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TORSION SUBGROUPS OF ELLIPTIC CURVES

OVER QUINTIC AND SEXTIC NUMBER FIELDS

MAARTEN DERICKX AND ANDREW V. SUTHERLAND

(Communicated by Romyar T. Sharifi)

Abstract. Let Φ∞(d) denote the set of finite abelian groups that occur in-
finitely often as the torsion subgroup of an elliptic curve over a number field
of degree d. The sets Φ∞(d) are known for d ≤ 4. In this article we determine
Φ∞(5) and Φ∞(6).

1. Introduction

Let E be an elliptic curve over a number field K. By the Mordell-Weil theorem
[29], the set of K-rational points on E forms a finitely generated abelian group
E(K). In particular, its torsion subgroup E(K)tors is finite, and it is well known
that it can be generated by two elements [27]. There thus exist integers m,n ≥ 1
such that

E(K)tors � Z/mZ⊕ Z/mnZ.

The uniform boundedness conjecture states that for every number field K there
exists a bound B such that #E(K)tors ≤ B for every elliptic curve E over K.
This conjecture is now a theorem due to Merel [25], who actually proved the strong
version of this conjecture in which the bound B depends only on the degree d :=
[K : Q]. It follows that for every positive integer d, there is a finite set Φ(d) of
isomorphism classes of torsion subgroups that arise for elliptic curves over number
fields of degree d; we may identify elements of Φ(d) by pairs of positive integers
(m,mn).

The set Φ(1) was famously determined by Mazur [24], who proved that

Φ(1) = {(1, n) : 1 ≤ n ≤ 12, n �= 11} ∪ {(2, 2n) : 1 ≤ n ≤ 4}.

The set Φ(2) was determined in a series of papers by Kenku, Momose, and Kami-
enny, culminating in [17, 19], which yield the result

Φ(2) = {(1, n) : 1 ≤ n ≤ 18, n �= 17} ∪ {(2, 2n) : 1 ≤ n ≤ 6} ∪ {(3, 3), (3, 6), (4, 4)}.

For d > 2 the sets Φ(d) have yet to be completely determined. However, if we
distinguish the subset Φ∞(d) ⊆ Φ(d) of torsion subgroups that arise for infinitely
many Q-isomorphism classes of elliptic curves defined over number fields of degree
d, we can say more.
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We have Φ∞(1) = Φ(1) and Φ∞(2) = Φ(2). In [16] Jeon, Kim, and Schweizer
found that

Φ∞(3) = {(1, n) : 1 ≤ n ≤ 20, n �= 17, 19} ∪ {(2, 2n) : 1 ≤ n ≤ 7},
and in [15] Jeon, Kim and Park obtained

Φ∞(4) = {(1, n) : 1 ≤ n ≤ 24, n �= 19, 23} ∪ {(2, 2n) : 1 ≤ n ≤ 9}
∪ {(3, 3n) : 1 ≤ n ≤ 3} ∪ {(4, 4), (4, 8), (5, 5), (6, 6)}.

In this article we determine the sets Φ∞(5) and Φ∞(6).

Theorem 1.1. Let Φ∞(d) denote the set of pairs (m,mn) for which E(K)tors �
Z/mZ⊕Z/mnZ for infinitely many non-isomorphic elliptic curves E over number
fields K of degree d. Then

Φ∞(5) = {(1, n) : 1 ≤ n ≤ 25, n �= 23} ∪ {(2, 2n) : 1 ≤ n ≤ 8},
and

Φ∞(6) = {(1, n) : 1 ≤ n ≤ 30, n �= 23, 25, 29} ∪ {(2, 2n) : 1 ≤ n ≤ 10}
∪ {(3, 3n) : 1 ≤ n ≤ 4} ∪ {(4, 4), (4, 8), (6, 6)}.

For d = 5, 6, 7, 8, the elements (1, n) ∈ Φ∞(d) were determined in [6] using a
strategy that we generalize here. The key steps involve computing (or at least
bounding) the gonalities of certain modular curves and determining whether their
Jacobians have rank zero or not. To obtain gonality bounds we require explicit
models for the modular curves X1(m,mn) that parametrize triples (E,P,Q), where
E is an elliptic curve with independent points P of order m and Q of order mn; for
our approach to be computationally feasible, it is important that these models have
low degree and reasonably small coefficients. Optimized models forX1(n) = X(1, n)
for n ≤ 50 were constructed in [28]. Here we extend the approach of [28] to construct
optimized models for X1(m,mn) for m2n ≤ 120, as described in §3; these can be
found in [10]. These models are necessarily defined only over the cyclotomic field
Q(ζm). The need to work over Q(ζm) requires us to develop some new techniques
for determining when the Jacobian of X1(m,mn) has rank zero over Q(ζm); these
are described in §4. The case X1(2, 30) proved to be computationally challenging,
so we used an alternative strategy based on ideas in [8], as explained in §5.

In principle our methods can also determine Φ∞(7); we have computed explicit
models for all of the relevant modular curves and proved that their Jacobians have
rank zero. We can prove (2, 2n) ∈ Φ∞(7) for 1 ≤ n ≤ 10 and not for n > 15; it
remains only to determine for 11 ≤ n ≤ 15 whether the gonality of X1(2, 2n) is
greater than 7 or not (we expect the answer is yes in each case). Similar comments
apply to Φ∞(8) but not to Φ∞(9), which requires new techniques, as explained in
Remark 5.2.

The source code for computations on which results of this article depend is
available in [9].

2. Background

In this section we briefly recall background material and introduce some notation.
Let K be a field and let X/K be a nice curve, by which we mean that X/K is of
dimension 1, smooth, projective, and geometrically integral. The gonality γ(X)
of X is the minimal degree of a finite K-morphism X → P1

K . If L/K is a field
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extension and XL := X ×K L is the base change of X to L, we necessarily have
γ(XL) ≤ γ(X), and we call γ(XL) the L-gonality of X. If K is a number field, p is
a prime of K of good reduction for X, and XFp

is the reduction of X to the residue
field Fp of p, then γ(XFp

) ≤ γ(X), and we call γ(XFp
) the Fp-gonality of X.

Proposition 2.1 (Abramovich, Kim-Sarnak). Let Γ ⊆ PSL2(Z) be a congruence
subgroup. The C-gonality of the modular curve XΓ is at least (λ1/24)[PSL2(Z) : Γ],
where λ1 ≥ 975/4096.

Proof. See [1, Thm. 0.1] for the first statement and [20, p. 176] for the lower bound
on λ1. �

Let d(X) denote the least integer for which the set {a ∈ X(K) : [K(a) : K] = d}
of points of degree d on X is infinite. We have the following result of Frey [11],
which can be viewed as a corollary of Faltings’ proof of Lang’s conjecture [12].

Proposition 2.2 (Frey). Let X be a nice curve over a number field. Then d(X) ≤
γ(X) ≤ 2d(X).

Proof. If f ∈ K(X) is a function of degree d, then by Hilbert irreducibility there
are infinitely many points of degree d over K among the roots of f − c as c varies
over K. This proves the first inequality, and the second is [11, Prop. 1]. �

There is one situation in which the lower bound of Proposition 2.2 is known to
be tight.

Proposition 2.3. Let X/K be a nice curve whose Jacobian has rank zero. Then
d(X) = γ(X).

Proof. Let d < γ(X) be a positive integer. The map π : X(d) → Jac(X) from the
dth symmetric power of X to its Jacobian is injective, since otherwise we could con-
struct a function f ∈ K(X) of degree d < γ(X) from the difference of two linearly
equivalent divisors of degree d and view f as a mapX → P1

K . If rk(Jac(X)(K)) = 0,

then π(X(d)(K)) is finite, and so is X(d)(K). It follows that X has only finitely
many points of degree d. �

The proofs of Propositions 2.2 and 2.3 together imply the following corollary.

Corollary 2.4. Let X/K be a nice curve over a number field. If K(X) con-
tains a function of degree d, then X has infinitely many points of degree d. When
rk(Jac(X)(K)) = 0 the converse also holds.

For positive integersm and n we use Y1(m,mn) to denote the modular curve that
parameterizes triples (E,P,Q), where E is an elliptic curve with independent points
P of order m and Q of order mn, and X1(m,mn) is its projectivization obtained
by adding cusps. We view X1(m,mn) as a Z[ 1

mn ]-scheme that is isomorphic to the
coarse moduli space for the corresponding algebraic stack X1(m,mn) in the sense
of [5]; all the cases of interest to us have mn ≥ 5 and are also fine moduli spaces.
By fixing a primitive mth root of unity ζm in the function field of X1(m,mn), we
may also view X1(m,mn) as a nice curve over Q(ζm) that has good reduction at
all primes not dividing mn, and we write J1(m,mn) for the Jacobian of X1(m,mn)
as a curve over Q(ζm). There is an associated congruence subgroup

Γ1(m,mn)

:=
{(

a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod mn, c ≡ 0 mod mn, b ≡ 0 mod m

}
,
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and after fixing an embedding Q(ζm) ↪→ C, the quotient H∗/Γ1(m,mn) of the
extended upper half-plane by the action of Γ1(m,mn) is a compact Riemann sur-
face isomorphic to X1(m,mn)(C). The image of Γ1(m,mn) in PSL2(Z) has index
m3n2

2

∏
p|mn(1− 1

p2 ) ≥ m2n− 1.

Let X0,1(m,mn) be the projectivization of the modular curve that parametrizes
triples (E,G,Q), where E is an elliptic curve, G is a cyclic subgroup of order m (or
equivalently, a cyclic isogeny of degree m) and Q is an independent point of order
mn (soG∩〈Q〉 = {0}). The curveX0,1(m,mn)Q(ζm) is isomorphic toX1(m,mn) (as
can be seen by considering the corresponding congruence subgroups or by writing
a natural transformation between the two functors on schemes over Z/nmZ, where
we view X0,1(m,mn)Q(ζm) as parametrizing quadruples (E,G,Q, ζm) with E,G,Q
as above and ζm a chosen primitive mth root of unity). Unlike X1(m,mn), the
curve X0,1(m,mn) has the advantage of always being defined over Q. Now let
X1(m

2n) := X1(1,m
2n) parameterize pairs (E,Q) in which E is an elliptic curve

with a point Q of order m2n, and consider the map

ϕ : X1(m
2n) → X0,1(m,mn)

that sends the pair (E,Q) to the triple (E/〈mnQ〉, E[m]/〈mnQ〉, Q mod 〈mnQ〉).
The group E[m]/〈mnQ〉 and the point Q mod 〈mnQ〉 are independent because
Q mod 〈mnQ〉 has the same order mn as Q mod E[m]. The map ϕ is defined over
Q and has degree m. The group (Z/m2nZ)× acts on X1(m

2n) via the diamond
operators 〈a〉 : (E,P ) �→ (E, aP ). We have a ≡ 1 mod mn precisely when 〈a〉 sta-
bilizes ϕ, meaning ϕ = ϕ ◦ 〈a〉, and the quotient of X1(m

2n) by this automorphism
subgroup is isomorphic to X0,1(m,mn).

Throughout this article Q denotes a fixed algebraic closure of Q that contains all
number fields K under consideration, and we identify K = Q. For a modular curve
X defined over a number field K, we define the degree over Q of a point a ∈ X(Q)
to be the absolute degree [L : Q] of the minimal extension L/K for which a ∈ X(L)
and let Q(a) denote the field L (which contains K). For the sake of clarity we may
refer to [L : K] as the degree of a over K.

Finally, we use φ(m) := [Q(ζm) : Q] = #(Z/mZ)× throughout to denote the
Euler function.

3. Constructing models of X1(m,mn)

Our method for constructing explicit methods of X1(m,mn) is a generalization
of the technique used in [28] to construct models for X1(n) := X1(1, n), which we
now briefly recall. Given n > 3 one begins as in [26] with the universal family of
elliptic curves

E(b, c) := y2 + (1− c)y − by = x3 − bx2

in Tate normal form with rational point P = (0, 0) and imposes the constraint⌈
n+ 1

2

⌉
P +

⌊
n− 1

2

⌋
P = 0

by requiring the x-coordinates of the two summands to coincide (the y-coordinates
of the summands cannot coincide because �(n+ 1)/2� �= �(n− 1)/2�, so the points
must sum to zero). After clearing denominators and removing spurious factors cor-
responding to torsion points whose order properly divides n, one obtains a (singular)
affine plane curve C/Q with the same function field as X1(n). Each non-singular



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

TORSION SUBGROUPS OF ELLIPTIC CURVES 4237

point (b0, c0) on this curve determines an elliptic curve E(b0, c0) on which P = (0, 0)
is a point of order n. The equations obtained by this method are typically much
larger than necessary, but the algorithm in [28] can be used to obtain models with
lower degrees, fewer terms, and smaller coefficients.

3.1. Constructing models using elliptic surfaces. We use a similar approach
to construct equations for X1(m,mn). For m = 2 we use the parameterized family
of elliptic curves constructed by Jain in [13], in which the elliptic curve

E2(q, t) : y2 = x3 + (t2 − qt− 2)x2 − (t2 − 1)(qt+ 1)2x

has the rational point P2 := (0, 0) of order 2 and the rational point

Q2(q, t) :=
(
(t+ 1)(qt+ 1) , t(qt+ 1)(t+ 1)

)
of infinite order; see [13, Thm. 1.ii]. As suggested to us by Noam Elkies, for any
n > 1, setting ⌈

2n+ 1

2

⌉
Q2(q, t) +

⌊
2n− 1

2

⌋
Q2(q, t) = 0

allows us to construct a model for X1(2, 2n). As above, it is enough to equate the
x-coordinates of the two summands, and this yields a polynomial equation in q and
t. With n = 7, for example, after clearing denominators and removing spurious
factors we obtain the equation

7q12t4 + 56q11t3 + 70q10t4 + 112q10t2 + 208q9t3 + 64q9t− 111q8t4 + 144q8t2

− 624q7t3 − 156q6t4 − 1104q6t2 − 512q5t3 − 832q5t− 55q4t4 − 592q4t2

− 256q4 − 136q3t3 − 256q3t− 10q2t4 − 96q2t2 − 16qt3 − t4 = 0.

This equation is not as compact as we might wish, and its degree in both q and t
is greater than the gonality of X1(2, 14), which is 3. However, after applying the
optimizations described in [28] we obtain the equation

(u2 + u)v3 + (u3 + 2u2 − u− 1)v2 + (u3 − u2 − 4u− 1)v − u2 − u = 0,

whose degree in u and v matches the gonality of X1(2, 14). The relation between
the (u, v) coordinates and the (q, t) coordinates is given by

q =
u+ v

v − u
, t =

(u− v)(u+ v)(u+ v + 2)

u3 + u2v + 2u2 + uv2 + 2uv + v3 + 2v2
.

The reader may wish to compare this model for X1(2, 14) with the one given in
[14, p. 589].

A similar approach can be used to obtain equations for X1(3, 3n). From [13,
Thm. 4.ii] we have the parameterized family of elliptic curves

E3(q, t) : y2 + (qt− q + t+ 2)xy + (qt2 − qt+ t)y = x3,

with the rational point P3 := (0, 0) of order 3 and the rational point

Q3(q, t) := (−t, t2)

of infinite order. For n ≥ 1, equating the x-coordinates of
⌈
3n+1

2

⌉
Q3(q, t) and⌊

3n−1
2

⌋
Q3(q, t) yields an equation F (q, t) = 0 that we may use to construct a

model for X1(3, 3n). In order to obtain a geometrically integral curve we must
factor F over Q(ζ3) rather than Q (if we only factor over Q, over Q(ζ3) we will
have the union of two curves that are both birationally equivalent to X1(3, 3n)).
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To obtain equations for X1(4, 4n) we use a parameterization due to Kumar and
Shioda; see the example following [23, Rem. 10]. We have the family

E4(q, t) : y2 + xy + (1/16)(q2 − 1)(t2 − 1)y = x3 + (1/16)(q2 − 1)(t2 − 1)x2,

with the rational point P4 := (0, 0) of order 4 and the rational point

Q4(q, t) :=
(
(q + 1)(t2 − 1)/8 , (q + 1)2(t− 1)2(t+ 1)/32

)
of infinite order. For any n ≥ 1, equating the x-coordinates of

⌈
4n+1

2

⌉
Q4(q, t) and⌊

4n−1
2

⌋
Q4(q, t) yields an equation F (q, t) = 0 that we may use to construct a model

for X1(4, 4n) after factoring F (q, t) over Q(ζ4) = Q(i).

Remark 3.1. It is usually obvious which factor of F (q, t) is the correct choice (the
biggest one), but one can verify the correct choice by checking that it yields a
curve of the same genus as X1(m,mn). The other non-conjugate factors of F (q, t)
correspond to modular curvesX that admit a non-constant map fromX1(m,mn) of
degree greater than 1. Provided X1(m,mn) has genus g > 1, the Riemann-Hurwitz
formula implies that g > g(X). For g ≤ 1 one can instead prove that none of the
non-conjugate factors yield a model for X1(m,mn) by finding a non-singular point
that does not yield a triple E(E,P,Q) with P and Q of the correct order (always
possible).

3.2. A general method. The methods in the previous section for m = 2, 3, 4 rely
on parameterizations obtained from elliptic surfaces that do not exist in general. We
now sketch a general method that works for any m > 3. Rather than constructing
a model for the curve X1(m,n), we will construct a model for its quotient by
the involution (E,P,Q) → (E,−P,Q), which we denote X1(m,n)+. The curve
X1(m,n)+ is defined over Q(ζm)+, the maximal real subfield of Q(ζm), and its
base change from Q(ζm)+ to Q(ζm) is isomorphic to X1(m,n); for m = 1, 2, 3, 4, 6
we have Q(ζm)+ = Q and X1(m,n)+ � X0,1(m,n). For the sake of brevity we
give details only for the cases in which X1(m) has genus 0, which suffices for our
purposes.

Let us fix m > 3 and n ≥ 1. We may view E(b, c) as the universal elliptic
curve with rational points P = (0, 0) and Q = (x, y); let e(b, c, x, y) = 0 be the
equation defining E(b, c). Let f(b, c) = 0 be an equation for X1(m) constructed
as in [28], and let h(b, c, x) denote the irreducible polynomial obtained by equating
the x-coordinates of �(mn + 1)/2�Q and �(mn − 1)/2�Q and removing spurious
factors as above. The equations e(b, c, x, y) = f(b, c) = h(b, c, x) = 0 define a curve
in A4[b, c, x, y]; this curve is not reduced (because there are two choices for the
unconstrained y-coordinate), but it contains the curve we seek.

Let us now assume that m ∈ {4, 5, 6, 7, 8, 9, 10, 12} so that g(X1(m)) = 0, in
which case we may write b = b(t) and c = c(t) as functions of a single rational
parameter t, as in [22, Table 3]. In this case there is no f(b, c) to compute, our
curve equation becomes e(t, x, y) = 0, and we compute h(t, x) by equating the x-
coordinates of �(mn + 1)/2�Q and �(mn − 1)/2�Q and removing spurious factors
as above. Let H be the resultant of e and h with respect to the variable y; the
polynomial H(t, x) is the square of a polynomial F ∈ Z[t, x] that is irreducible over
Q but splits into φ(m)/2 geometrically irreducible factors over Q(ζm)+ that are
Gal(Q(ζm)+/Q)-conjugates. We may take any of these factors as our model for
X1(m,n)+. The base change of this model from Q(ζm)+ to Q(ζm) is then a model
for X1(m,mn).
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By combining this method with §3.1 and applying the algorithm in [28], we have
constructed optimized models for X1(m,mn) for m2n ≤ 120 and verified them as
explained in Remark 3.1. These models are available in electronic form at [10].

4. Modular Jacobians of rank zero over cyclotomic fields

In [4], Conrad, Edixhoven, and Stein give an explicit method for computing
L-ratios for modular forms on X1(n). By applying the proven parts of the Birch
and Swinnerton-Dyer conjecture (see [18, Cor. 14.3] or [21]) they are then able to
prove that the rank of J1(p) := Jac(X1(p)) is zero over Q for all primes p < 73
except for p = 37, 43, 53, 61, 67; see [4, §6.1.3, §6.2.2]. The software developed
by Stein for performing these computations is available in the computer algebra
system Magma [3], which can compute provably correct bounds on L-ratios as
exact rational numbers; in particular, one can unconditionally determine when the
L-ratio is non-zero, in which case the rank is provably zero.

Here we adapt this method to prove that J1(m,mn) has rank zero over Q(ζm)
for suitable values of m and n. For the sake of brevity we focus on the cases
m = 2, 3, 4, 6 in which Q(ζm) has degree at most 2, which suffices for our application;
the method generalizes to arbitrary m and abelian extensions K/Q that contain an
mth root of unity. This includes m = 5, which we list below for reference but do
not need to prove our main result.

Theorem 4.1. The rank of J1(m,mn) is zero over Q(ζm) if any of the following
hold:

• m = 1 and n ≤ 36;
• m = 2 and n ≤ 21;
• m = 3 and n ≤ 10;

• m = 4 and n ≤ 6;
• m = 5 and n ≤ 4;
• m = 6 and n ≤ 5.

All computations referred to in the proof below were performed using the
IsX1mnRankZero function implemented in [9], which uses the LRatio function in
Magma [3] to determine when the L-ratio is non-zero.

Proof. Let J be the Jacobian of the quotient of the curve X1(m
2n) by the sub-

group of diamond operators that stabilize the map ϕ : X1(m
2n) → X0,1(m,mn),

as described in §2. We then have J1(m,mn) � JQ(ζm), and it suffices to prove that
the rank of JQ(ζm)(Q(ζm)) = J(Q(ζm)) is zero.

For m ≤ 2 we have Q(ζm) = Q and the strategy of [4] can be applied directly;
the desired result follows from a computation that finds the L-ratios to be non-zero
for all modular forms f corresponding to simple isogeny factors of J , for m ≤ 2 and
n as in the theorem.

We now assume m ∈ {3, 4, 6} so that Q(ζm) is a quadratic extension of Q. Let f
be a newform of level dividing m2n such that the abelian variety Af associated to
f is an isogeny factor of J . Proving that rk(J(Q(ζm))) = 0 is equivalent to proving
that rk(Af (Q(ζm))) = 0 for all such f .

Let A be the Weil descent of Af,Q(ζm) down to Q. From the definition of the Weil
descent we have A(Q) = Af (Q(ζm)), and the identity map Af,Q(ζm) → Af,Q(ζm)

over Q(ζm) induces a morphism Af → A over Q; it follows that A is isogenous to
Af ⊕ A/Af . Let χm : (Z/mZ)× → Q× denote the quadratic character of Q(ζm).
One sees that A/Af is isogenous to Afχm

by comparing traces of Frobenius on their
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Tate modules. In particular, rk(Af (Q(ζm))) = 0 if and only if both rk(Af (Q)) = 0
and rk(Afχm

(Q)) = 0 hold.
The theorem now follows from a computation: we find that the L-ratios of f

and fχm
are non-zero for m = 3, 4, 6 and n as in the theorem and all newforms f

of level dividing m2n such that the abelian variety Af associated to f is an isogeny
factor of J .

In fact (as kindly pointed out to us by the referee), it suffices to compute the
L-ratios of the forms f ; the twists fχm

already arise among the untwisted f under
consideration. Indeed, it follows from [2, Prop. 3.1] that for any Dirichlet character
ε of conductor dividing mn, if f is a modular form in S2(Γ0(m

2n), ε), then so is
fχm

, since χ2
m = 1. �

Remark 4.2. We also computed the relevant L-ratios for m ≤ 6 and n just past the
range listed in Theorem 4.1. For each of these (m,n) we found that at least one
relevant L-ratio was zero.

5. Proof of the main theorem

The first step in our proof of Theorem 1.1 is to show for d = 5, 6 that
Q(ζm)(X1(m,mn)) contains a function of degree d/φ(m) if and only if (m,mn)
is one of the pairs for Φ∞(d) appearing in the theorem. The following lemma
illustrates why the forward implication is useful.

Lemma 5.1. If Q(ζm)(X1(m,mn)) contains a function of degree d
φ(m) , then

(m,mn) ∈ Φ∞(d).

Proof. We first note that for mn ≤ 4, either φ(m) = 1 and (m,mn) ∈ Φ(1) =
Φ∞(1) ⊆ Φ∞(d) or φ(m) = 2 divides d and (m,mn) ∈ Φ(2) = Φ∞(2) ⊆ Φ∞(d). In
both cases the lemma holds.

We now assume mn ≥ 5, in which case X1(m,mn) is a fine moduli space. By
Merel’s proof of the uniform boundedness conjecture [25] there is a positive integer
B such that for all number fields K of degree d and elliptic curves E/K we have
E(K)tors ⊆ E[B]. The integer B is necessarily divisible by mn, since X1(m,mn)
has points of degree d over Q.

Now let f ∈ Q(ζm)(X1(m,mn)) be a function of degree d/φ(m). For each
a ∈ Q(ζm) the points in f−1(a) have degree at most d/φ(m) over Q(ζm), hence
degree at most d over Q. By Hilbert irreducibility, there are infinitely many a for
which the points in f−1(a) have degree exactly d, but we also need to show that
there are infinitely many a for which the torsion subgroups of the elliptic curves
corresponding to the points in f−1(a) are actually isomorphic to Z/mZ× Z/mnZ
and not any larger. In order to show this we consider the maps

X1(B,B)
π−→ X1(m,mn)

f−→ P1,

where π sends (E,P,Q) to (E, (B/m)P,B/(mn)Q), and let ϕ := f ◦ π. Let A ⊆
P1(Q(ζm)) be the set of a for which every b ∈ ϕ−1(a) has degree d deg π over Q. The
set A is infinite, by Hilbert irreducibility, and for a ∈ A every c ∈ f−1(a) has degree
d over Q. We claim that for all such c = (E,P,Q) we have E(Q(c))tors = 〈P,Q〉,
which implies (m,mn) ∈ Φ∞(d) as desired.
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Suppose not. Then we can construct a point c′ = (E,P ′, Q′) on X1(m
′,m′n′) of

degree d over Q with P ∈ 〈P ′〉, Q ∈ 〈Q′〉, and 〈P,Q〉 � 〈P ′, Q′〉, and we have maps

X1(B,B)
π1−→ X1(m

′,m′n′)
π2−→ X1(m,mn)

f−→ P1,

in which π = π2 ◦ π1, with deg π1 < deg π, and c = π2(c
′). If we now consider b ∈

π−1
1 (c′), then b ∈ ϕ−1(a) has degree d deg π1 < ddeg π over Q, a contradiction. �

We now outline the strategy of the proof. Let T be the set of pairs (m,mn)
identifying torsion subgroups that we wish to prove is equal to Φ∞(d). To prove
Φ∞(d) = T we proceed as follows.

(1) Prove that Q(ζm)(X1(m,mn)) contains a function of degree d/φ(m) for all
(m,mn) ∈ T .

(2) Compute the set T1 := {(m,mn) : φ(m)|d and B(m,mn) ≤ 2d} where
B(m,mn) is the lower bound on γ(X1(m,mn)) given by Proposition 2.1
(we have Φ∞(d) ⊆ T1).

(3) Verify that rk(J1(m,mn)(Q(ζm))) = 0 for all (m,mn) ∈ T1 via Theo-
rem 4.1.

(4) Compute the set T2 := {(m,mn) : φ(m)|d and B(m,mn) ≤ d} ⊆ T1 (now
Φ∞(d) ⊆ T2).

(5) For (m,mn) ∈ T2 − T prove that Q(ζm)(X1(m,mn)) has no functions of
degree d/φ(m).

In step (2) the restriction on m follows from the Weil pairing, and the restriction on
n is from Proposition 2.2; the tighter restriction on n in step (4) is Proposition 2.3.
If the verification in step (3) succeeds, then Corollary 2.4 and Lemma 5.1 together
imply that each pair (m,mn) ∈ T2 lies in Φ∞(d) if and only if Q(ζm)(X1(m,mn))
contains a function of degree d/φ(m).

Remark 5.2. We have completed steps (1)-(4) for d = 5, 6, 7, 8. This strategy cannot
be applied with d = 9 because (3) fails; as proved in [6], we have γ(X1(37)) = 18
and rk(J1(37)(Q)) �= 0.

We now prove Theorem 1.1, beginning with the case d = 5, following the strategy
above.

Proposition 5.3. Φ∞(5) = {(1, n) : 1 ≤ n ≤ 25, n �= 23} ∪ {(2, 2n) : 1 ≤ n ≤ 8}.

Proof. The existence of the Weil pairing implies that (m,mn) ∈ Φ∞(5) only if φ(m)
divides 5; we thus have m ≤ 2. The elements (1, n) ∈ Φ∞(5) are determined in
[6, Thm. 3], so we only need to consider m = 2.

For 1 ≤ n ≤ 6 the genus of X1(2, 2n) is either 0 or 1 and X1(2, 2n)(Q) �= ∅; it
follows that Q(X1(2, 2n)) contains functions of every degree d ≥ 2, including d = 5.

For n = 7 we used the method of §3.1 and a modified version of the algorithm
in [28] to construct the model

X1(2, 14) : v
3 − (u3 + u2 + u− 1)v2 − (u5 + 3u4 + 3u3 + u2 + u)v + u5 + u4 = 0,

with maps

q =
v + 1

v − 2u+ 1
, t =

(v + 1)(2u− v + 1)(2u(u+ 1) + v + 1)

v3 + (2u2 + 1)v2 − (2u3 − 2u2 − 2u− 1)v + u4 + (u+ 1)4

that give points (E2(q, t), P2(q, 2), Q2(q, t)) on X1(2, 14) as defined in §3.1. We may
then take u as a function of degree 5 in Q(X1(2, 14)).
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For n = 8 we similarly constructed

X1(2, 16) : v
4 + (u3 − 2u)v3 − (2u4 + 2)v2 + (u5 + u3 + 2u)v + 1 = 0,

which also has u as a function of degree 5 in Q(X1(2, 16)) (we omit the maps q(u, v)
and t(u, v) for reasons of space). This completes step (1) of our proof strategy.

Proceeding to steps (2)–(4), from Proposition 2.1 we find that γ(X1(2, 2n)) >
10 for n > 18, and γ(X1(2, 2n)) > 5 for n > 13. By Theorem 4.1 we have
rk(J1(2, 2n)(Q)) = 0 for n ≤ 18; thus by Proposition 2.3 it suffices to prove that
Q(X1(2, 2n)) contains no functions of degree 5 for 9 ≤ n ≤ 13.

For step (5) we begin by proving that γ(X1(2, 2n)F3
) > 5 for n = 10, 11, 13

and that γ(X1(2, 24)F5
) > 5 for n = 12, using methods similar to those in [6].

This involves exhaustively searching the Reimann–Roch spaces of a suitable set of
divisors for functions of degree d ≤ 5. The Magma code we used to perform these
computations can be found in [9].

For n = 9 we actually have γ(X1(2, 18)) = 4, so in this case we need to show that
Q(X1(2, 18)) contains no functions of degree exactly equal to 5; this is addressed
by Proposition 5.4 below. �

Proposition 5.4. Q(X1(2, 18)) does not contain a function of degree 5.

Proof. We proceed by verifying conditions 1–5 of [6, Prop. 7] for p = d = 5. For k =

Q,F5, let W
r
d (k) denote the closed subscheme of Picd(X1(2, 18)k(k)) corresponding

to line bundles of degree d whose global sections form a k-vector space of dimension
strictly greater than r.

1. The map J1(2, 18)(Q) → J1(2, 18)F5
(F5) is injective because J1(2, 18)(Q) is

finite.
2. Using Magma, a brute force search of the Riemann–Roch space of all effec-

tive divisors of degree 5 on X1(2, 18)F5
finds that F5(X1(2, 18)F5

) contains
no functions of degree 5.

3. A similar brute force computation shows that W 2
5 (F5) = ∅.

4. A brute force computation finds that 5 − γ(X1(2, 18)F5
) = 5 − 4 = 1 and

#W 1
4 (F5) = 3. The surjectivity of the map W 1

4 (Q) → W 1
4 (F5) is verified

in [9] by finding three modular units of degree 4 on X1(2, 18) with linearly
independent pole divisors.

5. The reduction map X1(2, 18)(Q) → X1(2, 18)F5
(F5) is surjective because

the 9 elements of X1(2, 18)F5
(F5) are precisely the reductions of the 9 cusps

in X1(2, 18)(Q).

It follows from [6, Prop. 7] that Q(X1(2, 18)) contains no functions of degree 5. �

We now address d = 6 using the same proof strategy.

Proposition 5.5. We have

Φ∞(6) ={(1, n) : 1 ≤ n ≤ 30, n �= 23, 25, 29} ∪ {(2, 2n) : 1 ≤ n ≤ 10}
∪ {(3, 3n) : 1 ≤ n ≤ 4} ∪ {(4, 4), (4, 8), (6, 6)}.

Proof. We have φ(m) dividing 6 for m = 1, 2, 3, 4, 6, 7, 9, 14, 18. The elements
(1, n) ∈ Φ∞(6) are determined in [6, Thm. 3], and we can immediately rule out
m = 7, 9, 14, 18, since for these m we have φ(m) = 6 and d/φ(m) = 1, but
g(X1(m,mn)) > 1 for all m > 6 and n ≥ 1. Faltings’ theorem implies that
X1(m,mn)(Q(ζm)) is finite for m > 6. This leaves only m = 2, 3, 4, 6.
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We have Φ∞(2),Φ∞(3) ⊆ Φ∞(6) (given a degree 2 or 3 point (E,P,Q) on
X1(m,mn) we can always base change E to a number field of degree 6). It thus
suffices to show that Q(ζm)(X1(m,mn)) contains a function of degree 6 for the pairs
(2, 16), (2, 18), (2, 20), and a function of degree 3 for the pairs (3, 9), (3, 12), (4, 8),
(6, 6).

The map π : X1(2, 2n) → X1(2n) given by (E,P,Q) �→ (E,Q) has degree 2. For
n = 8, 9, 10 we have a function f of degree 3 in Q(X1(2n)), because (1, 2n) ∈ Φ∞(3)
and rk(J1(2n)(Q)) = 0 (by Theorem 4.1), and π ◦ f is then a function of degree 6
in Q(X1(2, 2n)).

The curves X1(3, 9), X1(4, 8), X1(6, 6) all have genus 1 and a Q(ζm)-rational
point (take a rational cusp); hence they are isomorphic to elliptic curves and admit
functions of every degree d ≥ 2. The map : X1(3, 12) → X1(12)Q(ζ3) given by
(E,P,Q) �→ (E,Q) has degree 3, and X1(12)Q(ζ3) has genus 0 and a Q(ζ3)-rational

point; hence it is isomorphic to P1
Q(ζm). It follows that Q(ζ3)(X1(3, 12)) contains a

function of degree 3.
This completes step (1) of our proof strategy. We now proceed to steps (2)–(5)

for each m = 2, 3, 4, 6 in turn.
We begin with m = 2. From Proposition 2.1 we find that γ(X1(2, 2n)) >

12 for n > 21, and γ(X1(2, 2n)) > 6 for n > 15. By Theorem 4.1 we have
rk(J1(2, 2n)(Q)) = 0 for n ≤ 21; thus by Proposition 2.3 it suffices to prove that
Q(X1(2, 2n)) contains no functions of degree 6 for 11 ≤ n ≤ 15. For 11 ≤ n ≤ 14
we proceed as in Proposition 5.3 to prove γ(X1(2, 2n)Fp

) > 6 using p = 3 for
n = 11, 13, 14 and p = 5 for n = 12, which was done with a computation in Magma.
The code written for these and the subsequent computations can be found in [9].
For n = 15 we instead apply Lemma 5.6 and Proposition 5.7.

We next considerm = 3. We have γ(X1(3, 3n)) > 6 for n > 8 and γ(X1(3, 3n)) >
3 for n > 5, and rk(J1(3, 3n)(Q(ζ3))) = 0 for n ≤ 8. It suffices to show that
Q(ζ3)(X1(3, 15)) contains no functions of degree 3, which again follows from a
Magma computation.

The cases m = 4, 6 are similar. For m = 4 we have γ(X1(4, 4n)) > 6 for
n > 6 and γ(X1(4, 4n)) > 3 for n > 3, and rk(J1(4, 4n)(Q(ζ4))) = 0 for n ≤ 6; a
computation shows that γ(X1(4, 12)F5

) > 3. For m = 6 we have γ(X1(6, 6n)) > 6
for n > 2 and rk(J1(6, 6n)(Q(ζ6))) = 0 for n ≤ 2; a Magma computation shows
that γ(X1(6, 12)F5

) > 3. �

Lemma 5.6. X1(2, 30) has no non-cuspidal points of degree less than 6.

Proof. X1(2, 30) has a degree two map to X1(30) given by (E,P,Q) �→ (E,Q), so
we start by considering the points of degree less than 6 on X1(30).

Theorem 3 of [6] states that X1(30) has only finitely many points of degree less
than 6, and these points are explicitly determined in [7]. The non-cuspidal points on
X1(30) of degree less than 6 all have degree 5 and arise from two Galois conjugacy
classes of elliptic curves that we now describe.

Let x1, x2 ∈ Q be zeros of x5+x4−3x3+3x+1 and x5+x4−7x3+x2+12x+3,
respectively, and define

y1 := 2x4
1 + x3

1 − 6x2
1 + 4x1 + 4, y2 :=

3x4
2 + 7x3

2 + 6x2
2 + 11x2 − 73

53
.

Let Ex,y denote the curve E(b, c) in Tate normal form with b = rs(r − 1) and
c = s(r − 1), where r = (x2y − xy + y − 1)/(x2y − x) and s := (xy − y + 1)/(xy).
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The point P0 := (0, 0) is a point of order 30 on both Ex1,y1
and Ex2,y2

. Moreover,

every non-cuspidal point (E,P ) ∈ X1(30)(Q) of degree less than 6 over Q can be
obtained as either (Eσ(x1),σ(y1), dP0) or (Eσ(x2),σ(y2), dP0) for some σ ∈ Gal(Q/Q)

and d ∈ (Z/30Z)×; thus every such point has degree 5.
The 2-division polynomials of Ex1,y1

and Ex2,y2
each have just one root in Q(x1)

and Q(x2), respectively, corresponding to x(15P0); it follows that Ex1,y1
(Q(x1))

and Ex2,y2
(Q(x2)) contain no other points of order 2. Thus every non-cuspidal

point in X1(2, 30)(Q) that maps to a point of degree less than 6 in X1(30)(Q) has
degree at least 2 · 5 = 10. The lemma follows. �

Proposition 5.7. X1(2, 30) has only finitely many points of degree 6.

The proof below is based on ideas presented in [8, §4].

Proof. We have d(X1(2, 30)) = γ(X1(2, 30)) by Proposition 2.3, since
rk(J1(2, 30)(Q)) = 0, by Theorem 4.1, and d(X1(2, 30)) = γ(X1(2, 30)) ≥ 6,
by Lemma 5.6. It thus suffices to prove there are no functions of degree 6 in
Q(X1(2, 30)).

We first show that if Q(X1(2, 30)) contains a function of degree 6, then it
contains a function whose pole and zero divisors consist entirely of cusps. Let
f ∈ Q(X1(2, 30)) be a function of degree 6 and let c ∈ X1(2, 30)(Q) be any of its 12
rational cusps. We may assume f has a pole at c by replacing f with 1/(f−f(c)) if
necessary. The pole divisor of f can then be written as c+D, where D is a divisor
of degree 5. Now let c′ �= c be a rational cusp not in the support of D, and define
f ′ := f − f(c′). The function f ′ has the same poles as f , and its zero divisor can
be written as c′ + D′ with D′ a divisor of degree 5. The divisors D and D′ must
consist entirely of cusps, by Lemma 5.6, and the claim follows.

An enumeration of all f ∈ Q(X1(2, 30)) of degree at most 6 with div(f) supported
on cusps computed as in [6, Footnote 7] finds none with degree exactly 6; the
proposition follows. �
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[25] Löıc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres (French),

Invent. Math. 124 (1996), no. 1-3, 437–449. MR1369424
[26] Markus A. Reichert, Explicit determination of nontrivial torsion structures of elliptic curves

over quadratic number fields, Math. Comp. 46 (1986), no. 174, 637–658. MR829635
[27] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathe-

matics, vol. 106, Springer, Dordrecht, 2009. MR2514094
[28] Andrew V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion,

Math. Comp. 81 (2012), no. 278, 1131–1147. MR2869053
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