
Computing L-Series of genus 3 curves

Andrew V. Sutherland

Massachusetts Institute of Technology

July 1, 2017

Joint work with David Harvey; David Harvey and Maike Massierer;
David Harvey; Andrew Booker, and David Platt.

The L-series of a curve

Let X be a nice (smooth, projective, geometrically integral) curve of
genus g over Q. The L-series of X is the Dirichlet series

L(X, s) = L(Jac(X), s) :=
∑
n≥1

ann−s :=
∏

p

Lp(p−s)−1.

For primes p of good reduction for X we have the zeta function

Z(Xp; s) := exp

∑
r≥1

#X(Fpr)
Tr

r

 =
Lp(T)

(1− T)(1− pT)
,

and the L-polynomial Lp ∈ Z[T] in the numerator satisfies

Lp(T) = T2gχp(1/T) = 1− apT + · · ·+ pgT2g

where χp(T) is the charpoly of the Frobenius endomorphism of Jac(Xp).

The Selberg class with polynomial Euler factors

The Selberg class Spoly consists of Dirichlet series L(s) =
∑

n≥1 ann−s:

1 L(s) has an analytic continuation that is holomorphic at s 6= 1;

2 For some γ(s) = Qs∏r
i=1 Γ(λis + µi) and ε, the completed

L-function Λ(s) := γ(s)L(s) satisfies the functional equation

Λ(s) = εΛ(1− s̄),

where Q > 0, λi > 0, Re(µi) ≥ 0, |ε| = 1. Define deg L := 2
∑r

i λi.

3 a1 = 1 and an = O(nε) for all ε > 0 (Ramanujan conjecture).

4 L(s) =
∏

p Lp(p−s)−1 for some Lp ∈ Z[T] with deg Lp ≤ deg L
(has an Euler product).

The Dirichlet series Lan(s,X) := L(X, s + 1
2) satisfies (3) and (4),

and conjecturally lies in Spoly; for g = 1 this is known (via modularity).

Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)
If A(s) =

∑
n≥1 ann−s and B(s) =

∑
n≥1 bnn−s lie in Spoly and ap = bp for

all but finitely many primes p, then A(s) = B(s).

Corollary
If Lan(s,X) lies in Spoly then it is completely determined by (any choice
of) all but finitely many coefficients ap.

Henceforth we assume that Lan(s,X) ∈ Spoly.

Let ΓC(s) = 2(2π)sΓ(s) and define Λ(X, s) := ΓC(s)gL(X, s). Then

Λ(X, s) = εN1−sΛ(X, 2− s).

where the root number ε = ±1 and the analytic conductor N ∈ Z≥1 are
determined by the ap values (we view these as definitions).

Testing the functional equation

Let G(x) be the inverse Mellin transform of ΓC(s)g =
∫∞

0 G(x)xs−1dx,
and define

S(x) :=
1
x

∑
anG(n/x),

so that Λ(X, s) =
∫∞

0 S(x)x−sdx, and for all x > 0 we have

S(x) = εS(N/x).

The function G(x) decays rapidly, and for sufficiently large c0 we have

S(x) ≈ S0(x) :=
1
x

∑
n≤c0x

anG(n/x),

with an explicit bound on the error |S(x)− S0(x)|.

Effective strong multiplicity one

Fix a finite set of small primes S (e.g. S = {2}) and an integer M that
we know is a multiple of the conductor N (e.g. M = ∆(X)).

There is a finite set of possibilities for ε = ±1, N|M, and the Euler
factors Lp ∈ Z[T] for p ∈ S (the coefficients of Lp(T) are bounded).

Suppose we can compute an for n ≤ c1
√

M whenever p - n for p ∈ S.

We now compute δ(x) := |S0(x)− εS0(N/x)| with x = c1
√

N) for every
possible choice of ε, N, and Lp(T) for p ∈ S. If all but one choice makes
δ(x) larger than our explicit error bound, we know the correct choice.

For a suitable choice of c1 this is guaranteed to happen.1 One can
explicitly determine a set of O(Nε) candidate values of c1, one of which
is guaranteed to work; in practice the first one usually works.

1Subject to our assumptions; if it does not happen then we have found an explicit
counterexample to the conjectured Langlands correspondence.

Conductor bounds

The formula of Brumer and Kramer gives explicit bounds on the p-adic
valuation of the algebraic conductor N of Jac(X):

vp(N) ≤ 2g + pd + (p− 1)λp(d),

where d = b 2g
p−1c and λp(d) =

∑
idipi, with d =

∑
dipi with 0 ≤ di < p.

g p = 2 p = 3 p = 5 p = 7 p > 7
1 8 5 2 2 2
2 20 10 9 4 4
3 28 21 11 13 6

For g ≤ 2 these bounds are tight (see www.lmfdb.org for examples).

For hyperelliptic curves N divides ∆(X). Smooth plane curves?

www.lmfdb.org

Algorithms to compute zeta functions

Given X/Q of genus g, we want to compute Lp(T) for all good p ≤ B.

complexity per prime
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3(log p)2

group computation p1/4 log p p3/4 log p p(log p)2

p-adic cohomology p1/2(log p)2 p1/2(log p)2 p1/2(log p)2

CRT (Schoof-Pila) (log p)5 (log p)8 (log p)12?

average poly-time (log p)4 (log p)4 (log p)4

For L(X, s) =
∑

ann−s, we only need ap2 for p2 ≤ B, and ap3 for p3 ≤ B.
For 1 < r ≤ g we can compute all apr with pr ≤ B in time O(B log B).

The bottom line: it all comes down to computing ap’s.

Warmup: average polynomial-time in genus 1

Let X : y2 = f (x) with deg f = 3, 4 and f (0) 6= 0, and let f n
k be the

coefficient of xk in f n. Then ap ≡ f (p−1)/2
p−1 mod p for all good p.

The relations f n+1 = f · f n and (f n+1)′ = (n + 1)f ′ · f n yield the identity

kf0f n
k =

∑
1≤i≤d

(n + 1)− k)fif n
k−i,

for all k, n ≥ 0. Suppose for simplicity deg f = 3, and define

vn
k := [f n

k−2, f
n
k−1, f

n
k], Mn

k :=

 0 0 (3n + 3− k)f3
kf0 0 (2n + 2− k)f2
0 kf0 (n + 1− k)f1

 ,
so that we have the recurrence vn

k = 1
kf0

vn
k−1Mn

k .

Warmup: average polynomial-time in genus 1

We then have
vn

k =
1

(f0)kk!
vn

0Mn
1 · · ·Mn

k .

We want to compute ap ≡ f n
2n mod p with n := (p− 1)/2.

This is just the last entry of the vector vn
2n reduced modulo p = 2n + 1.

Observe that 2(n + 1) ≡ 1 mod p, so 2Mn
k ≡ Mk mod p, where

Mk :=

 0 0 (3− 2k)f3
kf0 0 (2− 2k)f2
0 kf0 (1− 2k)f1


is an integer matrix whose entries do not depend on p = 2n + 1, and

vn
2n ≡ −

(
f0
p

)
V0M1 · · ·Mp−1 mod p (where V0 = [0, 0, 1]).

Accumulating remainder tree

Given matrices M0, . . . ,Mn−1 and moduli m1, . . . ,mn, to compute

M0 mod m1

M0M1 mod m2

M0M1M2 mod m3

M0M1M2M3 mod m4

· · ·
M0M1 · · ·Mn−2Mn−1 mod mn

multiply adjacent pairs and recursively compute

(M0M1) mod m2m3

(M0M1)(M2M3) mod m4m5

· · ·
(M0M1) · · · (Mn−2Mn−1) mod mn

and adjust the results as required (for better results, use a forest).

Complexity analysis

Assume log |fi| = O(log B). The recursion has depth O(log B) and in
each recursive step we multiply and reduce 3× 3 matrices with integer
entries whose total bitsize is O(B log B).

We can do all the multiplications/reductions at any given level of the
recursion in O(M(B log B)) = B(log B)2+o(1).

Total complexity is B(log B)3+o(1), or (log p)4+o(1) per prime p ≤ B.

For a single prime p we do not have a polynomial-time algorithm, but
we can give an O(p1/2(log p)1+o(1)) algorithm using the same matrices.

This is a silly way to compute ap in genus 1, but it turns out to be much
faster than any other method currently available in genus 3.

Efficiently handling a single prime

Simply computing V0M1 · · ·Mp−1 modulo p is surprisingly quick
(faster than semi-naı̈ve point-counting); it takes p(log p)1+o(1) time.
But we can do better.

Viewing Mk mod p as M ∈ Fp[k]3×3, we compute

A(k) := M(k)M(k + 1) · · ·M(k + r − 1) ∈ Fp[k]3×3

with r ≈ √p and then instantiate A(k) at roughly r points to get

M1M2 · · ·Mp−1 ≡p A(1)A(r + 1)A(2r + 1) · · ·A(p− r).

Using standard product tree and multipoint evaluation techniques this
takes O(M(p1/2) log p) = p1/2(log p)2+o(1) time.

Bostan-Gaudry-Schost: p1/2(log p)1+o(1) time.

Genus 3 curves

The canonical embedding of a genus 3 curve into P2 is either
1 a degree-2 cover of a smooth conic (hyperelliptic case);
2 a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:
rational hyperelliptic model [Harvey-S 2014]
no rational hyperelliptic model [Harvey-Massierer-S 2016].

New result (joint with Harvey): smooth plane quartics.

Prior work has all been based on p-adic cohomology:

[Lauder 2004], [Castryck-Denef-Vercauteren 2006],
[Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013],

[Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]

Current implementations of these algorithms are all O(p1+o(1)).

The Hasse-Witt matrix of a hyperelliptic curve

Let Xp/Fp be a hyperelliptic curve y2 = f (x) of genus g (assume p odd).
As in the warmup, let f n

k denote the coefficient of xk in f n.

The Hasse–Witt matrix of Xp is Wp := [f n
pi−j]ij ∈ Fg×g

p with n = (p− 1)/2.
In genus g = 3 we have

Wp :=

 f n
p−1 f n

p−2 f n
p−3

f n
2p−1 f n

2p−2 f n
2p−3

f n
3p−1 f n

3p−2 f n
3p−3

 .
This is the matrix of the p-power Frobenius acting on H1(Cp,OCp)
(and the Cartier-Manin operator acting on regular differentials).
As proved by Manin, we have

Lp(T) ≡ det(I − TWp) mod p;

in particular, ap ≡ tr Wp mod p. For p > 144 this yields ap ∈ [−6
√

p, 6
√

p].

Hyperelliptic average polynomial-time

As in our warmup, assume f (0) 6= 0 and define vn
k := [f n

k−d+1, . . . , f
n
k].

The last g entries of vn
2n form the first row of Wp, and we have

vn
2n = −

(
f0
p

)
V0M1 · · ·Mp−1 mod p (where V0 = [0, . . . , 0, 1]).

Compute the first row of Wp for good p ≤ B in O(g2B(log B)3+o(1)) time.

To get the remaining rows, consider the isomorphic curve y2 = f (x + a)
whose Hasse-Witt matrix Wp(a) = T(a)WpT(−a) is conjugate to Wp via

T(a) :=

[(
j− 1
i− 1

)
aj−1

]
ij
∈ Fg×g

p .

Given the first row of Wp(a) for g distinct values of a we can compute all
the rows of Wp. Total complexity is O(g3B(log B)3+o(1)).

The Hasse-Witt matrix of a smooth plane quartic

Let Xp/Fp be a smooth plane quartic defined by f (x, y, z) = 0.
For n ≥ 0 let f n

i,j,k denote the coefficient of xiyjzk in f n.

The Hasse–Witt matrix of Xp is the 3× 3 matrix

Wp :=

f p−1
p−1,p−1,2p−2 f p−1

2p−1,p−1,p−2 f p−1
p−1,2p−1,p−2

f p−1
p−2,p−1,2p−1 f p−1

2p−2,p−1,p−1 f p−1
p−2,2p−1,p−1

f p−1
p−1,p−2,2p−1 f p−1

2p−1,p−2,p−1 f p−1
p−1,2p−2,p−1

 .
This case of smooth plane curves of degree d > 4 is similar.

More generally, given a singular plane model for any nice curve
(equivalently, a defining polynomial for its function field) one can use
the methods of Stohr-Voloch to explicitly determine Wp.

Target coefficients of f p−1 for p = 7:

x4p−4 y4p−4

z4p−4

Coefficient relations

Let ∂x = x ∂
∂x (degree-preserving). The relations

f p−1 = f · f p−2 and ∂xf p−1 = −(∂xf)f p−2

yield the relation ∑
i′+j′+k′=4

(i + i′)fi′,j′,k′ f
p−2
i−i′,j−j′,k−k′ = 0.

among nearby coefficients of f p−2 (a triangle of side length 5).

Replacing ∂x by ∂y yields a similar relation (replace i + i′ with j + j′).

Coefficient triangle

For p = 7 with i = 12, j = 5, k = 7 the related coefficients of f p−2 are:

x4p−8 y4p−8

z4p−8

Moving the triangle

Now consider a bigger triangle with side length 7.
Our relations allow us to move the triangle around:

=⇒

An initial “triangle” at the edge can be efficiently computed using
coefficients of f (x, 0, z)p−2.

Computing one Hasse-Witt matrix

Nondegeneracy: we need f (1, 0, 0), f (0, 1, 0), f (0, 0, 1) nonzero and
f (0, y, z), f (x, 0, z), f (x, y, 0) squarefree (easily achieved for large p).

The basic strategy to compute Wp is as follows:

There is a 28× 28 matrix Mj that shifts our 7-triangle from
y-coordinate j to j + 1; its coefficients depend on j and f .
In fact a 16× 16 matrix Mi suffices (use smoothness of C).
Applying the product M0 · · ·Mp−2 to an initial triangle on the edge
and applying a final adjustment to shift from f p−2 to f p−1 gets us
one column of the Hasse-Witt matrix Wp.
By applying the same product (or its inverse) to different initial
triangles we can compute all three columns of Wp.

We have thus reduced the problem to computing M1 · · ·Mp−2 mod p,
which we already know how to do, either in p1/2(log p)1+o(1) time, or in
average polynomial time (log p)4+o(1).

Cumulative timings for genus 3 curves
Time to compute Lp(T) mod p for all good p ≤ B.

B spq-Costa-AKR spq-HS ghyp-MHS hyp-HS hyp-Harvey

212 18 1.4 0.3 0.1 1.3
213 49 2.4 0.7 0.2 2.6
214 142 4.6 1.7 0.5 5.4
215 475 9.4 4.6 1.0 12
216 1,670 21 11 2.1 29
217 5,880 47 27 5.3 74
218 22,300 112 62 14 192
219 78,100 241 153 37 532
220 297,000 551 370 97 1,480
221 1,130,000 1,240 891 244 4,170
222 4,280,000 2,980 2,190 617 12,200
223 16,800,000 6,330 5,110 1,500 36,800
224 66,800,000 14,200 11,750 3,520 113,000
225 244,000,000 31,900 28,200 8,220 395,000
226 972,000,000 83,300 62,700 19,700 1,060,000

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).

