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A simple thing we don’t know

Let X/Q be a nice (smooth, projective, geometrically integral) curve of
genus g. For each good prime p the trace of Frobenius

ap := p+ 1−#X(Fp)

satisfies |ap| ≤ 2g
√
p, by the Weil bounds, and xp := ap/

√
p ∈ [−2g, 2g].

In particular g ≥ |xp|/2 for all primes p.

[Katz12]: Is the lower bound on g ever sharp?

For g = 1 this follows from the Sato–Tate conjecture (now a theorem).
The question remains open for all g > 1.

For g = 2 we know |xp| ≥ 2/3 for a positive density of p [Taylor18].
For g > 2 we know essentially nothing. . .

https://link.springer.com/chapter/10.1007/978-88-7642-457-1_2
https://arxiv.org/abs/1808.00243


The L-function of a curve

Let X/Q be a nice curve of genus g. The L-function of X is given by

L(X, s) = L(Jac(X), s) :=
∑
n≥1

ann
−s :=

∏
p

Lp(p
−s)−1.

For primes p of good reduction for X we have the zeta function

Z(Xp; s) := exp

∑
r≥1

#X(Fpr)
T r

r

 =
Lp(T )

(1− T )(1− pT )
,

and the L-polynomial Lp ∈ Z[T ] in the numerator satisfies

Lp(T ) = T 2gχp(1/T ) = 1− apT + · · ·+ pgT 2g,

where χp(T ) is the charpoly of the Frobenius endomorphism of Jac(Xp).



The Selberg class with polynomial Euler factors

The Selberg class Spoly consists of Dirichlet series L(s) =
∑

n≥1 ann
−s:

1 L(s) has an analytic continuation that is holomorphic at s 6= 1;

2 For some γ(s) = Qs
∏r
i=1 Γ(λis+ µi) and ε, the completed

L-function Λ(s) := γ(s)L(s) satisfies the functional equation

Λ(s) = εΛ(1− s̄),

where Q > 0, λi > 0, Re(µi) ≥ 0, |ε| = 1. Define degL := 2
∑r

i λi.

3 a1 = 1 and an = O(nε) for all ε > 0; the Ramanujan bound.

4 L(s) =
∏
p Lp(p

−s)−1 for some Lp ∈ Z[T ] with degLp ≤ degL;
in other words L(s) has an Euler product.

The Dirichlet series Lan(s,X) := L(X, s+ 1
2) satisfies (3) and (4),

and conjecturally lies in Spoly; for g = 1 this is known via modularity.



Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)

If A(s) =
∑

n≥1 ann
−s and B(s) =

∑
n≥1 bnn

−s lie in Spoly and ap = bp
for all but finitely many primes p, then A(s) = B(s).

Corollary

If Lan(s,X) lies in Spoly then it is determined by (any choice of) all but
finitely many coefficients ap.

Henceforth we assume that Lan(s,X) ∈ Spoly.

Let ΓC(s) = 2(2π)sΓ(s) and define Λ(X, s) := ΓC(s)gL(X, s). Then

Λ(X, s) = εN1−sΛ(X, 2− s).

where the root number ε = ±1 and the analytic conductor N ∈ Z≥1 are
determined by the ap (one can take these as definitions).

https://www.sciencedirect.com/science/article/abs/pii/S076444420101984X


Testing the functional equation

Let G(x) be the inverse Mellin transform of ΓC(s)g =
∫∞
0 G(x)xs−1dx,

and define

S(x) :=
1

x

∑
anG(n/x),

so that Λ(X, s) =
∫∞
0 S(x)x−sdx, and for all x > 0 we have

S(x) = εS(N/x).

The function G(x) decays rapidly, and for sufficiently large c0 we have

S(x) ≈ S0(x) :=
1

x

∑
n≤c0x

anG(n/x),

with an explicit bound on the error |S(x)− S0(x)|.



Effective strong multiplicity one

Fix a finite set of small primes S (e.g. S = {2}) and an integer M that we
know is a multiple of the conductor N (e.g. M = ∆(X)).

There is a finite set of possibilities for ε = ±1, N |M , and the Euler factors
Lp ∈ Z[T ] for p ∈ S (the coefficients of Lp(T ) are bounded).

Suppose we can compute an for n ≤ c1
√
M whenever p - n for p ∈ S.

We now compute δ(x) := |S0(x)− εS0(N/x)| with x = c1
√
N) for every

possible choice of ε, N , and Lp(T ) for p ∈ S. If all but one choice makes
δ(x) larger than our explicit error bound, we know the correct choice.

For a suitable choice of c1 this is guaranteed to happen.1 One can
explicitly determine a set of O(N ε) candidate values of c1, one of which is
guaranteed to work; in practice the first one usually works.

1Subject to our assumptions; if it does not happen then we have found an explicit
counterexample to the Hasse-Weil conjecture.



Conductor bounds

The formula of Brumer and Kramer gives explicit bounds on the p-adic
valuation of the algebraic conductor N of Jac(X):

vp(N) ≤ 2g + pd+ (p− 1)λp(d),

where d = b 2g
p−1c and λp(d) =

∑
idip

i, with d =
∑
dip

i with 0 ≤ di < p.

g p = 2 p = 3 p = 5 p = 7 p > 7

1 8 5 2 2 2

2 20 10 9 4 4

3 28 21 11 13 6

For g ≤ 2 these bounds are tight (see www.lmfdb.org for examples).

For hyperelliptic curves N divides ∆(X); for a suitable definition of ∆(X)
one expects this to hold in general.

www.lmfdb.org


Arithmetic L-functions

A more precise description of the properties Spoly is intended to capture is
given by the axioms for analytic L-functions; see [FPRS 2019].

Among these one can distinguish those of arithmetic type.
These are analytic L-functions L(s) =

∑
ann

−s for which there exists
war ∈ Z and a number field K such that ann

war/2 ∈ OK for all n.

The smallest F and war are the field of coefficients and arithmetic weight
of L(s). For curves over number fields we always have F = Q (whether X
is defined over Q or not), so L(X) is a rational L-function, and the
arithmetic weight war = 1 agrees with the motivic weight.

More generally, one expects that the L-function of any pure motive of
weight w should have war = w, and moreover, that every arithmetic
L-function should come from a motive.

Example: L(s) = 1 + 16 · 19−s − 10 · 25−s + 16 · 43−s + 2 · 49−s − · · ·

https://doi.org/10.1090/bull/1646
https://www.lmfdb.org/L/Genus2Curve/Q/20736/i/


Conjectured relationships between sets of L-functions

F–M Fontaine–Mazur T Taylor
B–G Buzzard–Gee C Clozel
C–PS Codgell–Piatetski-Shapiro H–W Hasse–Weil
J-PS-S Jacquet–Piatetski-Shapiro–Shalika S Selberg

*Figure taken from page 21 of Analytic L-functions: Definitions theorems and connections,
by D.W. Farmer, A. Pitale, N.C. Ryan, and R. Schmidt, arXiV:1711.10375.

https://arxiv.org/abs/1711.10375


Sato–tate distributions of rational L-functions

Given an arithmetic L-function L(s) we can study the distribution of its
(analytically normalized) coefficients, or equivalently, the distribution of its
normalized Euler factors.

If we assume L(s) is motivic (we do), we can associate a Sato-Tate group
to L(s); take the Sato-Tate group of a corresponding motive.

For rational L-functions of degree 2 and weight 1 there are three possible
Sato-Tate distributions:

SU(2) U(1) N(U(1))



Some rational L-functions of weight w and degree d

w d L-function

0 1 L(χ, s) for a Dirichlet character with χ2 = 1, including ζ(s)
2 L(f, s) for weight 1 CMFs with Q(f) = Q
n ζK(s) with [K :Q] = n

L(ρ, s) for Artin representation with dim ρ = n and tr(ρ) rational
1 2 L(f, s) for weight 2 CMFs with Q(f) = Q

L(E, s) for elliptic curves E/Q
4 L(f, s) for parallel weight 2 HMFs with Q(f) = Q

L(E, s) for elliptic curves E/K with [K :Q] = 2
L(X, s) for genus 2 curves X/Q

2 2 L(f, s) for weight 3 CMFs with Q(f) = Q
3 L(Sym2(E), s) for elliptic curves E/Q

L(H, s) for hypergeometric motives H with Hodge vector [1, 1, 1]
3 2 L(f, s) for weight 4 CMFs with Q(f) = Q

4 L(Sym3(E), s) for elliptic curves E/Q
L(H, s) for hypergeometric motives H with Hodge vector [1, 1, 1, 1]

Sato-Tate group G ⊆ O(d) if w is even, G ⊆ USp(d) if w is odd; wd ≡ 0 mod 2.

https://www.lmfdb.org/L/Character/Dirichlet/3/2/
https://www.lmfdb.org/L/Riemann/
https://www.lmfdb.org/L/ModularForm/GL2/Q/holomorphic/23/1/b/a/
https://www.lmfdb.org/L/NumberField/3.1.23.1/
https://www.lmfdb.org/L/ArtinRepresentation/3.229.4t5.a.a/
https://www.lmfdb.org/L/ModularForm/GL2/Q/holomorphic/11/2/a/a/
https://www.lmfdb.org/L/EllipticCurve/Q/11/a/
https://www.lmfdb.org/L/ModularForm/GL2/TotallyReal/2.2.5.1/holomorphic/2.2.5.1-31.1-a/0/0/
https://www.lmfdb.org/L/EllipticCurve/2.2.5.1/31.1/a/
https://www.lmfdb.org/L/Genus2Curve/Q/249/a/
https://www.lmfdb.org/L/ModularForm/GL2/Q/holomorphic/7/3/b/a/
https://www.lmfdb.org/L/SymmetricPower/2/EllipticCurve/Q/11/a/
https://beta.lmfdb.org/L/Motive/Hypergeometric/Q/A4.2_B1.1.1/t-1.1
https://www.lmfdb.org/L/ModularForm/GL2/Q/holomorphic/5/4/a/a/
https://www.lmfdb.org/L/SymmetricPower/3/EllipticCurve/Q/11/a/
https://beta.lmfdb.org/L/Motive/Hypergeometric/Q/A8_B1.1.1.1/t-1.1
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Exceptional distributions for abelian surfaces over Q



Connected Sato-Tate groups of abelian threefolds:

U(1)3 SU(2)3 U(1) × U(1)2 U(1) × SU(2)2

SU(2) × U(1)2 SU(2) × SU(2)2 U(1) × U(1) × U(1) U(1) × U(1) × SU(2)

U(1) × SU(2) × U(1) SU(2) × SU(2) × SU(2) U(1) × USp(4) SU(2) × USp(4)

U(3) USp(6)



Algorithms to compute L-functions

Given X/Q of genus g, we want to compute Lp(T ) for all good p ≤ B.

complexity per prime
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3(log p)2

group computation p1/4 log p p3/4 log p p(log p)2

p-adic cohomology p1/2(log p)2 p1/2(log p)2 p1/2(log p)2

CRT (Schoof-Pila) (log p)5 (log p)8 (log p)14
∗

average poly-time (log p)4 (log p)4 (log p)4

For L(X, s) =
∑
ann

−s, we only need ap2 for p2 ≤ B, and ap3 for p3 ≤ B.
We can compute all of these in O(B) time using any O(p) method.

Bottom line: It all comes down to computing ap’s.

∗For hyperelliptic curves [Abelard18].

https://members.loria.fr/SAbelard/theseabelard.pdf


Arithmetic schemes
Let X be a scheme of finite type over SpecZ, an arithmetic scheme.
The Hasse–Weil zeta function (or arithmetic zeta function) of X is

ζX(s) :=
∏
x∈X

(1−N(x)−s)−1 =
∏

ζXp(s) =
∏

ZXp(p−s),

where the product is over closed points x, the norm N(x) := #κ(x) is the
cardinality of the residue field κ(x), and Xp := X ×SpecZ Spec(Z/pZ) is
the reduction of X modulo p. The local zeta function ZXp(T ) is

ZXp(T ) := exp

 ∞∑
r≥1

#Xp(Fpr)
T r

r

 ∈ 1 + TZ[[T ]],

which is known to lie in Q(T ) (by work of Dwork and Grothendieck).

For Xp(Fpr) := HomFp(Spec(Fpr), X) we then have

#Xp(Fpr) =
∑
e|r

e#{x ∈ X : κ(x) ' Fpe}.



Arithmetic zeta functions and L-functions

Let X/Q be a nice curve with integral model X , which we can view as an
arithmetic scheme. What is the relationship between LX(s) and ζX (s)?

We have ZXp(T ) = ZXp(T ) at all good primes p of X , in which case the
L-polynomials LXp(T ) and LXp(T ) in their numerators will agree.

From our multiplicity one perspective, this is all we need; the local zeta
functions ZXp(T ) at good primes determine LX(s) (for any choice of X ).

In general L-polynomials LXp(T ) in LX(s) =
∏
p LXp(p−s) may differ

from the numerator of the local zeta functions ZXp(T ) at bad primes.

For example, if X is 49a1 and X is the arithmetic scheme given by its
minimal Weierstrass equation y2z + xyz = x3 − x2z − 2xz2 − z3, then

LX7(T ) = −7T 2 + 1 6= 1 = LX7(T ).

On the other hand, when X is 11a1 we actually have LX(s) = ζX (s).

http://www/lmfdb.org/EllipticCurve/Q/11a1
http://www/lmfdb.org/EllipticCurve/Q/11a1


Harvey’s results for arithmetic schemes

Theorem (Harvey 2015)

Let X be an arithmetic scheme.

1 There is a deterministic algorithm that, given a prime p, outputs
ZXp(T ) in p(log p)1+o(1) time using O(log p) space.

2 There is a deterministic algorithm that, given a prime p, outputs
ZXp(T ) in

√
p (log p)2+o(1) time using O(

√
p log p) space.

3 There is a deterministic algorithm that, given an integer N , outputs
ZXp(T ) for p ≤ N in N(logN)3+o(1) time using O(N log2N) space.

In these complexity bounds, X is fixed, only p or N are part of the input
(the arithmetic scheme X is effectively “hardwired” into the algorithm).

If one constrains X and fixes its representation, the dependence on X can
be made explicit; for plane curves one obtains g14N(logN)3+o(1).

These are not just existence statements; Harvey gives explicit algorithms.

https://dx.doi.org/10.1112/S1461157014000187


Practical average polynomial-time algorithms

To date all practical implementations compute Lp(T ) mod p by
computing Hasse–Witt (Cartier–Manin) matrices Ap ∈ Fg×gp for p ≤ B.

We have ap ≡ tr(Ap) mod p, which determines ap ∈ Z for p > 16g2.
(for p ≤ 16g2 one can simply count point näıvely).

Fast implementations are currently available in the following cases:

Hyperelliptic curves over Q [HS14, HS16].

Geometrically hyperelliptic genus 3 curves over Q [HMS16].

Smooth plane quartics over Q [CHS20].

Superelliptic curves over Q [S20].

A toy implementation of Harvey’s algorithm for smooth plane curves of
arbitrary genus is available, but much still remains to be done...

https://dx.doi.org/10.1112/S1461157014000187
https://arxiv.org/abs/1410.5222
https://dx.doi.org/10.1112/S1461157016000383
https://arxiv.org/abs/2004.10189
https://math.mit.edu/~drew/BristolSummerSchool.pdf


Average polynomial-time in genus 1

Let X : y2 = f(x) with deg f = 3, 4 and f(0) 6= 0, and let fnk be the

coefficient of xk in fn. Then ap ≡ f (p−1)/2p−1 mod p for all good p.

The relations fn+1 = f · fn and (fn+1)′ = (n+ 1)f ′ · fn yield the identity

kf0f
n
k =

∑
1≤i≤d

(i(n+ 1)− k)fif
n
k−i,

for all k, n ≥ 0. Suppose for simplicity deg f = 3, and define

vnk := [fnk−2, f
n
k−1, f

n
k ], Mn

k :=

 0 0 (3n+ 3− k)f3
kf0 0 (2n+ 2− k)f2
0 kf0 (n+ 1− k)f1

 ,
so that we have the recurrence vnk = 1

kf0
vnk−1M

n
k .



Average polynomial-time in genus 1

We then have

vnk =
1

(f0)kk!
vn0M

n
1 · · ·Mn

k .

We want to compute ap ≡ fn2n mod p with n := (p− 1)/2.
This is just the last entry of the vector vn2n reduced modulo p = 2n+ 1.

Observe that 2(n+ 1) ≡ 1 mod p, so 2Mn
k ≡Mk mod p, where

Mk :=

 0 0 (3− 2k)f3
kf0 0 (2− 2k)f2
0 kf0 (1− 2k)f1


is an integer matrix whose entries do not depend on p = 2n+ 1, and

vn2n ≡ −
(
f0
p

)
V0M1 · · ·Mp−1 mod p (where V0 = [0, 0, 1]).



Accumulating remainder tree

Given matrices M0, . . . ,Mn−1 and moduli m1, . . . ,mn, to compute

M0 mod m1

M0M1 mod m2

M0M1M2 mod m3

M0M1M2M3 mod m4

· · ·
M0M1 · · ·Mn−2Mn−1 mod mn

multiply adjacent pairs and recursively compute

(M0M1) mod m2m3

(M0M1)(M2M3) mod m4m5

· · ·
(M0M1) · · · (Mn−2Mn−1) mod mn

and adjust the results as required (for better results, use a forest).



Complexity analysis

Assume log |fi| = O(logB). The recursion has depth O(logB) and in
each recursive step we multiply and reduce 3× 3 matrices with integer
entries whose total bitsize is O(B logB).

We can do all the multiplications/reductions at any given level of the
recursion in time O(M(B logB)) = B(logB)2+o(1).

Total complexity is B(logB)3+o(1), or (log p)4+o(1) per prime p ≤ B.

For a single prime p we can give an O(p1/2(log p)1+o(1)) algorithm using
the same matrices.

This is a silly way to compute ap in genus 1, but it is in practice the fastest
than method known for g > 2 and p ≤ B (for any reasonable value of B).

Open problem: Given a polynomial-time algorithm that takes as input a
defining equation for a nice curve X/Fp and outputs #X(Fp).



Efficiently handling a single prime

Simply computing V0M1 · · ·Mp−1 modulo p is surprisingly quick
(faster than semi-näıve point-counting); it takes p(log p)1+o(1) time.

But we can do better.

Viewing Mk mod p as M ∈ Fp[k]3×3, we compute

A(k) := M(k)M(k + 1) · · ·M(k + r − 1) ∈ Fp[k]3×3

with r ≈ √p and then instantiate A(k) at roughly r points to get

M1M2 · · ·Mp−1 ≡p A(1)A(r + 1)A(2r + 1) · · ·A(p− r).

Using standard product tree and multipoint evaluation techniques this
takes O(M(p1/2) log p) = p1/2(log p)2+o(1) time.

Bostan-Gaudry-Schost: p1/2(log p)1+o(1) time [BGS07].

https://hal.inria.fr/inria-00103401/
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