
18.095 Lecture Series in Mathematics
Lecture #8

IAP 2017
01/27/2017

As Gauss wrote in 1801 [7],

“Problema, numeros primos a compositis dignoscendi, hosque in factores suos primos
resolvendi, ad gravissima ac utilissima totius arithmeticae pertinere, et geometrarum tum
veterum tum recentiorum industriam ac sagacitatem occupavisse, tam notum est, ut de hac
re copiose loqui superfluum foret. [P]raetereaque scientiae dignitas requirere videtur, ut
omnia subsidia ad solutionem problematis tam elegantis ac celebris sedulo excolantur.

[The problem of distinguishing prime numbers from composite numbers and of resolving
the latter into their prime factors is known to be one of the most important and useful in
arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to
such an extent that it would be superfluous to discuss the problem at length. Further, the
dignity of the science itself seems to require that every possible means be explored for the
solution of a problem so elegant and so celebrated.]”

After two centuries of exploring “every possible means” we finally have an essentially
satisfactory solution to the first part of the problem posed by Gauss: distinguishing primes
from composites. This is a critical first step toward addressing the second part of the
problem (resolving composites into their prime factors), which remains open. Without the
ability to distinguish primes and composites we have no way of knowing when we have
computed the prime factorization of a number. What is the prime factorization of 2017?
How about 2021?

Primality testing is a huge topic that we cannot hope to cover in one lecture, we refer
the interested reader to [6] for an in depth treatment. Our goal in this lecture is to first give
a brief overview of the topic, including how primality testing is done in practice, and then
present the main theoretical result: a polynomial-time algorithm for determining whether
a given integer is prime or composite.

8.1 Primality testing using modular arithmetic

A key component of all the primality testing algorithms we will consider is modular arith-
metic (and generalizations thereof). Let us begin by briefly reviewing some basic facts that
are probably familiar to most of you.

The set of integers Z = {0,±1,±2, . . .} is an example of a commutative ring : it comes
equipped with binary operations + and ×, both of which are each commutative, associative,
have an identity element, and satisfy the distributive law a(b+ c) = ab+ ac. Every element
of a ring R has an additive inverse, but not every element necessarily has a multiplicative
inverse; the set of elements that do have a multiplicative inverse is called the unit group of
the ring, denoted R×; for example, Z× = {±1}. A group is a set with an associative binary
operation and an identity element in which every element has an inverse; if the operation
is commutative the group is said to be abelian. There are two abelian groups associated
to a commutative ring R: the additive group (R,+) and the multiplicative group (R×,×).
Rings whose multiplicative group consists of all nonzero elements are called fields.

Given a ring R one can form additional rings by taking the quotient of R modulo an
ideal I. An ideal of a ring is a nonempty subset I ⊆ R that is closed under addition and by
multiplication by elements in R; for example, for any n ∈ Z the set nZ := {nz : z ∈ Z} is an
ideal. Every ideal I is an abelian group under addition, but I is a ring if and only if I = R.
But associated to each ideal I of R we have a quotient ring R/I whose elements consist of
equivalence classes under the following equivalence relation: two elements a, b ∈ R are in
the same equivalence class modulo I if and only if a − b ∈ I. We can then use the map

Lecture by Andrew Sutherland



a → [a] that sends each a ∈ R to its equivalence class [a] ∈ R/I to define addition and
multiplication in R/I via [a]+ [b] := [a+b] and [a][b] := [ab]. In order for this to make sense
one needs to check that if [a] = [a′] and [b] = [b′] then [a′ + b′] = [a + b] and [a′b′] = [ab],
but this is always the case. A familiar example of a quotient ring is the ring Z/nZ of
integers modulo n; we can add and multiply in Z/nZ using a set of unique representatives
[0, 1, . . . , n− 1] and reducing modulo n as we go.

The rings Z/nZ are of particular interest to us because the structure of this ring, and in
particular its unit group (Z/nZ)×, depends critically on whether n is prime or not. Indeed,
the ring Z/nZ is a field if and only if n is prime. To see this, note that

[a] ∈ (Z/nZ)× ⇐⇒ gcd(a, n) = 1,

since if gcd(a, n) > 1 then no multiple of a can be congruent to 1 modulo n (so [a] has
no multiplicative inverse) and if gcd(a, n) = 1 then we can use the extended Euclidean
algorithm to compute integers s and t such that sa + tn = 1, in which case [s] is the
multiplicative inverse of [a] because sa ≡ 1 mod n.

Definition 8.1. The function φ(n) := #(Z/nZ)× is known as Euler’s totient function. It
can be computed via the formula

φ(n) = n
∏
p|n

(
1− 1

p

)

where p ranges over the prime factors of n.

The formula for φ(n) is easy to prove: the probability that a random a ∈ {0, . . . , n− 1}
is not divisible by a particular prime divisor p of n is 1− 1/p, and the probability that a is
not divisible by any prime divisor of n, equivalently, gcd(a, n) = 1, is the product of these
probabilities, which is also equal to φ(n)/n; for distinct primes p and q the probabilities are
independent because an integer a is divisible by pq if and only if it is divisible by both p
and q. The formula for φ(n) gives us a simple criterion for primality.

Proposition 8.2. An integer n is prime if and only if φ(n) = n− 1.

The proposition is obviously true, but at first glance it does not appear to be very
useful, since computing φ(n) with our formula requires us to know the prime factorization
of n (and in particular, whether n is prime or not). The key to making Proposition 8.2
useful is to use the fact that (Z/nZ)× is a group.

A basic fact about groups is that the order (cardinality) of any subgroup H of a group G
divides the order of G, this follows from the fact that we can partition G into cosets of H,
each of which has cardinality #H. For any a ∈ G the coset aH := {ah : h ∈ H} has
cardinality #H because the map h 7→ ah is a bijection, and two cosets aH and bH are
either disjoint or equal: if ah1 = bh2 with h1, h2 ∈ H then aH = {bh2h−11 h : h ∈ H} = bH.
This applies, in particular, to any cyclic subgroup 〈a〉 := {a, a2, a3, . . .} with a ∈ G. Thus
the order of a ∈ G, by which we mean the order of 〈a〉, is always a divisor of #G.

Corollary 8.3. If an−1 6≡ 1 mod n with 1 ≤ a < n then n is composite.

Proof. If n is prime then (Z/nZ)× has order φ(n) = n−1 and the order of [a] ∈ (Z/nZ)× is a
divisor d of n−1. Therefore ad = 1 mod n and an−1 = (ad)(n−1)/d = 1(n−1)/d = 1 mod n

18.095 IAP 2017 Lecture #8



An integer a that satisfies the condition of the proposition is said to be a witness for
n; it can be viewed as a certificate of the fact that n is composite. One verifies this
certificate by checking that an−1 6≡ 1 mod n, which can be done efficiently using binary
exponentiation. Every integer n has a unique binary representation, and we can use this
representation compute an−1 efficiently using a product of repeated squarings. For example,
if n−1 = 34 = 100102 = 25+21 then an−1 = a2

5
a2 and we can compute a2, a4 = (a2)2, a8 =

(a4)2, a16 = (a8)2, a32 = (a16)2. With this approach no more than 2 lg n multiplications are
required to compute an−1 mod n; here lg n denotes the base-2 logarithm of n. By reducing
modulo n at each step, we can are always working with (lg n)-bit integers; this leads to
an algorithm that uses O(log3n) bit operations using standard “schoolbook” methods for
multiplication and division with remainder; this can be improved to O(log2+εn) using more
sophisticated methods based on the fast Fourier transform (FFT).

Remark 8.4. Here and throughout we use the standard asymptotic notation O(g(t)) to
denote a positive function f(t) for which

lim
t→∞

f(t)

g(t)
≤ c

for some constant c. When measuring the asymptotic complexity of an algorithm we typ-
ically express it as a function of the size of the input (measured in bits, the number of 0s
and 1s in its binary representation). A polynomial-time algorithm is one whose running
time is bounded by a polynomial function of the size of its input; in the context of primality
testing, this means an algorithm that takes an integer n as input and determines whether
or not n is prime using O(logkn) bit operations, for some fixed exponent k.

If we knew that every composite integer n has a witness a ≤ B = c logkn for some
constants c and k then Corollary 8.3 would give us a polynomial-time primality test: we
could simply check each positive integer a ≤ B to see whether it is a witness for n. But
unfortunately this is not the case, in fact there are composite integers n that do not have
any witnesses other than those that share a prime factor of n (so finding one amounts to
finding a proper divisor of n),

Definition 8.5. A (positive) composite integer n for which an−1 ≡ 1 mod n for all integers
a relatively prime to n is called a Carmichael number.

The first three Carmichael numbers are 561, 1105, and 1729. More can be found in the
OEIS sequence A002997 for more), and it is known that there are infinitely many [2].

8.2 A probabilistic primality test

The existence of Carmichael numbers implies that we cannot use Corollary 8.3 to efficiently
test primality, but if we strengthen our notion of a witness we can. Let us now assume
that the integer n whose primality we wish to test is a positive odd number (even numbers
are easy to test for primality). By repeatedly dividing n − 1 by 2 until we obtain an odd
number m we can always write n in the form n = 2rm+ 1 with m odd and r ≥ 1; note that
we don’t need to factor n− 1 to do this, we are just computing its 2-adic valuation).

Proposition 8.6. Let n = 2st + 1 with t ≥ 1 odd and s ≥ 1. If am 6≡ 1 mod n and
am2i 6≡ −1 for 0 ≤ i < s with 1 ≤ a < n then n is composite.

18.095 IAP 2017 Lecture #8

https://oeis.org/A002997


Proof. Suppose n is prime. Then [a] ∈ (Z/nZ)× has order dividing φ(n) = n − 1 = 2rt
and [at] has order dividing 2r, since (at)2

s
= an−1 ≡ 1 mod n. For each 0 ≤ i < s the

order of [at2
i
] divides 2r−i, and if at 6≡ 1 mod n then [at2

i
] has order 2 for some 0 ≤ i < s.

The residue class [−1] clearly has order 2 (note that n ≥ 3), and moreover, it is the unique
element of (Z/nZ)× of order 2 because for prime n the unit group (Z/nZ)× is cyclic (see
the exercises). It follows that at2

i ≡ −1 mod n for some 0 ≤ i < s.

An integer a that satisfies the properties of the Proposition is called a Miller-Rabin
witness. As with our earlier notion of a witness we can efficiently determine whether or not
a given integer a is a witness or not using the Euclidean algorithm and binary exponentiation
in O((log n)2+ε) time. The key difference is that while not every composite number has a
witness, every odd composite number has a Miller-Rabin witness, in fact it has many.

Theorem 8.7. Let n be an odd composite number. The probability that a random integer
a ∈ [1, n− 1] is Miller-Rabin witness for n is at least 3/4.

The theorem implies that if n is composite and we pick, say, 100 random integers
a ∈ [1, n−1], then we are almost certainly going to find a witness for n. On the other hand,
if n is prime then Proposition 8.6 guarantees that we will never find a witness. If we don’t
find a witness among our 100 randomly chosen a we don’t know for sure that n is prime,
but we can be very confident that this is the case.

Proof. 1 Let n be an odd composite number of the form n = 2st + 1 with t odd, and let
n = q1 · · · qr be the factorization of n into powers of distinct primes. Let us consider a
particular a ∈ [1, n − 1], and let b = at. If a is not a witness then either b ≡ 1 mod n, in
which case b ≡ 1 mod qj for all of the qj , or b2

i ≡ −1 mod n for some 0 ≤ i < s, in which

case b2
i ≡ −1 mod qj for all of the qj . In either case, b mod qj is an element of the 2-Sylow

subgroup2 of (Z/qjZ)× for all qj , and it has order 2i+1 in (Z/qjZ)× for each qj (with i = −1
in the first case). We will show that the probability of this happening for a random choice
of a is at most 1/4. We consider three cases.

Case 1: n is not square-free. Then some qj = pk with k > 1. Since p is odd, the
group (Z/pkZ)× is cyclic of order φ(pk) = pk−1(p− 1). The prime p cannot divide t, since
t divides n − 1 and p divides n. It follows that if a has order divisible by p in (Z/pkZ)×,
then so does b = at, and in this case b cannot be an element of the 2-Sylow subgroup of
(Z/pkZ)×. Thus the probability that b lies in the 2-Sylow subgroup of (Z/pkZ)× is at most
1/pk−1, which is less than 1/4 for all pk > 9. For pk = 9 one checks that for t = ± mod 6,
at most 2/9 < 1/4 of the possible values of a mod 9 yield b = at = ±1 mod 9 in the 2-Sylow
subgroup of (Z/9Z)×.

Case 2: r ≥ 3. For each qj the 2-Sylow subgroup Gj of (Z/qjZ)× is a cyclic of order 2kj ,
for some kj > 1, and at most half the elements in Gj have any particular order. Assuming
b = at mod qj lies in Gj for j = 1, 2, 3, the probability that it has the same order in each
case is at most 1/4.3

Case 3: n = pq for distinct primes p and q. We may write p = 2sptp+1, and q = 2sq tq+1,
with tp and tq odd. Define the random variable Xp to be −1 if b mod p does not lie in the
2-Sylow subgroup Gp of (Z/pZ)×, and otherwise let Xp = i, where b mod p has order 2i in
Gp. Similarly define the random variable Xq. We wish to show that Pr[Xp = Xq ≥ 0] ≤ 1/4.

1The proof we give here is a bit different (and more elementary) than the proofs of Monier and Rabin.
2A p-Sylow subgroup of a group G is a subgroup whose order is the largest power of p dividing #G.
3This rules out all Carmichael numbers, since they all have at least 3 distinct prime factors.

18.095 IAP 2017 Lecture #8



We first suppose sp > sq. Half the elements in the 2-Sylow subgroup of (Z/pZ)×) have
order 2sp > 2sq , so Pr[0 ≤ Xp ≤ sq] ≤ 1/2. We also have Pr[Xq = Xp|0 ≤ Xp ≤ sq] ≤ 1/2,
thus Pr[Xp = Xq ≥ 0] ≤ 1/4.

We now suppose that sp = sq. We have

2st = n− 1 = pq − 1 = (p− 1)(q − 1) + (p− 1) + (q − 1) = 2stptq + 2sptp + 2sptq,

so if tp divides t then it divides tq and conversely. It follows that tp and tq cannot both
divide t (if this were true then we would have tp = tq and p = q but we assumed p 6= q). So
we may assume without loss of generality that tp does not divide t. This means tp 6= 1, so tp
is divisible by an odd prime ` ≥ 3 that does not divide t. It follows that Pr[Xp ≥ 0] ≤ 1/3,
and we also have Pr[Xq = Xp|Xp ≥ 0] ≤ 1/2, hence Pr[Xp = Xq ≥ 0] ≤ 1/6 < 1/4.

Theorem 8.7 yields the following probabilistic primality test, due to Gary Miller [11]
and Michael Rabin [14].

Algorithm 8.8 (Miller-Rabin). Given an odd integer n ≥ 3:

1. Pick a random integer a ∈ [1, n− 1].

2. Write n = 2st+ 1, with t odd, and compute x = at mod n.
If x ≡ ±1 mod m, return true (a is not a witness, n could be prime).

3. For i from 1 to s− 1:
a. Set x← x2 mod n.

b. If x ≡ −1 mod n, return true (a is not a witness, n could be prime).

4. Return false (a is a witness, n is definitely composite).

Example 8.9. For n = 561, a = 2: 561 = 24 · 35 + 1. We find that

235 ≡ 263 mod 561

is not ±1 mod 561 so we continue:

2362 ≡ 166 mod 561

1662 ≡ 67 mod 561

672 ≡ 1 mod 561

None of these values is congruent to −1, so a = 2 is a witness for n = 561 and we return
false, meaning that 561 is definitely not a prime.

8.3 A deterministic primality test under GRH

We can make Algorithm 8.8 deterministic by having it test every integer a in [1, B] for
some bound B, rather than picking a random integer in [1, n]. Proposition 8.6 implies that
B = n/4 would work, but this is far larger than necessary. Indeed, under a generalized
form of the Riemann hypothesis (GRH) it is known the set of integers a ∈ [1, 2(log n)2] is
guaranteed to contain a complete set of generators for the group (Z/nZ)×, for any positive
integer n, prime or otherwise [3]. One can show that the elements [a] ∈ (Z/nZ)× for
which the Miller-Rabin algorithm outputs true (the non-witnesses) are contained in a
proper subgroup of (Z/nZ)×; it follows that if n is composite then any set of generators for
(Z/nZ)× contains at least one witness. This yields a deterministic algorithm that runs in
O(log4+εn)) time, but its correctness depends on a conjecture that has yet to be proved.

18.095 IAP 2017 Lecture #8



8.4 A deterministic primality test

We now come to the primality test of Agrawal, Kayal, and Saxena (AKS), which is a
deterministic algorithm that runs in polynomial time. It is based on the following lemma.

Lemma 8.10. Let n ≥ 2 be an integer and suppose gcd(a, n) = 1. Then n is prime if and
only if

(X + a)n ≡ Xn + a mod n

Here X is a formal variable and we are working in the quotient of the polynomial ring
Z[X] modulo the ideal nZ[X], which is equivalent to the polynomial ring (Z/nZ)[X].

Proof. By the binomial theorem, we have

(X + a)n = Xn +

(
n

1

)
Xn−1a+ · · ·+

(
n

n− 1

)
Xan−1 + an.

If n is prime then
(
n
k

)
≡ 0 mod n for 0 < k < n and the desired congruence holds. Other-

wise n is divisible by some prime p with 1 < p < n. The larges power pe of p dividing n
does not divide

(
n
p

)
, nor does it divide an−p, since gcd(a, n) = 1. The coefficient of Xp is

therefore nonzero modulo pe, hence nonzero modulo n. The lemma follows.

The good thing about Lemma 8.10 is that every a coprime to n works as a witness that
can determine if n is composite, but this does not give us a practical algorithm because the
polynomial (X + a)n has far too many terms for us to compute them all. However we can
compute (X + a)n efficiently using binary exponentiation if we work modulo an ideal of the
form (Xr − 1, n); this means that not only reduce all coefficients modulo n, we can replace
any monomial Xk with Xk mod r, which means we are always working with polynomials of
degree less than r.

If n is prime then we have

(X + a)n ≡ Xn + a mod (Xr − 1, n)

for every a, r ≥ 1. The key to the AKS primality test is to show that if n is composite then
there is a pair (a, r) with both a and r bounded by a polynomial in log n for which the
above identity will fail to hold.

Let us fist give the algorithm, which is very simple. As a matter of notation, for any
integer x let ordr(x) to denote the order of [x] in the group (Z/rZ)×.

Algorithm 8.11 (Agrawal-Kayal-Saxena). Given an integer n ≥ 3:

1. If n = mk for some m, k > 1 then output false (n is composite).

2. Find the smallest r ≥ 1 such that ordr(n) > lg2n.

3. If 1 < gcd(a, n) < n for some a ∈ [1, r] then output false (n is composite).

4. If n ≤ r then output true (n is prime).

5. For a = 1 to b
√
r lg nc do

a. If (X + a)n 6≡ Xn + a mod (Xr − 1, n) then output false (n is composite).

6. Output true (n is prime).

It is easy to see that if the input n is prime then Algorithm 8.11 will output true: it
cannot output false in steps 1, 3, or 5 so it must output true, either in step 4 or in step 6.

18.095 IAP 2017 Lecture #8



8.5 Correctness of the AKS algorithm

To prove the converse, that if Algorithm 8.11 outputs true then its input n is prime, requires
more work. Let us fix the input n and assume that the output is true. If n ≤ r then the
algorithm must have terminated in step 4, in which case n is clearly prime, so we may
assume n > r, and moreover, that n has no prime factors p ≤ r, since any such factor would
have been found in step 3. So let p > r be a prime factor of n, and let us choose p so that
p 6≡ 1 mod r; such a p exists since ordr(n) > lg2 n > 1. Our goal is to prove that n = p,
and it suffices to show that n is a power of p, since in this case if n 6= p then the algorithm
would have output false in step 1.

Let b := b
√
r lg nc. Since we are assuming that n > r and that the algorithm output

true, it most have reached step 6, and therefore we know that for every integer a ∈ [1, b]
we have

(X + a)n ≡ Xn + a mod (Xr − 1, n),

and since p|n this implies

(X + a)n ≡ Xn + a mod (Xr − 1, p).

We also note that (X + a)p ≡ Xp + a mod p; indeed for any polynomial f ∈ Z[X] we have
f(X)p ≡ f(Xp) mod p (this follows from the fact that every multinomial coefficients in the
expansion of f(X)p is divisible by p except those that involve a single term of f(X) raised
to the pth power. Corollary 8.3 implies that ap ≡ a mod p, thus

(X + a)p ≡ Xp + a mod (Xr − 1, p).

We also note that

((X + a)n/p − (Xn/p + a))p ≡ (X + a)n − (Xn + a) ≡ 0 mod (Xr − 1, p),

so
(X + a)n/p ≡ Xn/p + a mod (Xr − 1, p).

Definition 8.12. m ∈ Z>0 is introspective for f ∈ Z[X] if f(X)m ≡ f(Xm) mod (Xr−1, p).

The integers n, p, n/p are all introspective for the polynomials X + a for all a ∈ [1, b].

Lemma 8.13. Introspectivity is multiplicative in both m and f , that is:

(i) if m1 and m2 are both introspective for f then so is m1m2;

(ii) if m is introspective for both f1 and f2 then m is introspective for f1f2.

Proof. (i) If m1 and m2 are introspective for f then

f(X)m1m2 ≡ f(Xm1)m2 mod (Xr − 1, p),

since m1 is introspective for f , and substituting Xm1−1 for X yields

f(Xm1)m2 ≡ f(Xm1m2) mod (Xm1r − 1, p)

≡ f(Xm1m2) mod (Xr − 1, p)

since m2 is introspective for f and Xr−1 divides Xm1r−1. So m1m2 is introspective for f .
(ii) If m is introspective for f1 and f2 then

(f1f2)(X)m ≡ f1(X)mf2(X)m ≡ f1(Xm)f2(X
m) ≡ f1f2(Xm) mod (Xr − 1, p),

so m is introspective for f1f2.

18.095 IAP 2017 Lecture #8



It follows from Lemma 8.13 that every integer m in the set

S :=
{

(n/p)ipj : i, j ≥ 0
}

is introspective for every polynomial f in the set

P :=

{
b∏

a=0

(X + a)ea : ea ≥ 0

}
.

We have gcd(n, r) = 1 (checked in step 3), so gcd(n/p, r) = 1, and clearly gcd(p, r) = 1,
since p > r is prime. It follows that gcd(m, r) = 1 for all m ∈ S. The set of residues

S := {[m] ∈ Z/rZ : m ∈ S} ⊆ (Z/rZ)×

is a multiplicatively closed subset of the finite group (Z/rZ)×, hence a subgroup, and it is
generated by the elements [n] and [p]. Let s := #S. We have ordr(n) > lg2 n (by the choice
of r in step 2), and [n]r ∈ S, so s > lg2 n.

We now want to similarly define a finite set of residues P for the set P , but to do this
we first need to define a suitable finite quotient of the ring Z[X] in which P lies.

8.5.1 Cyclotomic polynomials and finite field extensions

The roots of the polynomial Xr − 1 can be viewed as rth roots of unity (over the complex
numbers, its roots {e2πik/r : k ∈ [1, r]} lie on the unit circle). For each divisor d of r
the polynomial Xr − 1 is divisible by the cyclotomic polynomial Φd(X) whose roots ζ are
primitive dth roots of unity, meaning that ζd = 1 but ζk 6= 1 for 1 ≤ k < d. In Z[X] we
have the factorization

Xr − 1 =
∏
d|r

Φd(X),

in which each cyclotomic polynomial Φd is an irreducible polynomial of degree φ(d). For
example,

X4 − 1 = Φ1(X)Φ2(X)Φ4(X) = (X − 1)(X + 1)(X2 + 1).

In the ring (Z/pZ)[X] the polynomial Φr(X) may factor into lower degree polynomials;
indeed it is a product of irreducible polynomials of degree k := ordr(p) (this follows easily
from the Galois theory of finite fields which we won’t delve into here). Let h(X) be one of
these irreducible factors, and define the quotient ring

K :=
(Z/pZ)[X]

(h(X))
.

The fact that h(X) is irreducible in (Z/pZ)[X] implies that gcd(f(X), h(X)) = 1 for all
nonzero polynomials f(X) of degree deg f < deg h. The set of all such polynomials forms
a set of distinct representatives for the nonzero residue classes in K, of which there are
pk − 1. The fact that gcd(f(X), h(X) = 1 implies that we can use the extended Euclidean
algorithm to compute s(X)f(X) + t(X)h(X) = 1 for some s, t ∈ (Z/pZ)[X], and we then
have [s][f ] = 1 in K; it follows that every nonzero element of K has a multiplicative inverse.

Thus K is a field with pk elements; up to isomorphism this uniquely determines K.
Every a ∈ K× has order dividing #K× = pk − 1 and is therefore a root of the polynomial
Y pk−1 − 1, which is divisible by Y r − 1, because pk ≡ 1 mod r. There are pk − 1 nonzero

18.095 IAP 2017 Lecture #8



elements of K, the same as the degree of Y pk−1 − 1, so every root of Y pk−1 − 1 lies in K,
as does every root of Y r − 1; thus K contains all the rth roots of unity.

In fact everything above remains true if we replace h(X) with any irreducible polynomial
in (Z/pZ)[X] of degree k; the reason to use h(X) is so that the residue class [X] of the
polynomial X is a primitive rth root of unity in K, which will be useful in what follows.

8.5.2 Completing the proof

We now return to the task of proving that if Algorithm 8.11 returns true then its input n
is prime. Let us define the set of residue classes

P := {[f ] ∈ K : f ∈ P} ⊆ K×,

Here [f ] ∈ K is obtained by reducing the coefficients of f modulo p and taking the residue
class of the result in the quotient ring K = (Z/pZ)[X]/(h(X)) (a finite field). The set P
is a multiplicatively closed subset of the finite group K× (hence a subgroup), generated
by the elements [X], [X + 1], . . . , [X + b]. Note that b = b

√
r lg nc < r < p, since we can

have ordr(n) > lg2 n only for r > lg2 n, and deg h = ordr(p) > 1 (recall that we chose
p 6≡ 1 mod r), so these residue classes are all distinct. Recall that s = #S, where S is the
set of reductions modulo r of the set S = {(n/p)ipj : i, j ≥ 0}.

Lemma 8.14. #P ≥
(
s+b
s−1
)
.

Proof. Let f, g ∈ P be distinct polynomials of degree less than s. We claim that the residue
classes [f ], [g] ∈ P are distinct elements of K.

Suppose not. Then [f ] = [g] and [f ]m = [g]m for any integer m ≥ 1, and for any
m ∈ S we have [f(Xm)] = [g(Xm)], since every m ∈ S is introspective for all f, g ∈ P .
Let f̃ ∈ K[Y ] be the polynomial obtained by reducing the coefficients of f modulo p and
viewing them as elements of K, and similarly define g̃. We then have f̃([Xm]) = g̃([Xm]),
and [Xm] ∈ K is thus a root of the polynomial Q(Y ) := f̃(Y )− g̃(Y ) ∈ K[Y ].

Recall that h(X) divides Xr − 1, and it thus also divides Xmr − 1, so [Xm]r = 1 in
K and [Xm] is thus an rth root of unity. Now [X] is a primitive rth root of unity, and
gcd(m, r) = 1, so [Xm] is also a primitive rth root unity. For m1,m2 ∈ S we thus have
[Xm1 ] = [Xm2 ] if and only if m1 ≡ m2 mod r. For each [m] ∈ S ⊆ (Z/rZ)× we get a
distinct root [Xm] of Q(Y ), so Q(Y ) has at least s = #S distinct roots, but degQ < s, a
contradiction. So our supposition that [f ] = [g] must be false and [f ] and [g] are distinct
elements of K as claimed.

By multiplying up to s−1 not necessarily distinct elements of {X,X+1, . . . , X+b} ⊆ P
we can form a total of

(
s−1+b+1
s−1

)
=
(
s+b
s−1
)

distinct polynomials f ∈ P of degree less than s,

each of which represents a distinct residue class in P .4 Therefore #P ≥
(
s+b
s−1
)
.

Lemma 8.14 gives us a lower bound on #P . We now prove an upper bound on #P that
applies whenever n is not a power of p.

Lemma 8.15. If n is not a power of p then #P ≤ n
√
s.

4Recall that the number of distinct ways of choosing up to n balls of m possible colors is
(
n+m

n

)
; here we

have up to n = s− 1 balls (linear factors X + a of f) and m = b + 1 colors (values of a ∈ [0, b]).

18.095 IAP 2017 Lecture #8



Proof. Assume n is not a power of p. Then the integer n/p is divisible by a prime q 6= p and
the set T := {(n/p)ipj : 0 ≤ i, j ≤

√
s} ⊆ S has cardinality #T = (b

√
sc+1)2 > s = #S. It

follows that T must contain distinct integers m1 and m2 that lie in the same residue class
in S, meaning that m1 ≡ m2 mod r. It follows that Xm1 ≡ Xm2 mod Xr − 1. For every
f ∈ P we have

f(X)m1 ≡ f(Xm1) ≡ f(Xm2) ≡ f(X)m2 mod (Xr−1, p),

since m1,m2 ∈ S are introspective for every f ∈ P . The fact that h(X) divides Xr−1 in
(Z/pZ)[X] implies that we have

[f(X)]m1 = [f(X)m1 ] = [f(X)m2 ] = [f(X)]m2

as an identity in K = (Z/pZ)[X]/(h(X)). It follows that every [f ] ∈ P is a root of
Q(Y ) := Y m1 − Y m2 ∈ K[Y ], so Q(Y ) has at least #P distinct roots in K. We also have

degQ ≤ max(m1,m2) ≤ (n/p)
√
sp
√
s = n

√
s,

since m1,m2 ∈ T , and this implies #P ≤ n
√
s as claimed.

We can now prove the correctness of Algorithm 8.11.

Theorem 8.16 (Agrawal-Kayal-Saxena). Algorithm 8.11 outputs true if and only if its
input n is prime.

Proof. As we observed earlier, if n is prime the algorithm cannot output false and must
output true. For the converse, either the algorithm output true in step 4, in which case
n ≤ r is prime and the theorem holds, or n is divisible by a prime p > r, and we can assume
that p 6≡ 1 mod r, since r was chosen in step 2 so that ordr(n) > lg2 n > 1.

Let S ⊆ (Z/rZ)× and P ⊂ K× be defined as above, and let

s := #S, b = b
√
r lg nc, c := b

√
s lg nc.

We have s < r, so b > c, and s ≥ ordr(n) > lg2 n, so s > c. We also have c > 1 since√
s > lg n > 1. Applying Lemma 8.14 and these inequalities yields

#P ≥
(
s+ b

s− 1

)
≥
(

2c+ 1

c

)
> 2c+1 = 2b

√
s lgnc+1 ≥ 2

√
s lgn = n

√
s,

and Lemma 8.15 then implies that n must be a power of p. But n cannot be a power of p,
since this would have caused the algorithm to output false in step 1, so n = p is prime.

8.6 Complexity analysis of the AKS algorithm

In order to analyze the complexity of Algorithm 8.11 we first need to bound the value of r
chosen by the algorithm in step 2.

Lemma 8.17. For every integer n ≥ 3 there is an r ≤ lg5n such that ordr(n) > lg2n.

Proof. If n = 3 then r = 5 works, so we assume n ≥ 4. Let m := blg2 nc ≥ 4 and let q be
the least prime that does not divide

N := n(n− 1)(n2 − 1)(n3 − 1) · · · (nm − 1).

18.095 IAP 2017 Lecture #8



The order of n in (Z/qZ)× must be greater than m and therefore greater than lg2n. It
follows that r ≤ q. The integer N is bounded by

N < n1+1+2+3+···m = nm(m+1)/2+1 ≤ nm2 ≤ nlg
4 n = 2lg

5 n

As you will prove in the exercises below, for all x ≥ 31 we have∏
p≤x

p > 2x.

Applying this to x = lg5 n ≥ 32, we see that the product of the primes less than x is greater
than 2lg

5 n > N , but the product of the primes dividing N cannot exceed N , so some prime
q < lg5 n must not divide n. The lemma follows.

Theorem 8.18 (Agrawal-Kayal-Saxena). The time complexity of Algorithm 8.11 is bounded
by O(log10.5+ε n), for any ε > 0.

Proof. We assume throughout that fast (FFT-based) arithmetic is used, which implies that
all arithmetic operations on operands of size log n take O(log1+ε n) time (bit operations).
We now analyze the complexity of each step of the algorithm.

1. By using Newton’s method to compute an approximate kth root of n for k = 2, 3, . . . lg n
we can complete step 1 in O(log2+ε n) time (or even O(log1+ε n) time if we use [4]).

2. By Lemma 8.17 it suffices to check each r ∈ [1, lg5 n] in step 2. Using the sieve of
Eratosthenes we can assume compute the factorization of every value of r in this
interval in O(log5+ε n) time. For each r we can us this to compute φ(r) = #(Z/rZ)×,
and it then takes O(log1+ε n) time to compute ordr(n) (once we compute n mod r,
after that we are working with O(log log n)-bit integers and the costs are negligible).
The total time for step 2 is thus O(log5+ε n).

3. Using the fast Euclidean algorithm we can compute gcd(a, n) for each a ∈ [1, r] in
O(log1+ε n) time; the total time for step 3 is then O(log5+ε n).

4. Step 4 compares n and r and takes negligible time.

5. In step 5 we perform
√
r lg n or O(log3.5 n) iterations. In each iteration we need to

compute (X+a)n mod (Xr−1, n), which we can do using binary exponentiation using
polynomials of degree less than r whose coefficients are reduced modulo n. Using
FFT-based techniques, the time to multiply two integer polynomials of degree r with
coefficients bounded by n is O((r log n)1+ε) = O(log6+ε n) time; each exponentiation
in step 5 requires O(log n) polyn omial multiplications and thus takes O(log7+ε n)
time. Summing over all iterations yields a total time of O(log10.5+ε n) for step 5.

6. Step 6 simply returns true, which takes no time.

Step 5 dominates the complexity and the theorem follows.

In fact one expects that the value of r chosen in step 2 of the algorithm can be bounded
by O(log2n), which would bring the time complexity down to O(log6+εn). In [1] the authors
note that a result of Fouvry [8] yields an O(log3n) bound on r, yielding a total complexity
of O(log7.5+εn). More recent work by Lenstra and Pomerance [10] achieves an O(log6+εn)
complexity bound not by sharpening the bound on r but by generalizing the algorithm to
incorporate alternative parameters that they can bound more tightly.

18.095 IAP 2017 Lecture #8



In [5], Bernstein presents a randomized version of the AKS algorithm that yields an
O(log4+εn) expected running time. The Miller-Rabin primality test is an example of a
Monte Carlo algorithm: its running time is bounded but its output might not be correct.
By contrast, Bernstein’s algorithm is a Las Vegas algorithm: its output is always correct
but its running time depends on random choices and may be arbitrarily large, but has a
bounded expectation.

Finally, we should mention that in practice when one wants to unequivocally prove that
an integer is prime (as opposed to running the Miller-Rabin repeatedly in order to gain
a high degree of confidence), the preferred algorithm is not the AKS algorithm, or even
a randomized version of it. Instead one uses a fast version of the elliptic curve primality
proving method [9, 13]. This algorithm is heuristically (but not provably) expected to run in
O(log4+ε n) time, with much better constant factors than a randomized version of AKS, and
it produces a certificate of primality that can be verified in O(log3+ε n) time. Essentially
every integer with more than 1000 digits that is known to be prime and not of a special form
(e.g. a Mersenne prime or generalized Fermat prime) has been found using this method (the
current record, as of November 2016, is 34,093 digits). You can learn more about elliptic
curve primality proving by taking 18.783.

8.7 Exercises

The prime number theorem implies that
∏
p<x p approaches ex as x → ∞ (as usual, the

symbol p is implicitly assumed to take only prime values). In the exercises below you will
prove bounds on

∏
p≤x p that are weaker than this but sufficient to prove Lemma 8.17.

These are adapted from Exercises 1.25–1.28 in [6], which you should feel free to consult.

(1) Show that for any integer n we have∏
n+1<p<2n+1

p ≤
(

2n+ 1

n

)
≤ 4n,

and use this to prove that
∏
p≤x p < 4x for all x > 0.

(2) For any positive integer N let

C(N) :=
(6N)!N !

(3N)!(2N)!(2N)!
.

(a) Show that C(N) is an integer.

(b) Show that if p > (6N)1/k is prime then pk does not divide C(N).

(c) Using (1), prove that∏
p≤6N

p > C(N)/4(6N)1/2+(6N)1/3 lg(3N/2).

(d) Stirling’s formula yields the bounds
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, valid for
all positive integers n. Use this to prove that C(N) = 108N/(4

√
N) for all N .

(e) Show that
∏
p≤x p > 2x for all x > 212.

(f) Use a computer to verify that the bound in (e) actually holds for all x ≥ 31.

18.095 IAP 2017 Lecture #8

https://primes.utm.edu/top20/page.php?id=27
https://math.mit.edu/classes/18.783/2017/


References

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P , Ann. of Math. 160 (2004),
781–793.

[2] W.R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael
numbers, Annals of Mathematics 140 (1994), 703–722.

[3] E. Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55
(191), 355–380.

[4] D.J. Bernstion, Detecting perfect powers in essentially linear time, Mathematics of Com-
putation 67 (1998), 1253–1283.

[5] D.J. Bernstion, Proving primality in essentially quartic random time, Mathematics of
Computation 76 (2007), 389–403.

[6] R. Crandall and C. Pomerance, Prime numbers: A computational perspective, 2nd edi-
tion, Springer, 2005.

[7] Carl Friedrich Gauss, Disquisitiones Arithmeticae, translated by Arthur A. Clarke, Re-
vised by William C. Waterhouse, Cornelius Greither, and A.W. Grootendorst, Springer-
Verlag, 1986.

[8] E. Fouvry, Theoreme de Brun-Titchmarsh; application au theoreme de Fermat , Invent.
Math. 79 (1985), 383–407.

[9] S. Goldwasser and J. Kilian, Almost all primes can be quickly certified , Proceedings of
the Eighteenth ACM Symposium on the Theory of Computing (1986), 316–329.

[10] H. Lenstra and C. Pomerance, Primality testing with Gaussian periods, preprint, 2015.

[11] G. L. Miller, Riemann’s hypothesis and tests for primality , Journal of Computer and
System Sciences 13 (1976), 300-317.

[12] L. Monier, Evaluation and comparison of two efficient probabilistic primality testing
algorithms, Theoretical Computer Science 12 (1980), 97–108.

[13] F. Morain, Implementing the asymptotically fast version of the elliptic curve primality
proving algorithm, Mathematics of Computation 76 (2007), 493–505.

[14] M.O. Rabin Probablistic algorithm for testing primality , Journal of Number Theory 12
(1980), 128–138.

[15] Lasse Rempe-Gillen and Rebecca Waldecker, Primality testing for beginners, American
Mathematical Society, 2014.

18.095 IAP 2017 Lecture #8

http://dx.doi.org/10.4007/annals.2004.160.781
http://www.jstor.org/stable/2118576
http://www.jstor.org/stable/2118576
http://www.ams.org/journals/mcom/1990-55-191/S0025-5718-1990-1023756-8/home.html
http://www.ams.org/journals/mcom/1998-67-223/S0025-5718-98-00952-1/S0025-5718-98-00952-1.pdf
http://www.ams.org/journals/mcom/2007-76-257/S0025-5718-06-01786-8/
http://link.springer.com/book/10.1007/0-387-28979-8/page/1
http://link.springer.com/article/10.1007/BF01388980
http://dl.acm.org/citation.cfm?id=12162
https://math.dartmouth.edu/~carlp/aks111216.pdf
http://www.sciencedirect.com/science/article/pii/S0022000076800438
http://www.sciencedirect.com/science/article/pii/0304397580900079
http://www.sciencedirect.com/science/article/pii/0304397580900079
http://www.ams.org/journals/mcom/2007-76-257/S0025-5718-06-01890-4
http://www.ams.org/journals/mcom/2007-76-257/S0025-5718-06-01890-4
http://www.sciencedirect.com/science/article/pii/0022314X80900840
http://bookstore.ams.org/stml-70

	
	Primality testing using modular arithmetic
	A probabilistic primality test
	A deterministic primality test under GRH
	A deterministic primality test
	Correctness of the AKS algorithm
	Cyclotomic polynomials and finite field extensions
	Completing the proof

	Complexity analysis of the AKS algorithm
	Exercises


