
Breaking post-quantum cryptography
with arithmetic geometry

Andrew Sutherland

October 19, 2023

Cryptography today

Most public-key cryptosystems in use today are motivated by two number-theoretic questions:
• Factoring: given n = pq, determine p (RSA).
• Discrete logarithms (DLP): given a and b = an mod p determine n.

Both can heuristically be solved in exp(1.93(logn)1/3(log logn)2/3) time via the number field
sieve. Much faster than brute force, but too slow for 3072-bit values of n or p.

Better form of the second problem: replace the (multiplicative) group F×p with the (additive)
group of rational points on an elliptic curve E/Fp:
• ECDLP: given P,Q = nP ∈ E(Fp) determine n.

The fastest algorithms for solving ECDLP run in time exp(1
2 logn).

This makes 256-bit ECDLP problems about as hard as 3072-bit DLP-problems.

RSA is primarily used for authentication and ECDLP is primarily used for key exchange.

Elliptic curves over finite fields
Let p > 3 be prime, and let Fq be the field with q = pe elements (assume q = p for now).
For any squarefree cubic f ∈ Fq[x] the equation

E : y2 = f(x),

defines an elliptic curve, whose rational points consist of the set

E(Fq) := {(x, y) ∈ Fp × Fp : y2 = f(x)} ∪O,

where O is the projective point (0 : 1 : 0) on the homogeneous cubic yz2 = z3f(x/z).

The number of rational points has the form

#E(Fq) = q + 1− t,

where the Frobenius trace t satisfies |t| ≤ 2√q and can be computed in polynomial time.

E(Fq) can be given the structure of an abelian group with identity O.

The elliptic curve group law

Three points on a line sum to zero.

Ephemeral Diffie–Hellman key exchange
Let E/Fq be an elliptic curve and fix P ∈ E(Fq) (in public). Assume N = |P | ≈ q is prime.

Alice and Bob can agree on a random shared secret as follows:

1. Alice chooses random a ∈ [1, N], sends aP =
a︷ ︸︸ ︷

P + · · ·+ P to Bob.
2. Bob chooses random b ∈ [1, N], sends bP to Alice.
3. Alice computes abP = Q and Bob computes baP = Q.

The coordinates of Q depend on the random integer ab and can be hashed to yield a shared
secret with roughly log q random bits.

An eavesdropper may know E, P , aP and bP , but not a, b, or Q.1
It is believed that computing Q from these values is as hard as ECDLP.

Even though E and P are fixed, we get a new random Q each time.

1One should use RSA authentication to protect against a man-in-the-middle attack.

The quantum threat
As shown by Peter Shor, one can easily factor integers and solve the DLP if one has access to a
decent-size quantum computer (the complexity is not just polynomial, it is quadratic).

More generally, one can use a quantum computer to solve the hidden subgroup problem (HSP):
given a finite abelian group G with unknown cyclic subgroup H and an efficiently computable
f : G→ S that injects H-cosets of G into S, find a nontrivial element of H.

To solve ECDLP on Q = nP with N = |P | prime one uses

G := Z/NZ× Z/NZ, H := 〈(n, 1)〉, S := 〈P 〉, f : G→ S

(x, y) 7→ yQ− xP

Any nonzero (x, y) ∈ H can be used to compute n = x/y mod p.

A reliable 104-qubit quantum computer with 1012 gates breaks most current crypto.
As of this writing 3072-bit RSA and 256-bit ECDLP remain well out of reach.

Post-quantum cryptography

In 2016 the National Institute of Standards and Technology (NIST) solicited proposals for
“quantum-secure” cryptographic protocols: these run on a classical computer but are intended
to be secure against an adversary with a quantum computer.

NIST received 69 submissions for the first round of evaluations in 2017, including proposals
based on lattice problems, coding theory, and random walks in isogeny graphs.

At the end of the first round, 26 candidates were chosen for a 2nd round of evaluation in 2019,
of which 15 made it to the third round in 2020.

On July 5, 2022 NIST recommended four of these 15 for standardization, and four to enter a
fourth round for further evaluation.

Three weeks later, the fourth round candidate Supersingular Isogeny Key Encapsulation (SIKE),
was spectacularly broken using an attack that had not been considered during the 6 years of
post-quantum evaluation. The attack uses arithmetic geometry, not quantum computing.

Isogenies

Let k be a field of characteristic p with algebraic closure k̄. Elliptic curves over k form a
category whose morphisms are isogenies: group homomorphisms defined by rational maps.

The kernel of an isogeny ϕ is the group kerϕ := {P ∈ E(k̄) : ϕ(k) = 0}.
We call an isogeny cyclic when kerϕ is a cyclic group.

Isogenies E → E are endomorphisms; the maps [n] : P 7→ nP are examples.
For p - n we have ker[n] ' Z/nZ⊕ Z/nZ, so [n] is not cyclic.

The degree of an isogeny is the degree degϕ of the rational functions that define it.
When degϕ is coprime p we have degϕ = # kerϕ.

Every finite subgroup G of E(k̄) is the kernel of an isogeny ϕ : E → E′ with degϕ = #G.
The isogeny ϕ and E′ are determined (up to isomorphism) by G; we may write E/G for E′.

Every isogeny ϕ : E → E′ has an associated dual isogeny ϕ̂ : E′ → E with ϕ̂ ◦ ϕ = [degϕ].

Isogeny graphs
For primes ` 6= p, there are `+ 1 non-trivial cyclic subgroups of Z/`Z⊕ Z/`Z.
Each is the kernel of an `-isogeny (an isogeny of degree `).

The isogeny graph G`(k) has elliptic curves E/k as vertices and `-isogenies as edges. Each
vertex in G`(k) has degree at most `+ 1. It will be less than `+ 1 if an `-isogeny leads to an
elliptic curve over k̄ that is not defined over k (this happens), hence not a vertex in G`(k).

The graph G`(k) is not connected. For k = Fq elliptic curves E1 and E2 cannot lie in the same
component unless #E1(Fq) = #E2(Fq), and even then they might lie in different components.

The components of G`(k) have a rich and varied structure, including “volcanoes”, “whirlpools”,
and “spines”, however the components most suitable for cryptography are Ramanujan graphs.

Elliptic curves with Frobenius trace t ≡ 0 mod p are supersingular. In characteristic p all such
curves are defined over Fp2 and the supersingular subgraph of G`(Fp2) is a connected
(`+ 1)-regular Ramanujan graph: random walks of length log` p yield a uniform distribution
over the ≈ p/12 supersingular vertices, independent of the starting point.

Ordinary isogeny graphs

Side and top views of a 3-volcano over a finite field taken from Isogeny volcanoes.

https://msp.org/obs/2013/1-1/p25.xhtml

Supersingular isogeny graphs

Image taken from Adventures in Supersingularland by Sarah Arpin, Catalina Camacho-Navarro, Kristin
Lauter, Joelle Lim, Kristina Nelson, Travis Scholl, and Jana Sotáková.

https://arxiv.org/abs/1909.07779

Supersingluar isogeny graphs

Image taken from Orienting supersingular isogeny graphs by Leonardo Colò and David Kohel.

https://arxiv.org/abs/2012.10803

Supersingular Isogeny Diffie–Hellman (SIDH)
SIDH is a variant of the ephemeral Diffie–Hellman protocol that replaces scalar multiplication
by a random integer with a random walk in a supersingular isogeny graph:

Alice and Bob use a supersingular elliptic curve E0/Fp2 to establish a shared secret as follows:
1. Alice chooses a random integer a encoded in base-2 and computes Ea by taking an a-walk

in the 2-isogeny graph, starting from E0; she sends Ea to Bob.
2. Bob chooses a random integer b encoded in base-3 and computes Eb by taking a b-walk in

the 3-isogeny graph, starting from E0; he sends Eb to Alice.
3. Alice computes (Eb)a (an a-walk from Eb), and Bob computes (Ea)b (a b-walk from Ea).
4. Alice and Bob use j((Eb)a) = j((Ea)b) is the shared secret,

where j(E) := 1728 4A3

4A3+27B2 is the j-invariant of y2 = x3 +Ax+B.
No known classical/quantum algorithm efficiently computes j((Eb)a))=j((Ea)b) from Ea, Eb.

But this description glosses over a crucial detail.
Alice and Bob need to to compute their two a-walks and b-walks compatibly!

Supersingular Isogeny Key Encapsulation (SIKE)

SIKE uses E0 : y2 = x3 + 6x2 + x and p = 2e3f − 1 and #E0(Fp2) = (p+ 1)2 = 22e32f .
Public parameters E0, Pa, Qa, Pb, Qb with E0[2](Fp2) = 〈Pa, Qa〉 and E0[3](Fp2) = 〈Pb, Qb〉.

1. Alice computes ϕa : E0 → Ea = E0/〈Pa + aQa〉 as a chain of 2-isogenies E0 → · · · → Ea
(this is her a-walk) and sends Bob ϕa(Pb), ϕa(Qb), and Ea.

2. Bob computes ϕb : E0 → Ea = E0/〈Pb + bQb〉 as a chain of 3-isogenies E0 → · · · → Eb
(this is his b-walk) and sends Alice ϕb(Pa), ϕb(Qa), and Eb.

3. Alice uses ϕb(Pa), ϕb(Qa) to compute ϕb(Pa + aQa) = ϕb(Pa) + aϕb(Qa),
which allows her to compute (Eb)a as Eb/〈ϕb(Pa + aQa)〉.

4. Bob uses ϕa(Pb), ϕa(Qb) to compute ϕa(Pb + bQa) = ϕa(Pb) + bϕa(Qb),
which allows him to compute (Ea)b as Ea/〈ϕa(Pb + bQb)〉.

In addition to Ea and Eb, this protocol sends ϕa(Pb), ϕa(Qb), ϕb(Pa), ϕb(Qa) in the clear.
This additional information is what makes the new attack possible, but the details are subtle.

The breaking of SIKE
On July 30, 2022, Castryck and Decru posted An efficient key recovery attack on SIDH, which
gives a practical algorithm to compute b given E0, Pa, Qa, and Eb, ϕb(Pa), ϕb(Qb).
• They provide Magma code that solves the $50,000 SIKE challenge (217-bit prime)

from Microsoft in about 5 minutes (they claimed the cash prize on July 22).
• Their code breaks standard security level in the SIKE proposal (434-bit prime) in about an

hour, and the highest security level in the SIKE proposal (751-bit prime) in about 20
hours. Later improvements reduced these times to under a minute and under an hour.

• On August 8 Maino and Martindale post An attack on SIDH with arbitrary starting curve,
which generalizes the attach to any SIDH scheme that exposes images of torsion points.

• Castryck–Decru and Maino–Martindale present their results in a pair of talks given at the
Algorithmic Number Theory Symposium (ANTS XV) on August 10.

• On August 17 Robert posts Evaluating isogenies in polylogarithmic time, giving a less
practical but more general algorithm that is provably polynomial–time.

The 1997 paper The number of curves of genus two with elliptic differentials, by Ernst Kani is
the key ingredient used by all of these results. It has nothing to do with cryptography.

https://eprint.iacr.org/2022/975
https://github.com/GiacomoPope/Castryck-Decru-SageMath
https://eprint.iacr.org/archive/2022/1026/20220808:211318
https://people.maths.bris.ac.uk/~jb12407/ANTS-XV/schedule.html
https://eprint.iacr.org/2022/1068
https://mast.queensu.ca/~kani/papers/numgenl.pdf

Abelian surfaces
An abelian variety is a projective algebraic variety (zero locus of a set of homogeneous
polynomials) that is also an algebraic group (the group is defined by regular rational maps).

Elliptic curves are abelian varieties of dimension one.
A product of elliptic curves is an abelian surface, an abelian varieties of dimension two.
A product of supersingular elliptic curves yields a superspecial abelian surface.

But most abelian surfaces (even superspecial ones) are Jacobians Jac(X) of a genus 2 curve

X : y2 = f(x),

where f(x) is a square free sextic. Points on Jac(X) are represented by pairs of points on X.

As with elliptic curves, one can define (`, `)-isogeny graphs of (principally polarized) abelian
surfaces in which edges are (`, `)-isogenies with kernels isomorphic to Z/`Z⊕ Z/`Z. One way
to construct such an isogeny is to take the product of two `-isogenies of elliptic curves.

Note that for an abelian surface A and ` 6= p we have A[`] ' Z/`Z⊕ Z/`Z⊕ Z/`Z⊕ Z/`Z.

The group law on the Jacobian of a genus 2 curve

Image credit: Cryptographic applications of isogeny graphs of genus 2 and 3 curves, Chloe Martindale, 2019.

https://www.martindale.info/talks/Aussois.pdf

The key idea

There are about p2/288 products of supersingular elliptic curves defined over Fp2 .
But the total number of superspecial abelian surfaces defined over Fp2 is roughly p3/2880.

For cryptographic-size p it is astronomically unlikely we will ever encounter a product of
elliptic curves in a random walk in the (`, `)-isogeny graph of superspecial abelian surfaces.

But in the SIDH setup, we can use the curves E0, Eb and the points ϕb(Pa) and ϕb(Qa) to
explicitly construct p a scenario where this is guaranteed to happen in the (2, 2)-isogeny graph,
and we can do this for any value of b, including all but the first or last 3-adic digit of b.

We don’t know what b is, but there are only 3 possibilities for its first or last digit, and we can
try them all. If we guess wrong, our construction won’t produce a walk that hits a product of
elliptic curves, and this gives us a way to test whether a candidate digit value is correct or not.

The key tool that enables this construction are isogeny diamonds, which were introduced by
Ernst Kani in 1997 (long before anyone was thinking about isogeny-based cryptography).

Isogeny diamonds
Let φ : A→ B and ψ : A→ C be isogenies of elliptic curves with gcd(deg φ, degψ) = 1.
We then have an (orthogonal) isogeny diamond

A B

C D

φ

ψ ψ′

φ′

where φ′ and ψ′ are determined by kerφ′ = ψ(kerφ) and kerψ′ = φ(kerψ).

Lemma (Kani 1997)

Let d = deg φ+ degψ and let G := {(φ(P), ψ(P)) : P ∈ A[d]} ⊆ B × C. Then(
φ̂ ψ̂
−ψ′ φ′

)
is a (d, d)-isogeny B × C → A×D with kernel G.
In particular, the abelian surface (B × C)/G is a product of elliptic curves.

Bob’s ultimate isogeny diamond

Recall that in the SIDH setup we have #E0(Fp2) = 22e32f . Suppose we have an efficiently
computable isogeny ψ : E0 → C of degree 2e − 3f , and that ϕb = E0 → Eb decomposes into a
composition of 3-isogenies as ϕb = φf ◦ φf−1 ◦ · · · ◦ φ2 ◦ φ1.

E0 E1 · · · Ef−1 Ef = Eb

C

ψ

φ1 φ2 φf−1 φf

Consider the isogeny diamond determined by E0, ϕb, ψ. We don’t know ϕb, but we know
ϕb(Pa) and ϕb(Qa), and we can compute ψ(Pa) and ψ(Qa), so we can compute generators for
G = {(ϕb(P), ψ(P)) : P ∈ E0[2e] = 〈Pa, Qa〉}, which is the kernel of a (2e, 2e)-isogeny from
Eb × C → E0 ×D to a product of elliptic curves (one of which is E0).

We can verify this by taking a walk in the (2, 2)-isogeny graph of abelian surfaces with kernel
G and checking that we indeed hit a product of elliptic curves on the eth step.

Walking the (2, 2)-isogeny graph using Richelot isogenies
We first apply gluing formulas of Howe–Leprévost–Poonen to compute quadratic polynomials
g1, g2, g3 ∈ Fp2 [x] such that the Jacobian of the genus 2 curve

X1 : y2 = f(x) = g1(x)g2(x)g3(x)

is isomorphic to (Eb × C)/G1 where G1 := 〈(2e−1ϕb(P), 2e−1ψ(P)) : P = Pa, Qa〉. This is
the first (2, 2)-isogeny in our walk. Subsequent steps are computed using Richelot isogenies.
Index g1, g2, g3 so that the roots of g1(x) = x2 + g11x+ g10 and g2(x) = x2 + g21x+ g20
define elements of Jac(X) that generate G2 := 〈(2e−2ϕb(P), 2e−2ψ(P)) : P = Pa, Qa〉. Let

δ := det
(g10 g21 1
g20 g30 1
g30 g31 g32

)
Provided δ 6= 0, the next step in our walk is the Jacobian of X2 : y2 = g′1(x)g′2(x)g′3(x), where
g′i(x) := δ−1

(
dgj

dx gk − gj
dgk

dx

)
for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2).

We will have δ = 0 if and only if the next step in our walk is a product of elliptic curves.
We will necessarily hit δ = 0 when we try to compute the eth step in our walk!
If this does not happen, the starting point of our walk must have been wrong.

Guessing Bob’s penultimate isogeny diamond
Recall the diagram of isogenies

E0 E1 · · · Ef−1 Ef = Eb

C

ψ

φ1 φ2 φf−1 φf

Let ϕn := φn ◦ φn−1 ◦ · · · ◦ φ1 for 1 ≤ n ≤ f , so that ϕf = ϕb. We don’t know what φf is or
what ϕf−1(Pa) and ϕf−1(Qa) are, but there are only 4 possibilities, because there are only 4
cyclic 3-isogenies ρ from Eb, one of which is the dual isogeny φ̂f , and 3ϕf−1 = φ̂f ◦ ϕf .

We can determine which ρ is correct by trying all 4: let ϕ := ρ ◦ ϕf and take a walk in the
(2, 2)-isogeny graph of abelian surfaces as above using the kernel

G = 〈(cϕ(P), ψ1(P)) : P = Pa, Qa〉,

where c is the multiplicative inverse of 3 modulo 2e and ψ1 : E0 → C1 has degree 2e − 3f−1.
With very high probability, we will find δ = 0 on the eth step only when ρ = φ̂f .

Lather, rinse, repeat

Having determined φ̂f we can compute its codomain Ef−1 and ϕf−1(Pa) and ϕf−1(Qa).
We also know the most significant 3-adic digit of b: the kernel of φf is ϕf−1(Pb + bQb).

If we replace Ef , ϕf (Qa),ϕf (Pa) with Ef−1,ϕf−1(Pa),ϕf−1(Pa), equivalently, decrement f ,
we are right back where we started, but with a smaller value of f . Repeat until f = 0. We can
thus compute Bob’s secret b one 3-adic digit at a time.

We have intentionally glossed over an important point: how do we construct an efficiently
computable ψ : E0 → C of degree d = 2e − 3f?
• If d = u2 + v2 is a sum of two squares we can write it as d = (u+ iv)(u− iv).

End(E0) contains an endomorphism corresponding to i, so use ψ = u+ iv ∈ End(E0).
• If d is not a sum of two squares, try d = 2e−α − 3f−β with α, β small (works for SIKE).
• More generally, check if d = 2e−α − 3f−β is a product of small primes.
• More generally still, take Robert’s approach: write d as a sum of four squares (always

possible) and take walks in isogeny graphs of 8-dimensional abelian varieties.

