any of these distributions, the proposition will almost certainly

apply. See Chapter 11 for empirical evidence to support this claim.

Any of the complexity bounds for the primorial-steps and multi-stage sieve algorithms

derived in Chapters 4 and 5 may be used for T(N) in Proposition 9.5. If the rho method

is used, both as the search algorithm in the multi-stage sieve and to compute discrete

logarithms, the total space required by Algorithm 9.1 is polylogarithmic in |G|. The compu-

tationally intensive tasks can then be performed in parallel using the distinguished-point

cycle detection method described in Section 3.1, enabling very large problem sizes to be

addressed.

9.8 Computing Group Structure Given an Exponent of G

Proposition 9.5 shows that, given a bound on |G|, the complexity of Algorithm 9.1 is

essentially determined by the complexity of a single order computation in most situations.

It is of interest to consider the complexity of Algorithm 9.1 independently, as there are

many circumstances where λ(G) or a multiple of λ(G) is known and one would like to

compute the structure of G. Algorithm 9.1 will work correctly without modification given

any multiple of λ(G), and, in particular, the value |G| may be used. When |G| is known,

this also gives a tight value for M. In many circumstances there may be (non-generic)

methods of efficiently determining |G|. It is then possibly to compute the structure of G

using O
(
|G|1/4

)
group operations in most cases.

Proposition 9.6. Given E, a multiple of λ(G) satisfying lg E = O
(
lg |G|

)
, and M, an upper bound

on |G| with M = O
(
|G|δ
)

for some r ≥ 1, the number of group operations required to compute the

structure of the abelian group G is

O
(
|G|δ/4

)
,

provided that for all p ≤
√

M, the p-Sylow subgroup Hp satisfies |Hp| = O
(
M1/2

)
.
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Proof. Let p be the largest prime divisor of E for which a non-trivial element α ∈ Hp is

found by Algorithm 9.1. If p2 > M then α generates Hp and no discrete logarithms need

be computed. If p ≤
√

M then, by hypothesis, |Hp| = O
(
M1/2

)
, which implies that the cost

of the largest discrete logarithm computed in Hp will use O
(
M1/4

)
group operations. The

cost of this discrete logarithm will represent a constant fraction of all the group operations

spent on discrete logarithms, and dominates the cost of all other group operations. �

Corollary 9.7. Let G be an abelian group with known order |G| divisible by a prime larger than

|G|1/2. The structure of G can be computed using O
(
|G|1/4

)
group operations.

Computing the structure of G, once |G| is known, is a strictly easier problem than order

computation in most cases. Typically, the performance of Algorithm 9.1 will be dictated

by the size of the second largest prime dividing |G|, which will likely be substantially less

than |G|1/2. This leads to a better than |G|1/4 running time, as seen in many of the group

structure computations for ideal class groups presented in Chapter 11.
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Chapter 10

A Number-Theoretic Postlude

Chapter Abstract

This chapter briefly recollects some facts and conjectures about the ideal class groups
of imaginary quadratic number fields.

10.1 The Class Group of a Number Field

A number field is a subfield of the complex numbers which has finite degree as an extension

of Q. In any number field K, the elements of K which are algebraic integers (zeroes

of a monic polynomial with integer coefficients) form a commutative ring R which is a

Dedekind domain.1 Recall that an ideal of a ring R is an additive subgroup which is closed

under multiplication by elements of R. A product of ideals AB is the ideal generated by

{αβ : α ∈ A, β ∈ B}. We may define an equivalence relation on ideals by

A ≡ B ⇐⇒ 〈α〉A = 〈β〉B,

where 〈α〉 denote 〈β〉 denote principal ideals (ideals generated by a single element). In a

Dedekind domain (and in particular, in the ring of algebraic integers of any number field)

the induced product operation on equivalence classes of ideals is a well defined group

operation with identity 〈1〉 corresponding to the class of all principal ideals. This defines

the ideal class group of a Dedekind domain, or we may simply refer to the class group of a

1A Dedekind domain may be defined as a commutative ring without zero divisors (an integral domain) in
which every proper ideal can be factored (uniquely) into prime ideals.
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number field, with the ring of algebraic integers implicit.

10.2 Binary Quadratic Forms

In the case of quadratic number fields Q[
√

D] with D < 0, there is a particularly simple

representation of the class group via quadratic forms

ax2 + bxy + cy2.

If D is congruent to 0 or 1 modulo 4, the class group of Q[
√

D] may be represented by

equivalence classes of forms with discriminant b2
− 4ac = D. Two forms are said to be

equivalent if the set of integers represented by the form as x and y range over Z are the

same. There is a one-to-one correspondence between quadratic forms and ideals ofQ[
√

D]

for which the two notions of equivalence correspond, and the group operation on ideal

classes may be realized directly by integer operations on the coefficients of representative

forms.

The key feature of forms with negative discriminant is that each class of forms has a

unique representative with coefficients (a, b, c) where −a < b ≤ a ≤ c and gcd(a, b, c) = 1.

Moreover, any form can be efficiently reduced to its canonical representative, allowing the

class group to be easily implemented in a black box. Efficient algorithms for the reduction

of forms and the group operation on forms can be found in [95] and in [37] (see also [31]

or [40]). The only potential issue that arises is the efficient generation of random group

elements. An expedient solution is to use random primeforms. A random prime a is chosen

for which D is a quadratic residue so that b may be computed as the square root of D

modulo 4a (c is then determined by D = b2
−4ac). It is known that the primeforms generate

the class group, but not every canonical representative of the class group is necessarily a

primeform, so this does not always give a uniform distribution over G. Using random

primeforms is much more efficient than generating a truly random element of G, and it

seems to work well in practice.2

2It may, however, be appropriate to repeat a probabilistic algorithm a greater number of times in order to
obtain the same level of confidence in its results.
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10.3 Class Groups of Imaginary Quadratic Number Fields

The investigation of the class groups of imaginary quadratic number fields is a fascinating

topic which dates back to Gauss and remains an active field of research today. We list

here some of the more significant results, along with a brief sampling of the many open

conjectures and unsolved problems that remain. To simplify the discussion, we restrict

ourselves to negative fundamental discriminants D, those which are either square free and

congruent to 1 modulo 4, or D = 4D′ where D′ is square free and congruent to 2 or 3

modulo 4. Results for non-fundamental discriminants can be easily derived using the

corresponding fundamental discriminant. We use the notation Cl(D) to denote the class

group of the number field Q[
√

D], and let h(D) = |Cl(D)| denote the class number.

1. There are exactly nine imaginary quadratic fields whose class group is trivial, cor-

responding to the discriminants -3, -4, -7, -8, -11, -19, -43, -67, and -163. The rings

of algebraic integers corresponding to these fields are unique factorization domains

(and the only such). This was conjectured by Gauss but not finally settled until 1967

by Stark [101] based on earlier work by Heegner [59].

2. The Dirichlet class number formula can be used to estimate (or actually compute)

h(D). For D < −4 the formula states

h(D) =
1
π

L(1, χD)
√
|D|, (10.1)

where L(1, χD) =
∏

p(1−χD(p)/p)−1 andχD(p) =
(

D
p

)
is given by the Kronecker symbol.

The upper bound h(D) ≤ π−1√
|D| log |D| can be derived from this formula, and it is

known that the average value of h(D) is asymptotic to Cπ−1√
|D|, where C ≈ 0.8815

[37]. Tighter bounds can be obtained using the extended Riemann Hypothesis (ERH),

within an O
(
log log |D|

)
factor of

√
|D| [31]. This has practical implications, since

(10.1) can be computed for all the primes up to a chosen bound to get an estimate of

h(D) (see Section 11.4).

3. There is a one-to-one correspondence between the elements of order 2 in the group

Cl(D) and pairs of relatively prime factors of D. These elements are represented by

”ambiguous forms” for which the coefficients a, b, and c can be used to factor D. This
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fact is the basis of a number of integer-factorization algorithms [95], including one of

the first subexponential algorithms [92] (see also the SPAR algorithm).

4. While the 2-Sylow subgroup of Cl(D) is intimately related to the multiplicative struc-

ture of D, the odd part of Cl(D), Clo(D), is conjectured to be a ”random” abelian

group G with odd order. The Cohen-Lenstra heuristics are based (roughly speaking)

on the assumption that G is chosen from a distribution in which each isomorphism

class is weighted by the factor 1/|Aut(G)| (see [38]). This has a number of interesting

consequences which match the observed data quite well:

a. Clo(D) is cyclic with probability ≈ 0.977575.

b. h(D) is divisible by an odd prime p with probability p−1 + p−2
− p−5

− p−7 + . . ..

5. Under the extended Riemann Hypothesis, it is known that the exponent of the group

Cl(D) tends to infinity [19] as D→ −∞. This implies that for any integer e,λ
(
Cl(D)

)
= e

for only finitely many D and that, in particular, there is some largest |D| for which

this holds. This has been proven unconditionally for e = 2, 3, and 4 [19, 36, 45].

More generally, it has been shown unconditionally that there are only finitely many

D for which the exponent of Cl(D) is a power of 2 [45]. These proofs are generally

ineffective; they do not give explicit bounds, hence we have no way of knowing for

certain when we have found the “last” class group with a given exponent.

The list above is but a sample. We refer the reader to [38, 37, 31] for more information

and further references. Class groups have also been proposed as the basis for a number of

cryptographic schemes, see [25, 56].

Class groups of imaginary quadratic number fields make an excellent test bed for

generic algorithms. They admit an efficient black box implementation, yet for any large

discriminant, the precise group structure is generally unknown and can only be determined

via group operations. Indeed, the problem of computing the class group was the motivation

for some of the very first generic algorithms, including the baby-steps giant-steps method of

Shanks [95]. Class groups have been extensively studied, so the results of computations in

class groups can be externally verified and performance comparisons to existing algorithms

can be made.
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The odd part of the class group appears to give an appropriate random distribution

of finite abelian groups with odd order. Note that if the discriminant is prime, the class

group necessarily has odd order (by (3) above), so it is possible to sample class groups with

purely odd part. For composite discriminants, the 2-Sylow subgroup tends to have large

rank, a useful test case for group structure algorithms.

We should note that there are non-generic methods of computing both the class number

and the class group [37, 26, 95]. These are considered in Section 11.4. The performance

results discussed in Chapter 11, and the tables listed in Appendix B were obtained using

generic algorithms with no knowledge of class groups other than an explicit unconditional

bound on the size of the group based on (2) above.
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Chapter 11

Performance Results

Chapter Abstract

Tests of various distributions of random finite groups find the median performance
of the multi-stage sieve to be comparable to or better than O

(
N0.34

)
in most cases.

Comparisons to existing generic algorithms based on both the baby-steps giant-steps
and rho methods show dramatic improvement. For large class groups of size N with
negative quadratic discriminant D, the median performance was close to O

(
N0.27

)
,

approximately O
(
|D|1/7

)
. Comparisons to non-generic subexponential algorithms

for class group computation are also favorable in many cases. Finally, we consider
an application of the multi-stage sieve with subexponential complexity, and use it
compute several class groups with 100-digit discriminants.

Before presenting the performance results, some introductions are in order. The generic

algorithms presented in this thesis were developed and tested using seven different black

boxes. The black boxes were implemented using the GNU Multi-Precision library [53],

which provides an efficient implementation of arithmetic operations on arbitrarily large

numbers, as well as various number-theoretic functions and the generation of pseudo-

random numbers. The black boxes are listed below.

• Cyclic: The group Cn, represented by the additive group of integers Z+n . The main

virtue of this black box is its speed, useful for large test cases.

• Integer: The multiplicative group of integers Z∗n. This black box permits both cyclic

and non-cyclic groups to be tested, according to whether n is prime or not.

• Product: This black box implements an arbitrary finite abelian group as a direct

product of cyclic groups, each represented as an additive group of integers. This black
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box is useful in exercising specific test cases for abelian group structure algorithms

and general debugging.

• Permutation: The group Sn, represented by arrays containing permutations of the

integers from 1 to n. This black box is useful for testing algorithms in a highly

non-commutative group.

• 2-d Matrix: The group GL2(Fp), represented as 2x2 non-singular matrices over the

integers modulo p. This black box was used as a non-abelian test case for group

exponent computations.

• Elliptic Curve: The group E(Fp) of points on the elliptic curve y2 = x3 + ax2 + 1,

represented using modified projective coordinates [40, Algorithm 7.2.3] over the

integers modulo the prime p.

• Class Group: The class group Cl(D) of the number field Q[
√

D] for negative D,

represented using binary quadratic forms as described in Chapter 10. The specific

algorithm for composition of forms used [37, Algorithm 5.4.7] is not the fastest, but

is reasonably efficient.1

The software was developed using the GNU C compiler [100] on a Microsoft Windows

operating system. The hardware platform was a personal computer with a 2.5GHz AMD

Athlon 64 X2 4800+ processor and 2GB of memory. The AMD chip has two processors,

only one of which was used during the tests, except as noted.

The performance results in the following sections are reported in terms of group opera-

tion counts, not elapsed times, so the speed of the black boxes is not a factor. It is useful to

have a rough idea of the performance of the black boxes, as in most cases the elapsed time

can then be estimated from the count of group operations. For most of the tests nearly all

group operations are multiplications. The one exception was the large class group com-

putations, where a modified version of the primorial-steps algorithm optimized for fast

inverses was used (see Remark 3.1). This increased the group operation counts slightly but

reduced the elapsed times, since nearly 1/4 of the group operations were inverses.

Table 11.1 gives performance metrics for each of the black boxes over a range of groups

and sizes. For comparison, the hash function used by both the rho and primorial-steps
1The NUDPL and NUCOMP algorithms of Shanks and Atkin, also listed in [37], are faster and may be used

in future tests (see [25] and [67] for further improvements).
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Black Box Operation |G| ≈ 1010
|G| ≈ 1020

|G| ≈ 1030
|G| ≈ 1040

|G| ≈ 1050

Cyclic Multiply 4400 3400 3300 3100 3100
Invert 9900 9100 9100 9000 9000

Integer Multiply 3500 2400 2000 1700 1500
Invert 950 410 270 200 160

Product Multiply 540 270 180 140 110
Invert 770 390 270 200 160

2-d Matrix Multiply 480 480 470 380 330
Invert 1400 520 470 350 290

Permutation Multiply 350 180 130 93 80
Invert 490 250 190 130 110

Elliptic Curve Multiply 460 240 150 110 93
Invert 4800 4800 4100 3900 3600

Class Group Multiply 210 110 70 50 38
Invert 13000 13000 13000 13000 13000

Table 11.1: Black Box Performance (thousands of group operations per second)

search algorithms can perform about 2,300,000 operations per second on group identifiers

of similar size on the same platform.

11.1 Order Computations in Random Groups

The algorithms presented in Chapters 4, 5, and 7 were used to compute the order of a

random α ∈ G using a variety of distributions on G. The computations were performed by

the multi-stage sieve algorithm (Algorithm 5.1) using a primorial-steps search (Algorithm

5.2). Both of the fast order algorithms (Algorithms 7.4 and 7.1) are used as subroutines, so

effectively all the new order algorithms presented in this thesis were exercised.

In each test, the group G was first selected from a distribution of finite groups, then a

random element α ∈ G was uniformly selected.2 The multi-stage sieve using a primorial-

steps search is a deterministic algorithm, so the statistical data listed in the Table 11.2 only

reflect randomness in the inputs. The distributions of groups are listed below.

1. Cp for a random prime p ∈ [1, 10d].

2. Cn for a random integer n ∈ [1, 10d].

2In the case of ideal class groups, the random elements were primeforms (see Chapter 10).
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3. Z∗p for a random prime p ∈ [1, 10d].3

4. Z∗n for a random integer n ∈ [1, 10d].

5. Cl(D), the ideal class group of Q[
√

D]. A random odd integer n ∈ [1, 10d] is chosen

and D = −n (n ≡ 3 mod 4) or D = −4n (n ≡ 1 mod 4).

6. Cl(P), where a random prime p ∈ [1, 10d] is chosen and P = −p (p ≡ 3 mod 4) or

P = −4p (p ≡ 1 mod 4).

7. E(Fp), the group of points on the elliptic curve y2 = x3 + x+ 1 over the field Fp, where

p is a random prime in [1, 10d].

8. GL2(Fp), the group of non-singular 2 × 2 matrices over the field Fp, where p is a

random prime in [1, 10d].

In Table 11.2 each row gives statistics for 100 random tests. The first column lists d,

indicating that the interval used was [1, 10d]. The remaining columns give a performance

metric δ, defined to be the least integer for which

T(N) ≤ aNδ

is satisfied for the proportion of test cases indicated by the column heading. The value

T(N) is the number of group operations used to compute |α|, and the constant a = 4
√

2

combines the constant factor 2
√

2 for an unbounded primorial search and an assumed

constant factor of 2 introduced by the multi-stage sieve. Group operations were counted

by the black box to compute T(N), after which δ was computed separately for each test

instance via the formula

δ =
log T(N) − log a

log N
. (11.1)

Note that the complexity is expressed in terms of N = |α|, not in terms of |G| or the interval

over which |G| might range. This is the appropriate complexity metric for a generic order

algorithm performing an unbounded search, and accurately reflects Proposition 5.3. The

values of δwould have been significantly lower (reflecting better performance) if a weaker

metric had been used.
3Z∗p and Cn both represent random cyclic groups, but the probability distribution is not the same.
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The constants c = 2.5,L1 = 6, and B1 = 2048 were used in Algorithm 5.1. The parameter b

was initially set to 5, then gradually reduced to 3 as the number of stages increased. These

choices were not optimized for any particular distribution. The random cyclic groups

would have benefited from a smaller value of both b and c, while the random class groups

favor a slightly higher value of c (they are relatively more likely to be divisible by small

primes than large ones). The initially large choice of b was made to improve the constant

factors in smaller test cases and then lowered to reduce the size of the jumps between stages

as the bounds get large. The decision was made to adopt a fixed setting for these constants

that was retained throughout all tests, including the class group computations, in order to

demonstrate the generality of the algorithms. The constants could certainly be optimized

to improve performance in a particular application.

In Table 11.2, the ranges of d were chosen to give roughly similar problem sizes for each

type of group. Given the volume of tests, the range of d was necessarily restricted. Tests

in larger groups indicate that performance tends to improve for larger N, suggesting the

impact of some additive constant factors in the data listed in Table 11.2. Slightly smaller

problem sizes were used for the prime cyclic groups Cp, where the performance was entirely

as expected, with δ just slightly less than 1/2, representing the worst case scenario.

In nearly every other case, the values of δ occurring in the 10%, 50%, and 90% columns

match the values predicted by Proposition 5.3 fairly closely. The semismooth probability

function G(1/u, 2/u) would predict δ-values of roughly 0.25, 0.34, and 0.45 respectively for

|α| uniformly distributed over some large interval. Although none of the tests actually

generated this distribution on |α|, the results were comparable or slightly better in most

cases.

The δ values for the groups G = Z∗n are notably lower. These groups are more acyclic

than the other abelian groups listed, meaning that |α| is usually smaller than |G|, but

the performance metric is in terms of |α| not |G|. Effectively, a random cyclic subgroup

of G = Z∗n is selected when α is chosen, giving rise to a different distribution of cyclic

groups. This distribution evidently gives a higher probability to composite orders. A

similar phenomenon is apparent to a lesser extent in the matrix groups GL2(Fp).

163



G d 1% 10% 50% 90% 100%

Cp 8 0.44 0.44 0.47 0.47 0.48
9 0.45 0.45 0.45 0.48 0.48

10 0.45 0.46 0.46 0.47 0.48
11 0.45 0.46 0.47 0.48 0.48
12 0.46 0.46 0.47 0.48 0.48

Cn 11 0.23 0.28 0.34 0.43 0.47
12 0.23 0.28 0.34 0.46 0.48
13 0.24 0.28 0.37 0.45 0.47
14 0.22 0.27 0.36 0.47 0.48
15 0.21 0.25 0.34 0.45 0.49

Z∗p 11 0.25 0.28 0.35 0.44 0.48
12 0.22 0.27 0.35 0.44 0.47
13 0.22 0.27 0.33 0.44 0.48
14 0.23 0.27 0.34 0.44 0.47
15 0.22 0.25 0.33 0.43 0.48

Z∗n 11 0.23 0.25 0.29 0.35 0.43
12 0.20 0.25 0.29 0.35 0.47
13 0.21 0.24 0.28 0.36 0.46
14 0.20 0.23 0.27 0.35 0.45
15 0.20 0.22 0.27 0.37 0.44

Cl(D) 22 0.24 0.27 0.33 0.41 0.47
24 0.23 0.27 0.34 0.41 0.47
26 0.19 0.27 0.35 0.42 0.46
28 0.21 0.25 0.32 0.43 0.46
30 0.20 0.26 0.33 0.43 0.47

Cl(P) 22 0.24 0.28 0.37 0.45 0.47
24 0.21 0.27 0.36 0.46 0.48
26 0.23 0.28 0.37 0.46 0.48
28 0.22 0.27 0.36 0.45 0.48
30 0.22 0.26 0.33 0.43 0.48

E(Fp) 11 0.24 0.28 0.34 0.43 0.48
12 0.22 0.27 0.34 0.43 0.46
13 0.20 0.25 0.35 0.42 0.47
14 0.19 0.26 0.35 0.42 0.47
15 0.24 0.26 0.32 0.44 0.48

GL2(Fp) 5 0.21 0.25 0.34 0.39 0.43
6 0.21 0.24 0.31 0.40 0.44
7 0.20 0.23 0.32 0.40 0.48
8 0.18 0.24 0.30 0.38 0.45

Table 11.2: Order Computations in Random Groups.

164



11.2 Comparison to Existing Generic Algorithms

Generic algorithms for computing the structure of an abelian group have been tested against

the problem of computing ideal class groups by several practitioners [95, 27, 108, 109]. We

consider two particular examples: a baby-steps giant-steps approach due to Buchmann et

al. [27], and Teske’s algorithm based on the rho method [109]. Their tests were conducted

using generic algorithms on the same groups, and they report counts of group operations,

making them directly comparable to our results, independent of the technology used.

Tables 11.3 and 11.4 list the number of group operations used by three different generic

algorithms to compute the structure of ideal class groups for quadratic discriminants of

the form −4(10n + 1) and −(10n + 3). The entries in columns headed by T represent group

operations.

The data for the baby-steps giant-steps algorithm are taken from [27]. The results for the

rho method are listed in [109] and represent the average number of iterations over several

runs. This excludes group operations used to construct the pseudo-random function; for

the larger groups, these should be negligible.

The group operations listed for Algorithm 9.1 are each the median of five runs (the

variance between runs was minimal, less than 5%). The confidence parameter c was set to

20 for the smaller groups (less than 1,000,000 elements) and 40 for the rest. In every case

the results agreed with those computed by the other two algorithms. The group operation

counts for Algorithm 9.1 listed in the first several rows of each table are dominated by

the repeated random tests performed to reach the confidence level specified. The other

two algorithms were provided with a set of generators, making the comparisons less

meaningful. For larger groups this effect is negligible and the confidence parameter can be

set arbitrarily high without impacting the results.

The multi-stage sieve (Algorithm 5.1) used a primorial-steps search (Algorithm 5.2) for

all order computations involved in computing the group exponent. The peak virtual mem-

ory usage did not exceed 30Mb during any of these tests. This contrasts with the standard

baby-steps giant-steps algorithm of [27] which was limited by memory constraints.

All three algorithms used the upper bound h(D) ≤
√

D log D on the size of the group.

For Algorithm 9.1, nearly equivalent results were obtained when using the weaker bound

D2/3, corresponding to |G|3/2.
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Baby/Giant Rho Method Algorithm 9.1

n Cl[
√
−(10n + 3)] T T

√
|G|

T T
√
|G|

T T
√
|G|

10 [2,2,48396] 3388 7.7 4988 11.3 1967 4.5
11 [2,2,2,56772] 4891 7.3 7509 11.1 1824 2.7
12 [2,4,117360] 6680 6.9 11137 11.5 2503 2.6
13 [2,2,742228] 12037 7.0 21389 12.4 2747 1.6
14 [2,2,4,1159048] 27615 6.4 42194 9.8 2422 0.56
15 [2,2,2,2,2,4,257448] 57387 10.0 43956 7.7 3956 0.69
16 [2,2,2,2,11809616] 120027 8.7 118944 8.7 3143 0.23
17 [2,2,2,46854696] 134990 7.0 237291 12.2 4793 0.25
18 [2,2,264135076] 233244 7.2 405015 12.5 26665 0.83
19 [2,1649441906] 572162 10.0 800177 13.9 33427 0.58
20 [2,2,2,1856197104] 979126 8.0 1037680 8.5 11127 0.091
22 [2,2,2,2,2,2,678293202] - - 1810912 8.7 24569 0.12
22 [2,2,2,19870122100] - - 3650074 9.1 13346 0.03
23 [2,2,2,2,23510740696] - - 6210273 10.1 141653 0.23
24 [2,4,144373395240] - - 12736451 11.9 13528 0.013
25 [2,2,2,2,186902691564] - - 19749328 11.4 13536 0.0078
26 [2,4,2062939290744] - - 45882067 11.3 707054 0.17
27 [2,2,2,2,2,2,596438010456] - - 46568150 7.5 354953 0.057
28 [2,4,4,4987045013072] - - - - 117628 0.0093
29 [2,2,109151360534920] - - - - 232533 0.011
30 [2,2,2,2,2,8,4591263001512] - - 243207644 7.1 250247 0.0073

Table 11.3: Ideal Class Groups Computed by Generic Algorithms, D = −4(10n + 1)
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The elapsed clock times for the algorithms are not directly comparable due to differences

in both hardware and software. In [109] Teske reports that computation for the largest

discriminant D = −4(1030 + 4) took more than two weeks of continuous operation on a

Sun SPARCStation4. The computation of the same group structure by Algorithm 9.1 took

less than three seconds on a 2.5MHz AMD Athlon processor, representing a speed-up by a

factor of well over 100,000. In terms of group operations, the improvement was a factor of

about 1,000.

Comparisons for larger groups are limited due to a lack of available results for other

algorithms, however, one can readily extrapolate the performance of both the existing

methods listed above. They consistently use between 5
√
|G| and 15

√
|G| group operations

over a wide range of group sizes. Based on this assumption, the performance difference

between existing generic algorithms and the multi-stage sieve becomes more dramatic as

the size of the group increases. For the larger discriminants listed in the tables that follow,

the implied speed-up is well over 109 in many cases.

As we will see in the next section, the median performance of Algorithm 9.1 is sub-

stantially better than |G|1/3 when computing large ideal class groups, although in the worst

case it may be close to |G|1/2. For any particular group, the complexity is dictated largely

by the multiplicative structure of the exponent of the group, not its size. This accounts for

the variability of the performance of Algorithm 9.1 seen in Tables 11.3 and 11.4.
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Baby/Giant Rho Method Algorithm 9.1

n Cl[
√
−(10n + 3)] T T

√
|G|

T T
√
|G|

T T
√
|G|

10 [10538] 1038 10.1 1329 12.9 1458 14.2
11 [31057] 2213 12.6 2527 14.3 879 5.0
12 [2.62284] 3223 9.1 4567 12.9 1544 4.4
13 [2,2,124264] 5794 8.2 9611 13.6 1935 2.7
14 [2,2,356368] 9233 7.7 13257 11.1 1804 1.5
15 [3929262] 23564 11.9 27867 14.1 4305 2.2
16 [12284352] 37249 10.6 45624 13.0 2490 0.71
17 [38545929] 67130 10.8 88168 14.2 6109 0.98
18 [102764373] 103039 10.2 137517 13.6 18096 1.8
19 [2,2,2,78425040] 149197 6.0 287486 11.5 5139 0.21
20 [2,721166712] 343423 9.0 522644 13.8 4426 0.17
21 [3510898632] - - 826743 13.9 28320 0.48
22 [2,2,2,1159221932] - - 1073395 11.1 14418 0.15
23 [2,16817347642] - - 2594912 14.1 25254 0.14
24 [2,2,37434472258] - - 4355120 11.2 11906 0.031
25 [2,245926103566] - - 8562256 12.2 111732 0.16
26 [2,656175474498] - - 14301324 12.5 363341 0.32
27 [3881642290710] - - 25751685 13.1 93223 0.047
28 [2,2,2,1607591023742] - - 41832563 11.7 35479 0.0099
29 [2,17634301773068] - - 71532179 12.0 152150 0.026

Table 11.4: Ideal Class Groups Computed by Generic Algorithms, D = −(10n + 3)
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11.3 Generic Order Computations in Class Groups

To gain a better understanding of the performance of both the multi-stage sieve and the

exponent-based algorithm for abelian group structure, they were applied to the task of

computing a large set of ideal class groups. Tables 11.3 and 11.4 were extended, and

similar tables were constructed for discriminants of the form −(2n
− 1) and −4(2n + 1).

Building the new tables was a useful exercise, as they present a smoother distribution of

problem sizes, and give rise to a wide range of group structures, including a variety of

prime, near-prime, and highly composite discriminants.

Recall from Chapter 10 that the rank of the 2-Sylow subgroup of Cl(D) is essentially

determined by the factorization of the discriminant D, while the odd part of the class group

is conjectured to be a “random” finite abelian group. In particular, a prime discriminant

will have h(D) = |Cl(D)| odd, but this does not mean that h(D) will be prime. In fact, this is

quite rarely the case.

We consider here the construction of the table for discriminants D = −(2n
− 1) in some

detail; the construction of the other tables followed a similar pattern. Appendix A contains

tables that show the cost of computing the structure of the class group for values of n

between 60 and 160. This covers discriminants ranging from 18 to 48 decimal digits. Class

groups were constructed for many larger discriminants (see Appendix B) but this is a

convenient range with a complete set of meaningful data points. Table 11.5 contains a

short interval from the middle of the range which is an illustrative sample. It happens to

include the worst performance for this table, as well as several excellent running times.

Each row starts with the value of n for the discriminant D = −(2n
−1), and the remaining

entries are all logarithms in base 2. The column headed lg h(D) lists the binary logarithm

of the size of the class group, h(D) = |Cl(D)|. This is typically slightly less than n/2, as

predicted by the class number formula. Skipping the column lg q∗ for the moment, the next

two columns give the binary logarithms of T1 and T2, which represent the number of group

operations required to compute λ
(
Cl(D)

)
and the structure of Cl(D) respectively. The value

T1 is the cost incurred by Algorithm 8.1, including calls to the multi-stage sieve using a

hybrid-search to perform order computations. The value T2 counts all the group operations

used by Algorithm 9.1 after λ
(
Cl(D)

)
has been computed, including all discrete logarithms.

As in the previous section, the upper bound h(D) ≤
√

D log D was used, enabling most
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n lg h(D) lg q∗ lg T1 lg T2 δ1 δ2

120 59.45 6.60 12.24 15.01 0.16 0.21
121 59.56 14.81 18.39 13.08 0.27 0.18
122 59.95 24.78 27.39 15.46 0.42 0.22
123 59.90 15.80 19.70 13.05 0.29 0.18
124 61.10 12.23 14.78 13.18 0.20 0.17
125 61.68 16.06 17.37 13.25 0.24 0.17
126 61.92 11.51 13.47 14.16 0.18 0.19
127 62.32 18.78 22.13 12.01 0.31 0.15
128 63.76 16.67 17.74 13.51 0.24 0.17
129 63.91 17.54 20.61 12.61 0.28 0.16

Table 11.5: Sample Construction Costs for D = −(2n
− 1), n = 120 to 129

large discrete logarithm operations to be avoided. The last two columns, headed by δ1 and

δ2, give δ-values analogous to (11.1), that is

δi =
lg Ti − lg a

lg h(D)
, (11.2)

where the constant a = 4
√

2 implies lg a = 2.5. The δ-values approximate the exponent in

the running time of the algorithm given by

Ti(N) ≈ aNδi , (11.3)

where N = h(d) = |Cl(D)| is the size of the group.

In Table 11.5 the first row, corresponding to D = −(2120
−1), indicates that the size of the

class group was approximately 259.45, the number of group operations used to compute the

exponent of the class group was T1 = 212.24
≈ 5, 000, and the number of additional group

operations required to compute the structure of the group was T2 = 215.01
≈ 33, 000. This

was one of the 20 out of 100 cases where T2 dominated the running time. This typically

occurs for the smaller discriminants, and when it does, the running time tends to be very

good. In this case the total running time was on the order of N0.21 = Nδ2 .

The actual elapsed time can be inferred from the number of group operations by noting

that roughly 110,000 to 120,000 group operations per second were typically performed

during these computations. In this case the actual elapsed time was 0.33 seconds, indicating

170



that ≈ 115, 000 group operations per second were performed.

Two rows down, the entry for D = −(2122
− 1) contains the worst performance over the

entire range (asymptotically speaking) with δ1 = 0.42. In this case T1 = 227.39
≈ 176, 000, 000

dominated T2 = 224.78
≈ 29, 000, 000 and the performance was on the order of N0.42. The

actual elapsed time was 1743 seconds, indicating that ≈ 117, 000 group operations per

second were performed during the computation.

The row in between, for a class group of almost identical size, had δ1 = 0.27 and an

elapsed time of 5 seconds. To explain the rather dramatic variance in performance, we now

consider the column lg q∗. This column lists the binary logarithm of

q∗
(
h(D)

)
= max{

√
p, q},

where p and q are the largest and second largest prime powers dividing h(D) = |Cl(D)|.

This value corresponds to Definition 5.1 which was given in Chapter 5 when analyzing the

complexity of the multi-stage sieve. In most cases, the value of T1 is a small multiple of

q∗, typically lg T1 ≈ lg q∗ + 2. For small values of lg q∗ the difference may be greater; these

situations typically occur when q is greater than
√

p (this happens about 1/3 of the time)

and generally mean good performance. The values of lg q∗ corresponding to q >
√

p are

listed in bold in Appendix A.

Given the rather erratic behavior of q∗ and the consequent variation in running times,

it is more useful to look at typical values of δ1 and δ2 over a range of n. As the δ-values

represent ratios of logarithms, they are comparable over the entire set of problem sizes.

Overall, the value of δ1 typically dominated and had a median value of 0.265. The behavior

of δ1, while locally erratic, was fairly consistent over intervals of 10 or more. The medians

in each subinterval of 10 for both δ1 and δ2 are shown in Table 11.6.

The median complexity of T1 would appear to be around O
(
N0.27

)
, which is substan-

tially better than the O
(
N0.34

)
bound of Proposition 5.3. This is somewhat expected for

two reasons: (1) as noted in Chapter 10 the order of an ideal class group is more likely to

contain small divisors than a random integer, and (2) the computation of δ1 is relative to

the size of the group, not the order of a particular element.4

The behavior of δ2 is quite different. It is much smoother, and clearly declining through-

4This is the appropriate metric for an algorithm computing the structure of the entire group.

171



Range of n Median δ1 Median δ2

60-69 0.285 0.315
70-79 0.265 0.270
80-89 0.250 0.250
90-99 0.255 0.220

100-109 0.240 0.210
110-119 0.285 0.190
120-129 0.270 0.170
130-139 0.265 0.170
140-149 0.300 0.160
150-159 0.290 0.140

Table 11.6: Median δ-Values of Class Group Structure Computations

out the range, suggesting that the true growth rate of T2 may be subexponential.

Finally, we note the remarkable variance in running times that results from the depen-

dence on q∗. The entry listed for n = 159 has δ1 = 0.37, corresponding to nearly 3 × 109

group operations and an elapsed time of about eight hours, by far the longest of any entry

in the table. The entry just three rows above for n = 156 has δ1 = δ2 = 0.18, used less than

2× 105 group operations, and had an elapsed time of just over two seconds. The entry two

rows earlier for n = 154 was even faster at close to one second and under 100,000 group

operations.

The values n = 159 and n = 156 correspond to 48 and 47 digit discriminants with class

groups of size 2.8 × 1024 and 2.1 × 1024 respectively. They would each require over 1013

group operations if performed by either of the existing generic algorithms considered in

the previous section, assuming a complexity of ≈ 10
√
|G|. The implied running time on the

hardware platform used in these tests would be over four years for each group.

The two examples above were not the most extreme cases that occurred during the tests.

The computation for D = 2246
− 1, a 74 digit discriminant, used less than 2.7 × 107 group

operations and took about seven minutes. The value of 10
√
|G| exceeds 2.4 × 1019, larger

by a factor of nearly 1012. By contrast, the computation performed for D = −(1039 + 3),

a much smaller class group, used 3.2 × 109 group operations, and had the largest δ-value

occurring during the construction of any of the tables, 0.47. The class group in this case

is cyclic with order 3 times a large prime, representing nearly the worst case. Even in this
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case, the performance was better than existing generic algorithms by a factor of about 20.

Remark 11.1. While our attention has been focused on the computational complexity of construct-

ing the tables of class groups, we should pause to remark on an interesting result. The Cohen-Lenstra

heuristics suggest that approximately 97.75% of the time, the odd part of a random class group

should be cyclic. This pattern was observed in most of the tables that were constructed, however

the tables for D = −(2n
− 1) contain a surprising number of class groups with non-cyclic odd part,

close to 15% of the entries. For n ≤ 170, there are 27 such class groups, 21 of which correspond to

fundamental discriminants, including the Mersenne primes 289
− 1 and 2107

− 1.

11.4 Comparison to Non-Generic Algorithms

There are a variety of algorithms used to compute ideal class groups. We consider just a

few, restricting ourselves to the case of imaginary quadratic number fields.

Shanks’ Algorithm

The first practical algorithm for computing large class groups was developed by Shanks

using the baby-steps giant-steps method [95]. Assuming the extended Reimann hypothesis

(ERH), the Dirichlet class number formula (10.1) may be used to obtain a fairly tight bound

on the class number h(D) by evaluating the terms involving primes less than d1/5, where

d = |D|. This reduces the interval that must be searched to find h(D) to a range of size

O
(
d2/5 log d

)
. The result is an algorithm which uses O

(
d1/5 log d

)
operations in the class

group to find h(D). This approach can also be used to compute the structure of the group.

The only non-generic aspect of this algorithm is the use of the class number formula to

bound the search.

In terms of the size of the class group, N = |Cl(D)| = h(D) ≈
√

d, the running time is

O
(
N0.4 log N

)
group operations. Algorithm 9.1 was substantially faster than this during

the course of constructing the tables in Appendix B, which involved hundreds of class

groups with discriminants ranging from 20 to 70 decimal digits. The observed median

δ-value was about 0.27, suggesting a median complexity close to O
(
N.27

)
. In terms of d

this is better than O
(
d1/7

)
. Even for the worst case encountered, D = −(1039 + 3) with

δ = 0.47, we still find N0.47 < N0.4 log N, since N ≈ 5 × 1019 in this case.
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Subexponential Algorithms

The best known algorithms for computing class groups of imaginary quadratic number

fields are strictly non-generic; they depend on a specific representation of ideal class groups

and perform non-group operations directly on this representation. Appropriately imple-

mented, a subexponential running time can be achieved. The first such algorithm was

developed in 1988 by McCurley and Hafner [55] and is described in [37]. Assuming the

extended Reimann hypothesis (ERH), the running time of their algorithm, in terms of d, is

L(1/2,
√

2) = exp
((√

2 + o (1)
) √

log d log log d
)
.

Buchmann and Düllmann implemented a parallel version of this algorithm [24] which

they used to compute the class group for D = −4(1054 + 1) in a total of about 282 hours

of computation time on a distributed network of Sun Sparc1 and SparcSLC computers

in 1991. This algorithm was later improved by Buchmann et al. and Jacobson [26, 65]

by applying techniques borrowed from the multiple-polynomial quadratic sieve method

(MPQS) for factoring integers (see [40]). They were then able to compute the class group

for the same discriminant in under nine hours on a Sun SparcUltra1 in 1997, and computed

class groups for a number of larger discriminants, up to 65 decimal digits. They completed

the computation of the required relation matrix for a 70-digit discriminant, but did not

determine the class group due to difficulties in computing the Hermite normal form of

such a large matrix.

Further refinements of the algorithm along with increased hardware capacity have

enabled the computation of class groups with 80-digit discriminants. Jacobson reports

computing the class groups for the discriminants −4(1080+1) and (−1080+3) in 5.4 and 10.0

days respectively using a 296 MHz Sun UltraSparc-II processor [66]. These results stand as

the largest computations for imaginary quadratic class groups reported in the literature.5

Buchmann et al. and Jacobson do not give precise asymptotic estimates for the running

time of their algorithm, but in [29] it is conjectured to be L(1/2,
√

9/8+o (1)]. Cohen suggests

that an L(1/2,
√

9/8) bound is possible, and that L(1/2, 1) probably represents the limit on

what is achievable with this approach [37, p. 259]. While this is an attractive asymptotic

5Computations for real quadratic class groups with larger discriminants are reported in [64], but in the real
case the class group is generally quite small, often trivial.
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result, computing the Hermite normal form of the relation matrix may be a limiting factor

for very large discriminants.

One concern with the subexponential algorithms mentioned above is their dependence

on the ERH, not just for their running times, but also for their correctness. Booker addresses

this issue, giving a modified version of the algorithm which is either fast (assuming the

ERH is true), or slow (if not), but always correct [17]. This is done by using the class

number formula to estimate h(D) closely enough to be able to ascertain whether the class

number output by Buchmann’s algorithm could be off by a factor of two. The algorithm

always outputs a subgroup of the class group, so if it is incorrect, it must err by at least

this amount. The same technique may be applied to verify the output of Algorithm 9.1,

which of course does not depend on the ERH, but may simply get unlucky in its selection

of random elements.

Comparisons

The computation of the class group for D = −4(1054 + 1) computed by Buchmann and

Düllmann and later by Buchmann et al. took less than 9 seconds for Algorithm 9.1 running

on a 2.5 GHz AMD processor. This hardware is certainly faster than the Sun SparcUltra1

used by Buchmann et al., but not by a factor of 4,000, which is the approximate ratio

of the running times. More recently, Jacobson reports computing the class group for

D = −4(1055 + 1) in 27 minutes on a 296 MHz Sun SparcUltra-II using an improved version

of the MPQS algorithm [66]. The improved running time is due in part to faster algorithms

for the reduction and composition of quadratic forms [67] which could also be applied to

the black box used by Algorithm 9.1.

Without a side-by-side performance test on the same platform it is impossible to make

precise comparisons with non-generic algorithms. Extrapolating from the most recent data

available [66], it is reasonable to speculate that the median performance of Algorithm 9.1

is at least as good as the best non-generic algorithms for negative discriminants with up

to 50 or 60 digits. We should emphasize, however, that the worst case performance of the

non-generic algorithms is far superior. The computation for discriminant −(1039 + 3) took

Algorithm 9.1 over eight hours while the MPQS-based algorithms would almost certainly

compute this class group in under a minute.

Conversely, Algorithm 9.1 may occasionally outperform the subexponential algorithms
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on larger discriminants. The computations of the class groups for discriminants−4(1068+1),

−4(2233 + 1), −(2236
− 1), and −(2246 + 1) each took less than 10 minutes. The available

data suggest that the best subexponential algorithms would require an hour or more for

discriminants of this size (≈ 70 digits). This advantage can be exploited in a systematic

fashion by searching for groups that happen to be easy to compute, yielding a generic

algorithm with subexponential complexity, as considered in the next section.

11.5 A Trial of the Generic Subexponential Recipe

Section 5.4 describes an efficient method for solving one of a sequence of random or-

der computations by performing a bounded search on successive problem instances. By

choosing the bound N1/u to appropriately balance the probability of success with the cost

of an unsuccessful search, a solution with subexponential complexity may be achieved. By

Proposition 5.3, the running time T(N) of Algorithm 5.1 on a random input with |α| = N

uniformly distributed over some large interval satisfies

Pr
[
T(N) ≤ cN1/u]

≤ G(1/u, 2/u),

where G(1/u, 2/u) is the semismooth probability function defined in Section 6.4.

To validate this approach, a program was implemented to compute the structure of a

large ideal class group with discriminant close to a specified value. The program starts at

the given value and attempts to compute the structure of the class group for an increasing

sequence of discriminants. For each attempt, the program uses a single-stage version of

the multi-stage sieve (Algorithm 5.1) to attempt to compute the order of a random group

element. There is a single exponentiation phase up to the prime bound L, and then a search

phase to the bound B = cL2, with c ≈ 3 chosen so that the group operations are split evenly

between exponentiation and searching. If the program is able to successfully compute the

order of a random element, it then goes on to compute the entire class group.

The value of the bound L was determined by the formula L = N1/u, where N =
√

D is a

convenient estimate of the size of the class group and u is a chosen parameter.6

For the initial trial, the program used discriminants of the form D = −(1080 + 4k + 3).

6A more accurate estimate would be N = C
√

D/πwhere C ≈ 0.8815 (see Chapter 10). This would lower the
effective value of u slightly.
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The parameter u was set to 6 2
3 . Each attempt used about 14 million group operations,

taking just over 60 seconds. The program succeeded after 346 attempts using a total of

approximately 1.3×109 group operations in under 6 hours. The structure of the class group

for D = −(1080 + 1387) is

[2, 2, 2, 374480831849617996389973266621111442002].

This was an encouraging result, as the median complexity bound aN0.27 would imply

4.8 × 1011 group operations and a running time of nearly three months. A running time

of 5 to 10 days using the non-generic MPQS algorithm is reported by Jacobson [66] for

discriminants of comparable size using a Sun SparcUltra-II.

Once a successful discriminant is known, the class group can be recomputed for at

most the cost of a single attempt, or under a minute in this case. This makes it easy to

verify the results. Each attempt is completely independent, so the same test could have

been completed by 346 computers in one minute. No communication between computers is

required, other than assigning a range of discriminants to attempt and collecting successful

results.

It is notable that the particular group computed did not have an especially large 2-

Sylow subgroup. In fact, the discriminant D evidently only has five factors, as implied by

the 2-rank of the class group (one less than the number of factors). The factors are easily

extracted from the generators of the 2-Sylow subgroup output by Algorithm 9.1.7 The

factorization of D is

2069 × 8271323 × 814914901349 × 1828149326773919 ×

39222298145324222614073124784245859575004471.

There are many algorithms that can factor D more quickly. The point to be made is that

it was not at all evident a priori that the class group of D should be particularly easy to

compute; it looks like a completely ordinary number. D has almost exactly the log log N

factors it should have, and the size of its largest prime factor is just what we should expect.

One could construct a highly composite D whose class group would necessarily have a

7Recall that the representation of an element with order 2 may be used to factor D (see Chapter 10).
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large 2-Sylow subgroup, but that was not the case here.

According to Proposition 5.5, the complexity of the procedure described above, as-

suming a uniform distribution on N = |α|, is L(1/2,
√

2). In terms of |D| this is L(1/2, 1).

This expression hides the fact that G(1/u, 2/u) may be substantially greater than ρ(u). In

particular, when u = 6.67, G(1/u, 2/u) is about 100 times larger than ρ(u), roughly 2 × 10−4

versus 2 × 10−6. Moreover, the distribution of orders in ideal class groups is not uniform,

resulting in an observed median complexity of N0.27 rather than the predicted N0.34.

This perhaps explains why the program was successful after only 346 attempts, rather

than the≈ 5000 attempts implied by G(1/u, 2/u). A second trial found the class group for the

78 digit discriminant D = −(2256 + 735) after only 185 attempts with u = 6.4, using a similar

number of group operations. Additional tests suggest that for random discriminants in

the range of 60-90 digits, the probability that |α| is semismooth for random α ∈ Cl(D) may

be more than ten times greater than G(1/u, 2/u).

11.6 A Record Setting Computation

Based on the success of the trial, a larger test was conducted with the aim of computing

the class group of an imaginary quadratic number field for a discriminant with more than

100 decimal digits. Eight identical PCs were assembled with the same configuration as

used in previous tests, a 2.5GHz AMD Athlon 64 X2 4800+ processor and 2GB of memory.

Unlike previous tests, both processors were used, giving a total of 16 parallel threads of

computation. The machines worked independently and did not use a network. Each

processor was assigned a series of discriminants of the form 4(10100 + 2500n + k) where

n ∈ [1, 16] identified the processor.

The parameter u was set to 6.9. This choice was based on empirical tests with smaller

discriminants which suggested that this value of u should give roughly a 1 in 2000 chance of

success in each attempt. Insufficient data was collected to assign a meaningful confidence

level to this estimate. It could easily be off by a factor of two, given the observed variance

and the limited sample size, and assumes that statistics gathered for smaller discriminants

(about 60 digits) can be directly applied to larger ones (over 100 digits).

With this value of u, each attempt used approximately 69 million group operations,

taking about 25 minutes elapsed time. The total duration of the test was limited to one
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D Cl(D)

−4(10100 + 12817) [53451567349713492791934477462334787048461287440660]
−4(10100 + 12862) [2,2,2,2,3750601777472574152315246306215658549608295815264]
−4(10100 + 17712) [2,2,2,2,3,1279459492813787865683957602427453914914702328116]
−4(10100 + 20225) [2,2,2,2,2,2,4,383633007079561747572074942926181742517030115784]

Table 11.7: Imaginary Quadratic Class Groups with |D| > 10100

week, implying that each processor would be able to make approximately 400 attempts,

6400 attempts in all. Assuming an independent uniform success probability of 1/2000, this

gives a better than 95% chance of successfully computing at least one class group, and we

should expect to find three.8

At the end of the week, a total of four class groups had been successfully computed.

The results are listed in Table 11.7. The first two discriminants are both fundamental (D/4

is square-free), and 10100 + 12817 is actually prime. This is somewhat remarkable, as one

would expect this to be the most difficult case for the algorithm; it means the 2-Sylow

subgroup is as small as possible. It is also worth noting that the odd part of the class group

for D = −4(10100 + 17712) is non-cyclic.

Based on the published results available, these are believed to be the largest class groups

ever computed.

8Attempts on consecutive discriminants in an arithmetic sequence are not completely independent, since
the 2-Sylow subgroup depends on the factorization of D. We may hope that the odd part of the class group is
reasonably independent, based on the Cohen-Lenstra heuristics.
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Appendix A

Class Group Table Construction Costs

The tables in this appendix give performance data relating to the construction of the class

group tables for discriminants of the form D = −(2n
− 1) which appear in Appendix B.

The value q∗ = q∗
(
h(D)

)
is defined by q∗ = max{

√
p, q}where p and q are the largest and

second largest prime powers dividing h(D) (see Definition 5.1 and Section 11.3). Values

listed in bold indicate that q >
√

p.

The value T1 is the number of group operations used to compute the exponent of the

class group, λ
(
Cl(D)

)
, and T2 is the number of additional group operations required to

then compute the structure of Cl(D). The values δ1 and δ2 are defined by

δi =
lg Ti − 2.5

lg h(D)
.

See Section 11.3 for a more detailed explanation.
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D lg h(D) lg q∗ lg T1 lg T2 δ1 δ2

60 29.19 5.67 10.94 13.20 0.29 0.37
61 29.46 9.57 12.88 10.84 0.35 0.28
62 30.32 10.17 13.28 12.28 0.36 0.32
63 29.87 6.07 11.41 12.27 0.30 0.33
64 30.91 4.95 10.67 14.36 0.26 0.38
65 31.78 5.88 10.98 12.24 0.27 0.31
66 32.02 9.00 11.09 14.36 0.27 0.37
67 32.43 7.22 12.48 12.34 0.31 0.30
68 33.41 7.10 10.70 12.76 0.25 0.31
69 33.57 9.63 12.01 11.62 0.28 0.27
70 33.97 8.28 11.50 12.77 0.26 0.30
71 33.95 10.84 12.93 11.97 0.31 0.28
72 35.38 6.19 10.63 13.75 0.23 0.32
73 35.98 8.98 11.84 12.16 0.26 0.27
74 36.14 7.40 11.16 12.54 0.24 0.28
75 35.85 11.33 13.19 11.60 0.30 0.25
76 37.53 7.32 11.54 12.70 0.24 0.27
77 38.05 14.41 15.53 12.48 0.34 0.26
78 37.93 10.44 12.81 12.75 0.27 0.27
79 38.18 10.19 14.29 12.09 0.31 0.25
80 39.59 9.63 11.93 12.91 0.24 0.26
81 39.80 10.83 13.04 12.20 0.26 0.24
82 39.54 5.93 11.64 12.56 0.23 0.25
83 40.33 13.95 15.25 12.41 0.32 0.25
84 41.28 6.20 11.45 14.09 0.22 0.28
85 41.55 10.89 13.10 12.33 0.26 0.24
86 42.17 9.12 12.01 13.14 0.23 0.25
87 42.40 10.17 14.29 12.42 0.28 0.23
88 43.01 6.76 11.61 13.06 0.21 0.25
89 43.58 14.59 15.68 11.65 0.30 0.21
90 44.00 8.71 12.65 13.98 0.23 0.26
91 43.85 9.62 12.94 12.11 0.24 0.22
92 45.56 8.14 11.98 13.12 0.21 0.23
93 45.83 12.73 14.73 12.72 0.27 0.22
94 45.84 12.68 14.68 12.71 0.27 0.22
95 46.30 16.59 17.67 12.40 0.33 0.21

Table A.1: Construction Costs for D = −(2n
− 1), n = 60 to 95
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D lg h(D) lg q∗ lg T1 lg T2 δ1 δ2

96 47.35 9.30 14.18 13.49 0.25 0.23
97 48.02 12.77 14.78 13.22 0.26 0.22
98 48.52 12.98 14.95 13.09 0.26 0.22
99 47.78 10.24 13.76 12.79 0.24 0.22

100 49.19 9.68 14.22 13.49 0.24 0.22
101 49.85 17.75 19.16 13.43 0.33 0.22
102 49.74 9.33 12.92 13.28 0.21 0.22
103 50.35 15.03 17.27 12.86 0.29 0.21
104 51.18 12.79 14.76 13.33 0.24 0.21
105 51.74 17.23 18.92 12.95 0.32 0.20
106 51.91 9.91 12.92 13.39 0.20 0.21
107 52.30 11.11 14.44 12.77 0.23 0.20
108 53.56 14.06 15.35 14.11 0.24 0.22
109 53.51 10.91 14.44 12.94 0.22 0.20
110 54.47 13.39 16.56 13.50 0.26 0.20
111 53.84 17.55 19.06 12.41 0.31 0.18
112 55.05 16.12 17.39 13.46 0.27 0.20
113 56.32 18.94 20.78 13.13 0.32 0.19
114 55.87 13.77 15.20 13.97 0.23 0.21
115 55.95 16.11 20.28 12.51 0.32 0.18
116 57.79 18.64 19.68 13.07 0.30 0.18
117 57.72 13.21 14.92 13.50 0.22 0.19
118 57.89 18.53 22.02 13.22 0.34 0.19
119 58.54 15.49 17.07 13.14 0.25 0.18
120 59.45 6.60 12.24 15.01 0.16 0.21
121 59.56 14.81 18.39 13.08 0.27 0.18
122 59.95 24.78 27.39 15.46 0.42 0.22
123 59.90 15.80 19.70 13.05 0.29 0.18
124 61.10 12.23 14.78 13.18 0.20 0.17
125 61.68 16.06 17.37 13.25 0.24 0.17
126 61.92 11.51 13.47 14.16 0.18 0.19
127 62.32 18.78 22.13 12.01 0.31 0.15
128 63.76 16.67 17.74 13.51 0.24 0.17
129 63.91 17.54 20.61 12.61 0.28 0.16

Table A.2: Construction Costs for D = −(2n
− 1), n = 96 to 129
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D lg h(D) lg q∗ lg T1 lg T2 δ1 δ2

130 63.84 13.25 15.00 15.40 0.20 0.20
131 63.98 11.80 15.76 13.65 0.21 0.17
132 65.36 12.91 16.45 14.75 0.21 0.19
133 65.68 20.81 24.08 13.23 0.33 0.16
134 66.17 23.88 25.64 13.24 0.35 0.16
135 65.93 12.59 16.41 13.92 0.21 0.17
136 67.16 18.99 20.81 14.15 0.27 0.17
137 68.14 16.12 20.31 13.87 0.26 0.17
138 68.00 21.34 22.75 13.43 0.30 0.16
139 67.96 18.17 20.77 13.56 0.27 0.16
140 69.33 18.00 20.85 15.63 0.26 0.19
141 69.44 20.08 22.83 13.81 0.29 0.16
142 69.97 15.24 18.51 13.75 0.23 0.16
143 70.53 12.03 16.39 13.61 0.20 0.16
144 71.08 23.17 24.46 15.46 0.31 0.18
145 71.70 26.01 27.20 13.26 0.34 0.15
146 72.79 19.25 22.42 13.95 0.27 0.16
147 72.13 27.28 29.19 13.65 0.37 0.15
148 73.26 26.37 28.11 13.68 0.35 0.15
149 73.80 26.17 27.53 13.47 0.34 0.15
150 73.59 14.48 16.92 15.87 0.20 0.18
151 74.08 24.36 25.84 12.66 0.32 0.14
152 75.58 14.40 18.44 14.38 0.21 0.16
153 76.24 20.78 22.51 13.43 0.26 0.14
154 75.66 13.19 16.51 14.39 0.19 0.16
155 76.09 25.81 27.27 13.49 0.33 0.14
156 77.51 12.89 16.58 16.11 0.18 0.18
157 77.79 31.97 30.12 13.55 0.36 0.14
158 78.29 28.49 29.54 13.59 0.35 0.14
159 77.88 31.00 31.51 13.24 0.37 0.14
160 79.13 24.95 27.28 15.83 0.31 0.17

Table A.3: Construction Costs for D = −(2n
− 1), n = 130 to 160
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Appendix B

Imaginary Quadratic Class Groups

The tables that follow give the group structure for the ideal class group Cl(D) of the number

field Q[
√

D]. The tables are organized according to the form of D:

1. D = −(2n
− 1)

2. D = −4(2n + 1)

3. D = −(10n + 3)

4. D = −4(10n + 1)

A typical group structure listing is

[2, 2, 2, 4, 312],

for D = −(2n
− 28), indicating that the group is isomorphic to

C2 ⊗ C2 ⊗ C2 ⊗ C4 ⊗ C312.

In this example, as in most cases, the odd part of the class group is cyclic and the group

structure appears in standard divisor form. In order to highlight groups with non-cyclic

odd part, all but the largest cyclic subgroup of order ph is listed separately for each p, as

in the entry for D = −(2n
− 29), which is written as [4,3,1080], rather than the equivalent

divisor form [12,1080]. Such cases are highlighted in bold.

Where space permits, the class number h(D) = |Cl(D)| is listed along with the value of

L(1, χD). When absent, h(D) can be computed as the product of the orders of the cyclic
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factors of Cl(D), and L(1, χD) can be derived from the class number formula

h(D) =
1
π

L(1, χD)
√
|D|,

valid for D < −4.

The groups were computed using Algorithm 9.1 in its probabilistic form. This algorithm

always outputs a subgroup of the desired group. Assuming it is provided with uniformly

random elements by the black box implementing the group, it will succeed in finding the

entire group with probability greater than 1 − 2−c. The parameter c was set to 40 in these

computations, and the black box used random primeforms (see Chapter 10).

The output was then independently checked by computing L(1, χD) using the class

number formula for all primes up to 108, sufficient in each case to give nearly 4 digits of

agreement with the value of L(1, χD) implied by the output by Algorithm 9.1. Note that

since the algorithm always outputs a subgroup, any error would cause the implied value

of L(1, χD) to be off by at least a factor of two.

The procedure described above is not sufficient to unconditionally guarantee the results.

The algorithm itself did not use the class number formula, however, and it is unlikely

that an error in the algorithm would happen to coincide with a case of remarkably slow

convergence. Those requiring an unconditional result may see [17] for a more efficient

method of verification.

A more likely source of error in the numerous tables that follow is an inadvertent

transcription error during the process of preparing this manuscript for publication. The

author would be grateful for any corrections.1

1He may be contacted via the perpetual e-mail address: AndrewVSutherland@alum.mit.edu.
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n Cl(D) h(D) L(1, χD)

2 [1] 1 0.6046
3 [1] 1 1.1874
4 [2] 2 1.6223
5 [3] 3 1.6927
6 [4] 4 1.5832
7 [5] 5 1.3939
8 [2,6] 12 2.3608
9 [14] 14 1.9457

10 [2,8] 16 1.5716
11 [18] 18 1.2499
12 [2,2,10] 40 1.9637
13 [55] 55 1.9092
14 [2,36] 72 1.7672
15 [2,26] 52 0.9025
16 [2,2,28] 112 1.3745
17 [285] 285 2.4731
18 [2,2,48] 192 1.1781
19 [255] 255 1.1064
20 [2,2,2,3,36] 864 2.6507
21 [2,456] 912 1.9785
22 [2,2,220] 880 1.3499
23 [1554] 1554 1.6856
24 [2,2,2,2,132] 2112 1.6199
25 [2,1886] 3772 2.0457
26 [2,2424] 4848 1.8592
27 [2,1950] 3900 1.0576
28 [2,2,2,4,312] 9984 1.9144
29 [4,3,1080] 12960 1.7572
30 [2,2,2,2,980] 15680 1.5033

Table B.1: Class Groups for D = −(2n
− 1), n = 2 to 30
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n Cl(D) h(D) L(1, χD)

31 [19865] 19865 1.3467
32 [2,2,8,1320] 42240 2.0249
33 [2,2,13764] 55056 1.8662
34 [2,31712] 63424 1.5202
35 [2,2,3,4752] 57024 0.9665
36 [2,2,2,2,2,4,1428] 182784 2.1905
37 [213780] 213780 1.8116
38 [2,3,59148] 354888 2.1265
39 [2,2,69708] 278832 1.1814
40 [2,2,2,2,2,17176] 549632 1.6467
41 [5,190320] 951600 2.0160
42 [2,2,4,8,6680] 855040 1.2809
43 [2,589908] 1179816 1.2497
44 [2,2,2,2,2,105756] 3384192 2.5348
45 [2,2,2,2,222396] 3558336 1.8846
46 [2,2,883124] 3532496 1.3229
47 [2,3,1125270] 6751620 1.7879
48 [2,2,2,2,2,2,2,103868] 13295104 2.4896
49 [12773754] 12773754 1.6914
50 [2,2,2,2,4,299760] 19184640 1.7962
51 [2,2,2,1526448] 12211584 0.8085
52 [2,2,2,2,2,955200] 30566400 1.4309
53 [4,15994416] 63977664 2.1178
54 [2,2,2,4,1816620] 58131840 1.3607
55 [2,2,2,4,2189536] 70065152 1.1597
56 [2,2,2,2,2,2,3059532] 195810048 2.2916
57 [2,2,62777550] 251110200 2.0781
58 [2,2,2,2,17140032] 274240512 1.6048
59 [3,110142126] 330426378 1.3672
60 [2,2,2,2,2,2,2,2,4,598328] 612687872 1.7926

Table B.2: Class Groups for D = −(2n
− 1), n = 31 to 60
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n Cl(D) h(D) L(1, χD)

61 [740609005] 740609005 1.5322
62 [2,668431740] 1336863480 1.9557
63 [2,2,2,2,61476654] 983626464 1.0175
64 [2,2,2,2,4,31569408] 2020442112 1.4779
65 [2,3,7,87750936] 3685539312 1.9062
66 [2,2,2,2,2,2,68055552] 4355555328 1.5930
67 [5788240250] 5788240250 1.4969
68 [2,2,2,2,8,3,29688912] 11400542208 2.0848
69 [2,2,3184521524] 12738086096 1.6471
70 [2,2,2,2,2,2,4,65509160] 16770344960 1.5334
71 [2,3,2767877316] 16607263896 1.0737
72 [2,2,2,2,2,2,2,2,2,4,21799260] 44644884480 2.0410
73 [2,3,11323615056] 67941690336 2.1963
74 [2,2,2,9493972488] 75951779904 1.7361
75 [2,2,2,2,2,1934973916] 61919165312 1.0008
76 [2,2,2,2,2,6180379360] 197772139520 2.2603
77 [2,2,71365677450] 285462709800 2.3070
78 [2,2,2,2,4,4088034832] 261634229248 1.4951
79 [2,156144357908] 312288715816 1.2619
80 [2,2,2,2,2,2,2,3,2161806504] 830133697536 2.3719
81 [2,2,2,2,59992961030] 959887376480 1.9393
82 [2,2,2,5,19983331600] 799333264000 1.1420
83 [1377626540508] 1377626540508 1.3917
84 [2,2,2,2,2,2,2,2,2,4,1299302792] 2660972118016 1.9008
85 [2,1604445038960] 3208890077920 1.6208
86 [2,2,2,619494115968] 4955952927744 1.7701
87 [2,2,2,4,181506436060] 5808205953920 1.4669
88 [2,2,2,2,2,2,2,2,3,11523447450] 8850007641600 1.5804
89 [3,4391379741531] 13174139224593 1.6636
90 [2,2,2,2,2,2,2,2,2,34327463280] 17575661199360 1.5693

Table B.3: Class Groups for D = −(2n
− 1), n = 61 to 90
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n Cl(D) h(D) L(1, χD)

91 [2,2,2,1976804272796] 15814434182368 0.9985
92 [2,2,2,2,2,2,2,406370538900] 52015428979200 2.3222
93 [2,31278307292050] 62556614584100 1.9748
94 [2,2,2,4,1969979302000] 63039337664000 1.4072
95 [2,2,2,3,3606156640236] 86547759365664 1.3661
96 [2,2,2,2,2,2,2,2,2,2,174702625204] 178895488208896 1.9967
97 [284843279318520] 284843279318520 2.2480
98 [2,2,2,50283229132320] 402265833058560 2.2449
99 [2,2,2,2,2,2,3779471343700] 241886165996800 0.9545

100 [2,2,2,2,2,2,2,2,2,2,626248865900] 641278838681600 1.7894
101 [3,337860394107390] 1013581182322170 1.9998
102 [2,2,2,2,2,2,2,2,3680639512600] 942243715225600 1.3146
103 [1437340144676956] 1437340144676956 1.4180
104 [2,2,2,2,2,2,2,2,9997156170204] 2559271979572224 1.7853
105 [2,2,2,2,2,2,2,2,14679888346902] 3758051416806912 1.8537
106 [2,2,4,4,65898353560000] 4217494627840000 1.4710
107 [3,1850273912356905] 5550821737070715 1.3690
108 [2,2,2,2,2,2,2,2,2,4,6464844094380] 13240000705290240 2.3090
109 [12856914971890294] 12856914971890294 1.5854
110 [2,2,2,2,2,2,2,2,4,3,8132904454932] 24984282485551104 2.1785
111 [2,2,2,2,1008917675494250] 16142682807908000 0.9953
112 [2,2,2,2,2,2,2,2,2,73028921293900] 37390807702476800 1.6302
113 [2,2,2,11230609518274800] 89844876146198400 2.7698
114 [2,2,2,2,2,4,514023516508992] 65795010113150976 1.4343
115 [2,2,2,2,4353489739454866] 69655835831277856 1.0737
116 [2,2,2,2,2,2,2,3,647708620088748] 248720110114079232 2.7109
117 [2,2,2,2,2,2,2,1859403877070220] 238003696264988160 1.8343
118 [2,2,2,2,16689133069770224] 267026129116323584 1.4552
119 [2,2,2,2,26259617278827738] 420153876461243808 1.6191
120 [2,2,2,2,2,2,2,2,2,2,2,2,2,3,31997504201592] 786370663258324992 2.1428

Table B.4: Class Groups for D = −(2n
− 1), n = 91 to 120
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n Cl(D) h(D)

121 [2,2,212084789514945746] 848339158059782984
122 [2,557695829452263720] 1115391658904527440
123 [2,2,2,134836018044688070] 1078688144357504560
124 [2,2,2,2,2,2,38733480508822160] 2478942752564618240
125 [2,2,2,3,153621202089774270] 3686908850154582480
126 [2,2,2,2,2,2,2,4,4,3,712133545944084] 4375348506280452096
127 [5737275303524805875] 5737275303524805875
128 [2,2,2,2,2,2,4,3,20347522750969596] 15626897472744649728
129 [2,2,2,2160940573696772708] 17287524589574181664
130 [2,2,2,2,2,2,8,32205352982135040] 16489140726853140480
131 [18228056819821440792] 18228056819821440792
132 [2,2,2,2,2,2,2,2,2,2,2,4,5761802547957820] 47200686472870461440
133 [2,29461361815996545308] 58922723631993090616
134 [2,2,4,5192833198893763632] 83085331182300218112
135 [2,2,2,2,2,2,2,2,274403095499287608] 70247192447817627648
136 [2,2,2,2,2,2,2,8,160854231236508944] 164714732786185158656
137 [324341937184959921330] 324341937184959921330
138 [2,2,2,2,2,8,1153110914626226648] 295196394144314021888
139 [287087800395852071302] 287087800395852071302
140 [2,2,2,2,2,2,2,2,2,2,2,2,4,45208918446430584] 740702919826318688256
141 [2,2,2,2,50033479397233383264] 800535670355734132224
142 [2,2,2,2,72142038277753795260] 1154272612444060724160
143 [2,2,2,4,53321674221753474576] 1706293575096111186432
144 [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,76001362727247948] 2490412653846460760064
145 [2,2,2,479716525401017260070] 3837732203208138080560
146 [2,2,2,8,127997201290334098608] 8191820882581382310912
147 [2,2,2,643885875052825773480] 5151087000422606187840
148 [2,2,2,2,2,2,2,4,22047386783619762680] 11288262033213318492160
149 [16477686585042268595016] 16477686585042268595016
150 [2,2,2,2,2,2,2,2,2,4,4,1735682730115349792] 14218712925104945496064

Table B.5: Class Groups for D = −(2n
− 1), n = 121 to 150
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n Cl(D)

151 [2,2,2,2501021688083157230456]
152 [2,2,2,2,2,2,2,2,2,110478505723912693200]
153 [2,2,2,2,2,2,1391196855921714605480]
154 [2,2,2,2,2,2,2,2,233890710370072110432]
155 [2,2,2,2,2,2517071329536051318048]
156 [2,2,2,2,2,2,2,2,2,2,2,2,2,2,13103349055787889360]
157 [2,2,65463474205556933613720]
158 [2,2,2,46180532789492114477880]
159 [2,2,2,2,2,2,4335847341451318238982]
160 [2,2,2,2,2,2,2,2,4,8,80894875660895214584]
161 [2,2,2,2,2,3,9402268582726043291484]
162 [2,2,2,2,2,2,2,2,2,4,3,148075165089514035840]
163 [2,2,4,82575526040561867149088]
164 [2,2,2,2,2,2,2,4,7230420718892653016844]
165 [2,2,2,2,2,2,2,2,15609181023830804209066]
166 [2,2,2,2,2,4,32453238609785631144276]
167 [6242164725873235134600240]
168 [2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,204958770574343826504]
169 [4,4,1066460333508587656877136]
170 [2,2,2,2,2,3,293864308194362610441912]
171 [2,2,2,2,2,531308062234841987765280]
172 [2,2,2,2,2,2,2,4,71048120969337346667300]
174 [2,2,2,2,2,2,2,4,149468124571129812246608]
175 [2,2,2,2,2,2,2,746017569368135721639088]
176 [2,2,2,2,2,2,2,2,2,2,2,2,3,15457834288912376511492]
177 [2,2,2,2,17407419801308548290217050]
178 [2,2,16,4970946258775991749125024]
180 [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,495831642355142717760]

Table B.6: Class Groups for D = −(2n
− 1), n = 151 to 180
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n Cl(D)

182 [2,2,2,2,2,2,2,2,2,3318530017433549717765880]
186 [2,2,2,2,4,73878031978414464326322440]
188 [2,2,2,2,2,2,2,4,32345533066029597397234176]
189 [2,2,2,2,2,2,4,55122946112866947997364232]
192 [2,2,2,2,2,2,2,2,2,2,2,2,2,5709480842304195974201740]
194 [2,2,2,2,2,2333988113592806608377992448]
204 [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,25949297667151405134953592]
206 [2,2,4,3,134213242020776703488016670464]
207 [2,2,2,2,2,2,2,47514043616633956131154207120]
208 [2,2,2,2,2,2,2,2,4,4,2842124175987849601841677012]
211 [2,7787495253066922216161573122910]
216 [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,2020559656518107243003159760]
222 [2,2,2,2,2,2,2,2,2,4,455299124081182319102752740900]
236 [2,2,2,2,2,2,2,2,2,2,2,121817741910656899172485247402796]
246 [2,2,2,2,2,2,2,2,2,11578142709273899955204755179174400]

Table B.7: Class Groups for D = −(2n
− 1), n > 180
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n Cl(D) h(D) L(1, χD)

2 [2] 2 1.4050
3 [2] 2 1.0472
4 [4] 4 1.5239
5 [2,2] 4 1.0938
6 [2,4] 8 1.5587
7 [2,6] 12 1.6596
8 [16] 16 1.5677
9 [2,6] 12 0.8322

10 [2,16] 32 1.5700
11 [2,18] 36 1.2493
12 [2,16] 32 0.7853
13 [2,26] 52 0.9024
14 [2,2,32] 128 1.5707
15 [2,2,38] 152 1.3190
16 [320] 320 1.9635
17 [2,106] 212 0.9198
18 [2,2,4,24] 384 1.1781
19 [2,406] 812 1.7615
20 [2,624] 1248 1.9144
21 [2,2,148] 592 0.6421
22 [2,2,448] 1792 1.3744
23 [2,902] 1804 0.9784
24 [2,4,424] 3392 1.3008
25 [2,2,2,480] 3840 1.0413
26 [2,4,4,380] 12160 2.3317
27 [2,2,2868] 11472 1.5554
28 [2,7600] 15200 1.4573
29 [2,2,4238] 16952 1.1492
30 [2,2,2,2,2016] 32256 1.5463

Table B.8: Class Groups for D = −4(2n + 1), n = 2 to 30
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n Cl(D) h(D) L(1, χD)

31 [2,21450] 42900 1.4542
32 [4,11784] 47136 1.1298
33 [2,2,2,4366] 34928 0.5920
34 [2,2,4,8256] 132096 1.5831
35 [2,2,2,2,10290] 164640 1.3952
36 [2,2,4,12744] 203904 1.2218
37 [2,2,89360] 357440 1.5145
38 [2,2,2,52800] 422400 1.2655
39 [2,2,156556] 626224 1.3267
40 [2,638016] 1276032 1.9115
41 [2,2,196508] 786032 0.8326
42 [2,2,2,2,4,25968] 1661952 1.2448
43 [2,1539306] 3078612 1.6305
44 [2,4,585712] 4685696 1.7548
45 [2,2,2,2,151644] 2426304 0.6425
46 [2,2,4,4,139624] 8935936 1.6733
47 [2,2,2198988] 8795952 1.1647
48 [2,2,3259024] 13036096 1.2205
49 [2,2,4131898] 16527592 1.0942
50 [2,2,2,4,1101520] 35248640 1.6501
51 [2,2,2,2,2635110] 42161760 1.3956
52 [2,2,12483136] 49932544 1.1688
53 [2,2,11814224] 47256896 0.7822
54 [2,2,2,2,4,1827920] 116986880 1.3691
55 [2,2,2,2,12984624] 207753984 1.7193
56 [2,2,75882256] 303529024 1.7762
57 [2,2,2,20421860] 163374880 0.6760
58 [2,4,51089472] 408715776 1.1958
59 [2,2,2,102674024] 821392192 1.6994
60 [2,2,4,46534344] 744549504 1.0892

Table B.9: Class Groups for D = −4(2n + 1), n = 31 to 60
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n Cl(D) h(D) L(1, χD)

61 [2,633601130] 1267202260 1.3108
62 [2,2,2,2,140455792] 2247292672 1.6438
63 [2,2,2,2,127245180] 2035922880 1.0530
64 [2,3428667792] 6857335584 2.5079
65 [2,2,2,2,2,95587504] 3058800128 0.7910
66 [2,2,2,2,8,60224152] 7708691456 1.4096
67 [2,2,2979427330] 11917709320 1.5410
68 [4,4,923702784] 14779244544 1.3513
69 [2,2,2,1518226350] 12145810800 0.7853
70 [2,2,2,2,2,1045055616] 33441779712 1.5288
71 [2,2,10010371370] 40041485480 1.2944
72 [2,2,4,4,674809000] 43187776000 0.9872
73 [2,2,15960420426] 63841681704 1.0319
74 [2,2,2,32,533687296] 136623947776 1.5615
75 [2,2,2,2,4,2578785180] 165042251520 1.3338
76 [2,2,8,9338631600] 298836211200 1.7077
77 [2,2,2,2,2,8323363576] 266347634432 1.0763
78 [2,2,2,2,2,2,2,4,7,106306872] 381003829248 1.0886
79 [2,410126301550] 820252603100 1.6572
80 [2,2,3,99200142912] 1190401714944 1.7006
81 [2,2,2,2,2,3,6275946084] 602490824064 0.6086
82 [2,2,4,4,38068113240] 2436359247360 1.7403
83 [2,2,2,2,4,36792104616] 2354694695424 1.1893
84 [2,2,2,2,240537671328] 3848602741248 1.3746
85 [2,2,2,484236776908] 3873894215264 0.9783
86 [2,2,2,4,285962173240] 9150789543680 1.6341
87 [2,2,2,1168389134586] 9347113076688 1.1803
88 [2,2,2,1862490766144] 14899926129152 1.3304
89 [2,2,2,1697720849616] 13581766796928 0.8575
90 [2,2,2,2,2,2,2,4,4,18785810760] 38473340436480 1.7176

Table B.10: Class Groups for D = −4(2n + 1), n = 61 to 90
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n Cl(D) h(D) L(1, χD)

91 [2,2,2,2,2,2025525498564] 64816815954048 2.0462
92 [2,31601684017200] 63203368034400 1.4108
93 [2,2,4,2770647758128] 44330364130048 0.6997
94 [2,2,4,8407351827936] 134517629246976 1.5014
95 [2,2,2,2,10447724225336] 167163587605376 1.3193
96 [2,4,27674723147544] 221397785180352 1.2355
97 [2,2,2,4,9689701386536] 310070444369152 1.2236
98 [2,2,2,4,8,1980140340256] 506915927105536 1.4144
99 [2,2,2,2,2,2,12561002823684] 803904180715776 1.5861

100 [2,2,2,2,8,10211112610912] 1307022414196736 1.8235
101 [2,419090842148170] 838181684296340 0.8269
102 [2,2,2,2,2,2,2,4,3103559367648] 1589022396235776 1.1085
103 [2,2,700107982242348] 2800431928969392 1.3813
104 [4,1341443132751104] 5365772531004416 1.8715
105 [2,2,2,2,2,2,2,2,2,4704134978016] 2408517108744192 0.5940
106 [2,4,8,152591277074664] 9765841732778496 1.7031
107 [2,2,2609568510549062] 10438274042196248 1.2872
108 [2,2,2,2,4,163268175265848] 10449163217014272 0.9111
109 [2,2,5181374289180720] 20725497156722880 1.2779
110 [2,2,2,2,16,148929089444608] 38125846897819648 1.6622
111 [2,2,2,2,2,948919973014500] 30365439136464000 0.9361
112 [2,2,2,2,4068370851009552] 65093933616152832 1.4190
113 [2,2,2,2,3340473133525084] 53447570136401344 0.8239
114 [2,2,2,2,2,2,4,594947682110888] 152306606620387328 1.6601
115 [2,2,2,2,2,7238180096185432] 231621763077933824 1.7851
116 [2,4,39611096763862792] 316888774110902336 1.7270
117 [2,2,2,2,12081594462913008] 193305511406608128 0.7449
118 [2,2,2,2,2,2,8761812716136304] 560756013832723456 1.5280
119 [2,2,2,2,48231335426727154] 771701366827634464 1.4869
120 [2,2,2,2,8,7409202264602512] 948377889869121536 1.2921

Table B.11: Class Groups for D = −4(2n + 1), n = 91 to 120
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n Cl(D) h(D) L(1, χD)

121 [2,2,2,106986725624391840] 855893804995134720 0.8246
122 [2,2,2,4,4,15429095956233960] 1974924282397946880 1.3454
123 [2,2,2,2,2,81686971271376968] 2613983080684062976 1.2592
124 [2,2,4,301131950113345208] 4818111201813523328 1.6411
125 [2,2,2,2,4,64360238847005884] 4119055286208376576 0.9921
126 [2,2,2,2,2,2,2,2,8,4521727384331808] 9260497683111542784 1.5771
127 [2,7776985522239155510] 15553971044478311020 1.8731
128 [2,8893572465111730704] 17787144930223461408 1.5146
129 [2,2,2,4,403528264911335220] 12912904477162727040 0.7775
130 [2,2,2,2,2,2,2,8,37505634724057368] 38405769957434744832 1.6352
131 [2,2,2,5356650012168439898] 42853200097347519184 1.2901
132 [2,2,2,2,2,2,690317396902750896] 44180313401776057344 0.9405
133 [2,2,2,2,4271991595853353274] 68351865533653652384 1.0289
134 [2,2,2,2,2,6471891555875423904] 207100529788013564928 2.2044
135 [2,2,2,2,2,2,2,2,487733827436403996] 124859859823719422976 0.9398
136 [2,2,4,21509942342495407896] 344159077479926526336 1.8316
137 [2,2,2,2,13443277789380251386] 215092444630084022176 0.8095
138 [2,2,2,2,2,2,8,955905797806401016] 489423768476877320192 1.3024
139 [2,2,237935127228957421290] 951740508915829685160 1.7908
140 [2,2,4,67434855746105073768] 1078957691937681180288 1.4356
141 [2,2,2,2,2,23976374495548803838] 767243983857561722816 0.7218
142 [2,2,2,2,2,56296488161850062976] 1801487621179202015232 1.1985
143 [2,2,2,2,2,2,34027056337138672248] 2177731605576875023872 1.0244
144 [2,2,2,2,4,8,6629442817932122176] 3394274722781246554112 1.1290
145 [2,2,2,2,2,181896074944420809834] 5820674398221465914688 1.3690
146 [2,2,4,16,3,11880247041728378880] 9124029728047394979840 1.5175
147 [2,2,2,2,2,409390362389228326180] 13100491596455306437760 1.5406
148 [2,8474887168533260362128] 16949774337066520724256 1.4095
149 [2,2,2,4,648390089042262571112] 20748482849352402275584 1.2200
150 [2,2,2,2,2,2,2,2,2,2,2,16785892784215148320] 34377508422072623759360 1.4294

Table B.12: Class Groups for D = −4(2n + 1), n = 121 to 150
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n Cl(D)

151 [2,2,13565987331423544350222]
152 [2,4,4,2486625235897103930008]
153 [2,2,2,2,2,2,2,2,3,44489929282897921062]
154 [2,2,2,2,2,4,4,4,87335984474738098188]
155 [2,2,2,2,2,5851745155526554004008]
157 [2,2,2,2,18290666852919163303526]
158 [2,2,2,59640809103606725127424]
160 [2,4,8,24791704971910586357136]
161 [2,2,2,107997192723114032423990]
162 [2,2,2,2,2,2,2,4,8,440924224969465891704]
163 [2,2,2,443171853912502679377108]
164 [2,2,2,579068596722783367985728]
166 [2,2,2,2,16,37522567121602510218672]
167 [2,5756971480532199656383074]
168 [2,2,2,2,2,2,4,47134941245247353027584]
169 [2,2,2,2805948712285703921662296]
172 [2,2,4,4150897679630090226998712]
173 [2,2,2,2,2,1965894063842216437052542]
174 [2,2,2,2,2,2,4,646426221192255936464352]
176 [2,2,87057266266468856437671696]
177 [2,2,2,2,2,2,2786461958421689528791692]
178 [2,2,4,33122413767213912941942520]
179 [2,2,219421642988008836150674934]
180 [2,2,2,2,2,2,2,7405407602193023388231504]

Table B.13: Class Groups for D = −4(2n + 1), n = 151 to 180
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n Cl(D)

182 [2,2,2,2,2,2,2,2,2,4061333995632536884082800]
183 [2,2,635454703803486297188966172]
184 [2,2,8,132134814442840130455148416]
186 [2,2,2,2,2,4,4,8,3,793659514591767203593584]
189 [2,2,2,2,2,2,2,2,4,3,5264146078896712874810100]
190 [2,2,2,2,2,2,2,4,87166527233062652059242368]
191 [2,21244677165596415093873379530]
192 [2,2,4,3441186588880089891863425240]
194 [2,2,2,2,2,2,4,4,170134824093753153808053424]
216 [2,2,2,2,2,2,2,2231102730113538830772815074976]
218 [2,2,2,2,8,4299487824032696884605221922336]
224 [2,2,2,919247478909699589095795656584640]
233 [2,2,2,7082620154219687243317485878738602]

Table B.14: Class Groups for D = −4(2n + 1), n > 180
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n Cl(D) h(D) L(1, χD)

2 [5] 5 1.5478
3 [4] 4 0.3968
4 [12] 12 0.3769
5 [39] 39 0.3874
6 [105] 105 0.3299
7 [706] 706 0.7014
8 [1702] 1702 0.5347
9 [2,1840] 3680 0.3656

10 [10538] 10538 0.3311
11 [31057] 31057 0.3085
12 [2,62284] 124568 0.3913
13 [2,2,124264] 497056 0.4938
14 [2,2,356368] 1425472 0.4478
15 [3929262] 3929262 0.3904
16 [12284352] 12284352 0.3859
17 [38545929] 38545929 0.3829
18 [102764373] 102764373 0.3228
19 [2,2,2,78425040] 627400320 0.6233
20 [2,721166712] 1442333424 0.4531
21 [3510898632] 3510898632 0.3488
22 [2,2,2,1159221932] 9273775456 0.2913
23 [2,16817347642] 33634695284 0.3341
24 [2,2,37434472258] 149737889032 0.4704
25 [2,245926103566] 491852207132 0.4886
26 [2,656175474498] 1312350948996 0.4123
27 [3881642290710] 3881642290710 0.3856
28 [2,2,2,1607591023742] 12860728189936 0.4040
29 [2,17634301773068] 35268603546136 0.3504
30 [125355959329602] 125355959329602 0.3938

Table B.15: Class Groups for D = −(10n + 3), n = 2 to 30
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D Cl(D)

31 [4,4,4,8240136101284]
32 [2,955448419266184]
33 [2,2,2,460137245957140]
34 [2,5634726462792888]
35 [2,15989145880745520]
36 [2,2,30129084013196016]
37 [557309419766348976]
38 [2,847971386413711124]
39 [5044956409536984867]
40 [2,2,2884234075561655648]
41 [2,2,2,3783297264385115820]
42 [106475021887373986546]
43 [543203506831569725730]
44 [2,2,367520648573728999642]
45 [2,2,4,220637056338713949948]
46 [2,2,2662932604570235968950]
47 [2,20555509001121399206474]
48 [2,2,35422488947049442222270]
49 [2,2,2,62670237779959002150728]
51 [2,4,395068160875783832494708]
52 [2,5636624816965163350723552]
53 [2,19485863439714150244338844]
54 [96986139815112762181153038]
55 [2,2,154720759596540679388678070]
57 [2,1959566052826573591907803170]
60 [2,2,33937939400999299763490820322]
61 [2,2,2,2,2,2,8668696519829101652800187856]

Table B.16: Class Groups for D = −(10n + 3), n > 30
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n Cl(D) h(D) L(1, χD)

2 [14] 14 2.1882
3 [2,2,10] 40 1.9859
4 [4,40] 160 2.5131
5 [2,230] 460 2.2849
6 [2,516] 1032 1.6211
7 [2,1446] 2892 1.4365
8 [4,4104] 16416 2.5786
9 [2,2,2,2,2560] 40960 2.0346

10 [2,2,48396] 193584 3.0408
11 [2,2,2,56772] 454176 2.2560
12 [2,4,117360] 938880 1.4748
13 [2,2,742228] 2968912 1.4747
14 [2,2,4,1159048] 18544768 2.9130
15 [2,2,2,2,2,4,257448] 32953344 1.6369
16 [2,2,2,2,11809616] 188953856 2.9681
17 [2,2,2,46854696] 374837568 1.8619
18 [2,2,264135076] 1056540304 1.6596
19 [2,1649441906] 3298883812 1.6387
20 [2,2,2,1856197104] 14849576832 2.3326
21 [2,2,2,2,2,2,678293202] 43410764928 2.1563
22 [2,2,2,19870122100] 158960976800 2.4970
23 [2,2,2,2,23510740696] 376171851136 1.8686
24 [2,4,144373395240] 1154987161920 1.8142
25 [2,2,2,2,186902691564] 2990443065024 1.4854
26 [2,4,2062939290744] 16503514325952 2.5924
27 [2,2,2,2,2,2,596438010456] 38172032669184 1.8961
28 [2,4,4,4987045013072] 159585440418304 2.5068
29 [2,2,109151360534920] 436605442139680 2.1687
30 [2,2,2,2,2,8,4591263001512] 1175363328387072 1.8463

Table B.17: Class Groups for D = −4(10n + 1), n = 2 to 30
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D Cl(D)

31 [2,2056399348229026]
32 [2,2,4,1090942379155176]
33 [2,2,2,2,2,2,4,116002287037860]
34 [2,2,2,23706573772146012]
35 [2,2,2,2,29186559377772872]
36 [2,2,2,2,4,15799409333364584]
37 [2,2,2,315505817497815868]
38 [2,4,1995813614136301876]
39 [2,2,2,2,2,2,2,4,58778103675632604]
40 [2,2,8,5664549002512638320]
41 [2,2,90072072732125828328]
42 [2,2,2,2,2,2,14534047479909591484]
43 [2,2,2,380286840645249345372]
44 [2,4,8,256628302056496579584]
45 [2,2,2,2,2,2,2,2,2,2,2,17607541700271233832]
46 [2,2,2,21889597164067703269780]
48 [2,2,2,2,2,2,2,4,2054406711911308268064]
49 [2,2,2,366834343033758734343888]
50 [2,2,2,2,2,4,144862768812972247716000]
52 [2,2,8,4491713065213844873427152]
54 [2,2,2,2,2,33005468815882949353682176]
55 [2,2,2,2,2,2,2,2,11858517462807308421507372]
58 [2,2,2,2,9211576013786544916520017188]
60 [2,2,2,2,2,37409900158832732901785147824]
65 [2,2,2,2,2,13043323078148845674146634826224]
68 [2,4,4,443088323432575517939540406434072]

Table B.18: Class Groups for D = −4(10n + 1), n > 30
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