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1 Lectures

The goal of this series of talks is to present an approach to the article Sato-
Tate distributions and Galois endomorphism modules in genus 2 (see [3]).
We shall recall some background material and indicate the connection to
other works when necessary.

Lecture 1. Introduction to Sato-Tate distributions

Overview of the generalized Sato-Tate conjecture with lots of explicit ex-
amples. Preliminary discussion of L-polynomial distributions, Sato-Tate
groups, and moment sequences. Presentation of the main results in genus 2.
A.V. Sutherland

Lecture 2. The generalized Sato-Tate conjecture

The general background of [3] will be recalled: the notion of equidistribution
(with special emphasis to the case of a compact group), its connection to
L-functions (appendix to Chapter I of [11]), the Sato-Tate group and the
generalized Sato-Tate conjecture (Chapter 8 of [11]), and the algebraic Sato-
Tate conjecture [1].
F. Fité

Lecture 3. Sato-Tate axioms

The Sato-Tate axioms for a self-dual motive with rational coefficients and
fixed weight ω and Hodge numbers hp,q will be presented (this refers to a set
of properties that the Sato-Tate group is conjectured to verify in general).
They lead to Lie group classification results for particular choices of ω and
the hp,q’s. The following cases will be considered:
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(i) ω = 1 and h0,1 = h1,0 = 1 (abelian surfaces),

(ii) ω = 3 and h3,0 = h2,1 = h1,2 = h0,3 = 1.

Case (i) is the content of Chap. 3 of [3]. A sketch of the proof of the
considerably easier case (ii) will be given, following [4, Chap. 2].
F. Fité

Lecture 4. The Galois type of an abelian surface

The notion of Galois type of an abelian surface defined over a number field.
The dictionary between Galois types and Sato-Tate groups of abelian sur-
faces defined over number fields [3, Chap. 4]).
F. Fité

Lecture 5. Moment sequences

Moment sequences as a tool for identifying and classifying Sato-Tate dis-
tributions. Computing moment sequences of Sato-Tate groups, Weyl inte-
gration formulas, comparing moment statistics, distinguishing exceptional
distributions with additional statistics.
A.V. Sutherland

Lecture 6. Computing zeta functions

Survey of methods for computing zeta functions of low genus curves (as
in [9]), including generic group algorithms, p-adic cohomology, CRT-based
methods (Schoof-Pila), and recent average polynomial-time algorithms [6].
A.V. Sutherland

2 Tutorials

2.1 Sato-Tate distributions of y2 = x7 − cx

The goal of this tutorial is to study the Sato-Tate group of the Jacobian of
hyperelliptic curves of the form

C1 : y2 = x7 − cx (c ∈ Z), (1)

using the trace distribution as a tool for investigation.
In Sage one can use the frobenius polynomial method to compute the

trace of Frobenius of C1 mod p, at any prime p of good reduction, but this
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is too slow for our purposes. Fortunately, the special form of the curve C1

allows us to compute the trace of C1 mod p more efficiently.

Definition 2.1. Let p be an odd prime, let C/Fp be a hyperelliptic curve
y2 = f(x) of genus g, where f is a polynomial of degree d = 2g + 1 or
d = 2g + 2. The Hasse-Witt matrix of C is the g × g matrix W = (wij)
defined by

wij = f
(p−1)/2
pi−j (1 ≤ i, j ≤ g),

where fnm denotes the coefficient of xm in the expansion of f(x)n.

Theorem 2.2. Let C/Fp be a hyperelliptic curve. Let χ(λ) be the charac-
teristic polynomial of the Frobenius endomorphism π of Jac(C) and let W
be the Hasse-Witt matrix of C. Then

χ(λ) ≡ (−1)gλg det(W − λI) mod p.

In particular, trW ≡ trπ mod p.

The Weil bounds imply that |tp| ≤ 2g
√
p; thus for all sufficiently large p

the trace of Wp uniquely determines the trace of Frobenius.

Exercise 2.3. Let tp be the trace of the Hasse-Witt matrix of C1 mod p.
Derive an explicit formula for tp in terms of c and the binomial coefficients(

n
n/2

)
and

(
n

n/6

)
, where n = (p − 1)/2 (define

(
n
r

)
= 0 for r 6∈ Z). Prove

tp ≡ 0 mod p for all p ≡ 3 mod 4.

To efficiently apply your formula for tp, you will need the following con-
gruences for binomial coefficients.

Lemma 2.4. Let p = 4m + 1 = x2 + y2 be prime, with x ≡ −(2p) mod 4.
Then (

2m

m

)
≡ 2(−1)m+1x mod p.

Proof. See [2, Thm. 9.2.2].

Lemma 2.5. Let p = 12m + 1 = x2 + y2 be prime, with x ≡ −(2p) mod 4,
and define δ to be −1 if x ≡ 0 mod 3 and +1 otherwise. Then(

6m

m

)
≡ 2δ(−1)m+1x mod p.

Proof. See [2, Thm. 9.2.10].
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Exercise 2.6. Using your formula from Exercise 2.3 and the lemmas above,
use sage (or the programming environment of your choice) to implement a
fast algorithm to compute tp for any prime p of good reduction for C1.
(Recall that Cornacchia’s algorithm provides an efficient way to write any
prime p ≡ 1 mod 4 as the sum of two squares). Check your results using
frobenius polynomial.

Exercise 2.7. Implement an algorithm to compute the moments of the
normalized traces xp = tp/

√
p as p ranges over primes of good reduction up

to a given bound N . Use this to provisionally determine the integer values
of the 2nd, 4th, and 6th moments of xp as p varies over good primes up to
a bound N tending to infinity. How do the results vary with c?

Exercise 2.8. By restricting to primes p ≡ 1 mod 4, repeat the exercise
above for C1/Q(i).

Exercise 2.9. Let h ∈ Z[x] be a monic irreducible polynomial. By restrict-
ing to primes p for which h has a root modulo p, one can compute moment
statistics for C1/k, where k = Q(x)/(h), since the normalized traces xp for
the degree-1 primes p of k account for the overwhelming majority of xp
values when enumerating over primes p of bounded norm. Using this ob-
servation, compute moment statistics for C1/k over various number fields,
and attempt to find number fields where the moment statistics (and the
proportion of zero traces) change significantly (with c held fixed).

Exercise 2.10. Say whatever you can about the Sato-Tate group of C1/Q.
For example, how many components does it have? How many of these
components have trace zero? What is the identity component?

2.2 Sato-Tate distributions of y2 = x8 + c

Repeat Exercises 2.1–2.10 for the curve

C2 : y2 = x8 + c (c ∈ Z), (2)

subject to the following amendments. Prove tp ≡ 0 mod p for p ≡ 2 mod 3
(rather than p ≡ 3 mod 4), and your formula for tp should use the binomial
coefficients

(
n

n/2

)
and

(
n

n/4

)
. To compute the latter, use the following lemma.

Lemma 2.11. Let p = 8m + 1 = x2 + 2y2 be prime, with x ≡ 3 mod 4.
Then (

4m

m

)
≡ 2(−1)m+1x mod p.

Proof. See [2, Thm. 9.2.8].
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