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Galois representations attached to elliptic curves

Let E be an elliptic curve over a number field K.
For each N ≥ 1 the action of GK := Gal(K/K) on E[N] yields a Galois representation

ρE,N : GK → Aut(E[N]) ' GL2(Z/NZ) =: GL2(N).

Choosing a compatible system of bases and taking the inverse limit yields

ρE : GK → lim←−GL2(N) ' GL2(Ẑ) '
∏

GL2(Z`).

Theorem (Serre 1972)

If E/k is a non-CM elliptic curve then ρE(GK) is an open subgroup of GL2(Ẑ).

There are infinitely many possibilities for ρE(GK), but for fixed K (or even fixed [K : Q])
one expects only finitely many nonsurjective projections to GL2(Z`) to arise as E/K
varies over non-CM elliptic curves and ` varies over primes. We consider K = Q.

https://doi.org/10.1007/BF01405086


Motivations and applications

Generalize Mazur’s torsion and isogeny theorems (Mazur’s “Program B”).

Diophantine problems (FLT++, perfect power Fibonacci/Lucas, . . .).

Correct constants in asymptotics conjectures (Lang-Trotter, Koblitz-Zywina, . . .).

Factoring integers (ECM-friendly curves).

Inverse Galois problems (PSL2(Fp) for certain p, arithmetic equivalence).

Local-global questions about elliptic curves (isogenies, torsion, . . .).

Arithmetic dynamics (e.g. primes dividing some an = (an−1an−3 + a2
n−2)/an−4).

Arithmetic statistics modulo p (cyclicity, prime order, #E(Fp) mod m, . . .).

Arithmetic statistics of torsion fields (for E/Q and E/Q`).

See Rouse’s VaNTAGe talk for more details on four of these, or click a highlighted link.

http://math.mit.edu/~drew/vantage/MazurRationalPointsOnModularCurves.pdf#page=3
https://link.springer.com/content/pdf/10.1007/978-3-319-32162-2_3.pdf
https://annals.math.princeton.edu/wp-content/uploads/annals-v163-n3-p05.pdf
https://link.springer.com/content/pdf/10.1007/BFb0082087.pdf
http://pi.math.cornell.edu/~zywina/papers/KoblitzConj.pdf
https://msp.org/obs/2013/1-1/obs-v1-n1-p04-p.pdf
http://www.numdam.org/item/CM_1978__36_2_113_0.pdf
https://link.springer.com/content/pdf/10.1007/BFb0054878.pdf
https://jtnb.centre-mersenne.org/item/10.5802/jtnb.807.pdf
https://arxiv.org/pdf/2005.06669.pdf
https://arxiv.org/pdf/0706.2384.pdf#page=2
https://mast.queensu.ca/~murty/gupta-murty3.pdf
http://projecteuclid.org/euclid.pjm/1102690074
https://link.springer.com/content/pdf/10.1007/s11139-012-9444-0.pdf
https://link.springer.com/content/pdf/10.1007/s00209-016-1623-z.pdf
https://homepages.warwick.ac.uk/staff/Nuno.Freitas/MSCA/preprint2.pdf
https://youtu.be/L_Il_sJymEs?mute=1;autoplay=0


Results and conjectures for prime level

Theorem (Serre 1972)
For ` > 13 the projective image of ρE,` is not S4.

Theorem (Mazur 1978)
For ` > 163 we have ρE,`(GQ) 6≤ B(`), and if E is non-CM this holds for ` > 37.

Theorem (Bilu, Parent, Rebolledo 2013)
For ` > 13 we have ρE,`(GQ) 6≤ Nsp(`) if E is non-CM.

Conjecture (S 2015, Zywina 2015)
There are 3, 7, 15, 16, 7, 11, 2, 2 proper subgroups of GL2(`) that arise as ρE,`(GQ) for
non-CM E/Q for ` = 2, 3, 5, 7, 11, 13, 17, 37 respectively, and none for any other `.

https://link.springer.com/content/pdf/10.1007/BF01405086.pdf
https://link.springer.com/content/pdf/10.1007/BF01390348.pdf
https://aif.centre-mersenne.org/item/10.5802/aif.2781.pdf
https://doi.org/10.1017/fms.2015.33
https://arxiv.org/abs/1508.07660


Subgroups of GL2(Ẑ)

To identify open subgroups H ⊆ GL2(Ẑ) (up to conjugacy) we assign them unique labels.

Definition

When det(H) = Ẑ× these labels have the form N.i.g.n, where N is the level, i is the
index, g is the genus, and n is a tiebreaker given by ordering the subgroups of GL2(N).

Example
• The Borel subgroup B(13) has label 13.14.0.1.
• The normalizer of the split Cartan Nsp(13) has label 13.91.3.1.
• The normalizer of the nonsplit Cartan Nns(13) has label 13.78.3.1.
• The maximal S4 exceptional group S4(13) has label 13.91.3.2.

When N = `e we can also view these as labels of subgroups of GL2(Z`).



Obligatory XKCD cartoon



Results

Definition
A point P ∈ XH(K) is exceptional if XH(K) is finite and P corresponds to a non-CM E/K.

Theorem (Rouse, S, Zureick-Brown 2021)
Let ` be a prime, let E/Q be a non-CM elliptic curve, and let H = ρE,`∞(GQ).
Exactly one of the following is true:

1 XH(Q) is infinite and H is listed in (S, Zywina 2017);
2 XH has a rational exceptional point listed in Table 1;
3 H ≤ Nns(33),Nns(52),Nns(72),Nns(112), or Nns(`) for some ` > 13;
4 H is a subgroup of 49.179.9.1 or 49.196.9.1.

We conjecture that cases (3) and (4) never occur.
If they do, the exceptional points have very large heights (e.g. 1010200

for X+
ns(112)(Q)).

https://arxiv.org/abs/2106.11141
https://arxiv.org/abs/1605.03988


label level notes j-invariants/models of exceptional points

16.64.2.1 24 Nns(16) −218 · 3 · 53 · 133 · 413 · 1073/1716, −221 · 33 · 53 · 7 · 133 · 233 · 413 · 1793 · 4093/7916

16.96.3.335 24 H(4) ( Nsp(4) 2573/28

16.96.3.343 24 H(4) ( Nsp(4) 173 · 2413/24

16.96.3.346 24 H(4) ( Nsp(4) 24 · 173

16.96.3.338 24 H(4) ( Nsp(4) 211

32.96.3.230 25 H(4) ( Nsp(4) −33 · 53 · 473 · 12173/(28 · 318)

32.96.3.82 25 H(8) ( Nsp(8) 33 · 56 · 133 · 233 · 413/(216 · 314)

25.50.2.1 52 H(5) = Nns(5) 24 · 32 · 57 · 233

25.75.2.1 52 H(5) = Nsp(5) 212 · 33 · 57 · 293/75

7.56.1.2 7 ( Nns(7) 33 · 5 · 75/27

7.112.1.2 7 −I 6∈ H y2 + xy + y = x3 − x2 − 2680x− 50053, y2 + xy + y = x3 − x2 − 131305x + 17430697

11.60.1.3 11 ( B(11) −11 · 1313

11.120.1.8 11 −I 6∈ H y2 + xy + y = x3 + x2 − 30x− 76
11.120.1.9 11 −I 6∈ H y2 + xy = x3 + x2 − 2x− 7
11.60.1.4 11 ( B(11) −112

11.120.1.3 11 −I 6∈ H y2 + xy = x3 + x2 − 3632x + 82757
11.120.1.4 11 −I 6∈ H y2 + xy + y = x3 + x2 − 305x + 7888

13.91.3.2 13 S4(13) 24 · 5 · 134 · 173/313 , −212 · 53 · 11 · 134/313 , 218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929/(513 · 6113)

17.72.1.2 17 ( B(17) −17 · 3733/217

17.72.1.4 17 ( B(17) −172 · 1013/2

37.114.4.1 37 ( B(37) −7 · 113

37.114.4.2 37 ( B(37) −7 · 1373 · 20833

Table 1. All known exceptional groups, j-invariants, and points of prime power level.

https://www.lmfdb.org/EllipticCurve/Q/3362/a/2
https://www.lmfdb.org/EllipticCurve/Q/3362/a/1
https://www.lmfdb.org/EllipticCurve/Q/200/b/1
https://www.lmfdb.org/EllipticCurve/Q/200/b/2
https://www.lmfdb.org/EllipticCurve/Q/17918/c/2
https://www.lmfdb.org/EllipticCurve/Q/17918/b/1
https://www.lmfdb.org/EllipticCurve/Q/396900/e/1
https://www.lmfdb.org/EllipticCurve/Q/21175/bm/1
https://www.lmfdb.org/EllipticCurve/Q/2450/i/1
https://www.lmfdb.org/EllipticCurve/Q/2450/y/1
https://www.lmfdb.org/EllipticCurve/Q/1089/i/2
https://www.lmfdb.org/EllipticCurve/Q/121/a/2
https://www.lmfdb.org/EllipticCurve/Q/121/c/2
https://www.lmfdb.org/EllipticCurve/Q/1089/c/2
http://lmfdb.org/EllipticCurve/Q/121/c/1
https://www.lmfdb.org/EllipticCurve/Q/121/a/1
https://www.lmfdb.org/EllipticCurve/Q/50700/z/1
https://www.lmfdb.org/EllipticCurve/Q/61347/bb/1
https://www.lmfdb.org/EllipticCurve/Q/14450/o/2
https://www.lmfdb.org/EllipticCurve/Q/14450/b/2
https://www.lmfdb.org/EllipticCurve/Q/1225/b/2
https://www.lmfdb.org/EllipticCurve/Q/1225/b/1


Unresolved cases

label level group genus

27.243.12.1 33 Nns(33) 12

25.250.14.1 52 Nns(52) 14

49.1029.69.1 72 Nns(72) 69

49.147.9.1 72
〈(

16 6
20 45

)
,
(

20 17
40 36

)〉
9

49.196.9.1 72
〈(

42 3
16 31

)
,
(

16 23
8 47

)〉
9

121.6655.511.1 112 Nns(112) 511

Arithmetically maximal groups of level `n with ` ≤ 13 for which XH(Q) is unknown; each
has rank = genus, rational CM points, no rational cusps, and no known exceptional points.



Summary of `-adic images of Galois for non-CM E/Q.

` 2 3∗ 5∗ 7∗ 11∗ 13 17∗ 37∗ other∗

subgroups 1208 47 25 17 8 12 3 3 1
exceptional subgroups 7 0 2 2 6 1 2 2 0

unexceptional subgroups 1201 47 23 15 2 11 1 1 1
max level 32 27 25 7 11 13 17 37 1

max index 96 72 120 112 120 91 72 114 1
max genus 3 0 2 1 1 3 1 4 0

Summary of the H ≤ GL2(Z`) which occur as ρE,`∞(GQ) for some non-CM elliptic curve E/Q.
Starred primes depend on the conjecture that cases (3) and (4) of our theorem do not occur.

In particular, we conjecture that there are 1207, 46, 24, 16, 7, 11, 2, 2 proper subgroups of GL2(Z`)
that arise as ρE,`∞(GQ) for non-CM E/Q for ` = 2, 3, 5, 7, 11, 13, 17, 37 and none for any other `.



Steps of the proof

1 Compute the set S of arithmetically maximal subgroups of `-power level for ` ≤ 37
(for all ` > 37 we already know Nns(`) is the only possible exceptional group).

2 For H ∈ S check for local obstructions and compute the isogeny decomposition
of the Jacobian of XH and the analytic ranks of all its simple factors.

3 For H ∈ S compute equations for XH and jH : XH → X(1) (if needed).
In several cases we can prove XH(Q) is empty without a model for XH.

4 For H ∈ S with −I ∈ H determine the rational points in XH(Q) (if possible).
In several cases we are able to exploit recent progress by others (` = 13 for example).

5 For H ∈ S with −I 6∈ H compute equations for the universal curve E → U,
where U ⊆ XH is the locus with j(P) 6= 0, 1728,∞.



Arithmetically maximal groups

Definition

We say that an open subgroup H ⊆ GL2(Ẑ) is arithmetically maximal if
a det(H) = Z× (necessary for Q-points),
b a conjugate of

(
1 0
0 −1

)
or
(

1 1
0 −1

)
lies in H (necessary for R-points),

c j(XH(Q)) is finite but j(XH′(Q)) is infinite for H ( H′ ⊆ GL2(Ẑ).

Arithmetically maximal groups H arise as maximal subgroups of an H′ with XH′(Q) infinite.

Theorem (S, Zywina 2017)

For ` = 2, 3, 5, 7, 11, 13 there are 1208, 47, 23, 15, 2, 11 subgroups H ≤ GL2(Ẑ) of `-power
level with XH(Q) infinite, and only H = GL2(Ẑ) for ` > 13.

This allows us to compute explicit upper bounds on the level and index of arithmetically
maximal subgroup of prime power level ` and we can then exhaustively enumerate them.

https://arxiv.org/abs/1605.03988


Arithmetically maximal groups

Let S∞` (Q) denote the set of open H ≤ GL2(Ẑ) of `-power level with j(XH(Q)) infinite.
Let S`(Q) denote the set of arithmetically maximal H of `-power level.

` 2 3 5 7 11 13 17 19 23 29 31 37
level bound 64 81 125 49 121 169 17 19 23 29 31 37

index bound 192 729 625 1372 6655 728 153 285 276 1015 496 2109
subgroups 11091 469 111 144 141 54 18 25 17 64 45 100

#S∞` (Q) 1208 47 23 15 2 11 1 1 1 1 1 1
#S`(Q) 130 19 14 10 6 10 3 4 3 4 3 4

max level 32 27 125 49 121 169 17 19 23 29 31 37
max index 96 729 625 1372 6655 182 153 285 276 1015 496 2109

max genus 7 43 36 94 511 3 7 14 15 63 30 142

Summary of arithmetically maximal H ≤ GL2(Ẑ) of `-power level for ` ≤ 37.



The modular curve XH

Let H be an open subgroup of GL2(Ẑ). The least N for which H contains the kernel of
πN : GL2(Ẑ)→ GL2(N) is the level of H; it suffices to specify πN(H) ⊆ GL2(N).

Definition (Deligne, Rapoport 1973)

The modular curves XH and YH are coarse spaces for the stacksMH andM0
H that

parameterize elliptic curves E with H-level structure, by which we mean an equivalence
class [ι]H of isomorphisms ι : E[N]→ Z(N)2, where ι ∼ ι′ if ι = h ◦ ι′ for some h ∈ H.

• H ⊆ H′ induces XH → XH′ ; in particular, we have a map j : XH → X(1) to the j-line.

• For E/k with j(E) 6= 0, 1728 we have ρE,N(Gk) ≤ H ⇐⇒ (E, [ι]H) ∈ YH(k).

• YH(k̄) = {(j(E), α) : α = HgAE} with AE := {ϕN : ϕ ∈ Aut(Ek̄)}, and YH(k) = YH(k̄)Gk .

• X∞H (k) = {α ∈ H\GL2(N)/U(N) : αχN(GK) = α} where U(N) := 〈
(

1 1
0 1

)
,−1〉).

• For k = Fq, to compute #XH(k) = #YH(k) + #X∞H (k) count double cosets fixed by Gk.

https://link.springer.com/content/pdf/10.1007/978-3-540-37855-6_4.pdf


Computing the action of Frobenius

Theorem (Duke, Tóth 2002)
Let E/Fq be an elliptic curve, and let πE denote its Frobenius endomorphism. Define
a := trπE = q + 1−#E(Fq) and R := End(E) ∩Q(πE), let ∆ := disc(R) and δ := ∆ mod 4,
and let b :=

√
(a2 − 4q)/∆ if ∆ 6= 1 and b := 0 otherwise. The integer matrix

Aπ :=

(
(a + bδ)/2 b
b(∆− δ)/4 (a− bδ)/2

)
gives the action of πE on E[N] for all N ≥ 1.

We can compute Aπ for all E/Fq by enumerating solutions (a, v,D) to the norm equation

4q = a2 − v2D,

and making appropriate adjustments for j(E) = 0, 1728 and supersingular E/Fq.
We then count the double cosets fixed by Aπ with multiplicity h(D).

http://projecteuclid.org/euclid.em/1057864664


A trivial (but still very useful) example

Consider the following arithmetically maximal group of level 49 and genus 12:

H := 〈
(

41 1
1 8

)
,
(

37 3
11 26

)
〉 ⊆ GL2(49),

which has label 49.168.12.1.

None of the double cosets in H\GL2(49)/U(49) are fixed by χ49(σ2), so #X∞H (F2) = 0.

For the five elliptic curves E/F2, no double cosets in H\GL2(49)/AE are fixed by Aπ.
It follows that #YH(F2) = 0, and therefore #XH(F2) = 0.

The curve XH has good reduction away from 7, and in particular at 2, so XH(Q) = ∅

There is thus no elliptic curve E/Q whose 7-adic image lies in H.

The same holds over any number field that has a prime with residue field F2.



Arithmetically maximal modular curves with local obstructions
label level generators p rank genus

16.48.2.17 24
(

11 9
4 13

)
,
(

13 5
4 11

)
,
(

1 9
12 7

)
,
(

1 9
0 5

)
3, 11 0 2

27.108.4.5 33
(

4 25
6 14

)
,
(

8 0
3 1

)
7, 31 0 4

25.150.4.2 52
(

7 20
20 7

)
,
(

22 2
13 22

)
2 0 4

25.150.4.7 52
(

24 24
0 18

)
,
(

2 5
0 23

)
3, 23 4 4

25.150.4.8 52
(

8 4
0 23

)
,
(

16 7
0 8

)
2 0 4

25.150.4.9 52
(

2 0
0 8

)
,
(

3 18
0 14

)
2 0 4

49.168.12.1 72
(

39 6
36 24

)
,
(

11 9
24 2

)
2 3 12

13.84.2.2 13
(

3 7
0 8

)
,
(

12 4
0 12

)
2 0 2

13.84.2.3 13
(

9 2
0 7

)
,
(

4 4
0 7

)
3 0 2

13.84.2.4 13
(

8 12
0 10

)
,
(

8 3
0 9

)
2 0 2

13.84.2.6 13
(

9 0
0 4

)
,
(

11 3
0 10

)
3 0 2

Arithmetically maximal H of `-power level for which XH(Fp) is empty for some p 6= ` ≤ 37.



Decomposing the Jacobian of XH

Let H be an open subgroup of GL2(Ẑ) of level N and let JH denote the Jacobian of XH.

Theorem (Rouse, S, Voight, Zureick-Brown 2021)

Each simple factor A of JH is isogenous to Af for a weight-2 eigenform f on Γ0(N2)∩Γ1(N).

If we know the q-expansions of the eigenforms in S2(Γ0(N2) ∩ Γ1(N)) we can uniquely
determine the decomposition of JH up to isogeny using linear algebra and point-counting.
It suffices to work with the trace form Tr(f ) (the sum of the Galois conjugates of f )

Tr(f )(q) :=

∞∑
n=1

TrQ(f )/Q(an(f ))qn

since the integers an(Tr(f )) uniquely determine L(Af , s) and the isogeny class of Af .
By strong multiplicity one (Soundararajan 2004), the ap(Tr(f )) for enough p - N suffice.

https://arxiv.org/pdf/2106.11141.pdf#page=42
https://doi.org/10.4153/CMB-2004-046-0


Decomposing JH and determining its analytic rank

Let {[f1], . . . , [fm]} be the Galois orbits of the weight-2 eigenforms for Γ0(N2) ∩ Γ1(N). Then

L(JH, s) =

m∏
i=1

L(Afi , s)
ei

for some unique vector of nonnegative integers e(H) := (e1, . . . , ei).

Let T(B) ∈ Zn×m have columns [a1(Tr(fi)), a2(Tr(fi)), . . . , ap(Tr(fi)), . . .] for good p ≤ B.
Let a(H; B) := [g(H), a2(H), . . . , ap(H), . . .], where ap(H)p + 1−#XH(Fp), for good p ≤ B.

For all sufficiently large B the Q-linear system

T(B)x = a(H; B),

has the unique solution x = e(H); for all the relevant H this happens with B ≤ 3000.
We can then compute the analytic rank of JH as rk(JH) =

∑
ei rk(fi) using the LMFDB.

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/


Performance comparison
Time to compute #X0(N)(Fp) for all primes p ≤ B in seconds.

trace formula in Pari/GP v2.11 point-counting via moduli

B N = 41 42 209 210 N = 41 42 209 210

212 0.1 0.4 0.2 0.7 0.0 0.0 0.0 0.0
213 0.3 1.0 0.5 1.8 0.0 0.0 0.1 0.0
214 0.6 2.5 1.1 4.8 0.1 0.1 0.1 0.1
215 1.7 7.1 3.1 12.8 0.2 0.2 0.2 0.2
216 4.8 19.6 8.9 35.4 0.4 0.4 0.6 0.5
217 14.4 55.1 25.7 97.8 1.1 0.9 1.5 1.2
218 43.5 156

.0

74.3 274

.0

2.8 2.6 4.0 3.3
219 128

.0

442

.0

214

.0

769

.0

7.8 7.0 11.0 9.1
220 374

.0

1260

.0

610

.0

2169

.0

22.2 19.8 31.1 26.2
221 1100

.0

3610

.0

1760

.0

6100

.0

69.0 61.3 91.8 77.9
222

.0 .0 .0 .0

213

.0

187

.0

263

.0

228

.0

223

.0 .0 .0 .0

665

.0

579

.0

762

.0

678

.0

224

.0 .0 .0 .0

2060

.0

1790

.0

2220

.0

1990

.0

(? = did not complete within one day)



Computing `-adic images

Given a non-CM elliptic curve E/Q we determine ρE,`∞(GQ) for all primes ` as follows:

1 Compute a finite set S containing all ` for which ρE,`∞ is nonsurjective (Zywina 2015).

2 Compute Ap := Aπ for good p ≤ Bmin = 256 and remove ` ∈ S for which the Ap rule
out every maximal subgroup of GL2(`e) (where e = 3, 2, 1, 1, . . . for ` = 2, 3, 5, 7, . . .)

3 Check whether j(E) is exceptional for any ` ∈ S (if so, record the corresponding H).

4 For all remaining ` ∈ S:

a Compute Ap as needed to rule out `-power H with j(XH(Q)) finite.
(if all Ap for p ≤ Bmax = 220 don’t suffice, compute ρ`,∞(GQ) the hard way).

b Having determined a set C of `-power H with j(XH(Q)) infinite that contains
ρ`,∞(GQ), use precomputed maps j : XH → X(1) and universal models EH(t)
to determine the unique H ∈ C of maximal index for which ρ`,∞(GQ) ≤ H.

https://arxiv.org/abs/1508.07661v2
https://link.springer.com/content/pdf/10.1007/s00209-011-0967-7.pdf
https://arxiv.org/abs/math/0612734


Some arithmetic statistics

nonsurjective primes

database 2 3 5 7 11 13 17 37 none total

LMFDB 1366378 271718 20756 4180 156 736 40 96 2211532 3816674
SW 35598552 3671444 181224 43966 2048 7444 368 1024 109142150 148168204
BHKSSW 242540 8750 400 108 0 2 44 2 238447364 238698578

nonsurjective pairs and triples of primes

database {2, 3} {2, 5} {2, 7} {2, 11} {2, 13} {3, 5} {3, 7} {2, 3, 5} {2, 3, 7}
LMFDB 53996 3602 856 148 92 816 264 592 264
SW 424566 38790 11044 2048 640 10832 3272 7904 3272
BHKSSW 382 154 62 2 22 42 16 32 16

Table: Summary of `-adic image data for non-CM elliptic curves E/Q in the LMFDB, Stein-Watkins
(SW), and Balakrishnan-Ho-Kaplan-Spicer-Stein-Weigandt (BHKSSW) databases. Nonsurjective
counts are inclusive: they may include curves that are also nonsurjective at another prime.

https://www.lmfdb.org/EllipticCurve/Q
https://link.springer.com/content/pdf/10.1007/3-540-45455-1_22.pdf
https://doi.org/10.1112/S1461157016000152


Bonus slides!



Fun facts about XH

• XH is a smooth proper Z[ 1
N ]-scheme with open subscheme YH.

The complement X∞H of YH in XH is finite étale over Z[ 1
N ].

• If det(H) = Ẑ× the generic fiber of XH is a nice curve XH/Q, and XH(C) is the
Riemann surface XΓH := ΓH\H, with ΓH ⊆ SL2(Z) the preimage of πN(H) ∩ SL2(N).
Note: XΓH = XΓH′ 6⇒XH = XH′ , and the levels of XΓH and XH may differ.
• The genus of each geometric connected component of XH can be computed as

g(H) = g(ΓH) = 1 +
i(ΓH)

12
− e2(ΓH)

4
− e3(ΓH)

3
− e∞(ΓH)

2
,

where ΓH := ±H ∩ SL2(N), i(ΓH) := [SL2(N) : ΓH], e2 and e3 count ΓH-cosets
containing

(
0 1
−1 −1

)
and

(
0 1
−1 0

)
, and e∞(ΓH) counts

(
1 1
0 1

)
-orbits of ΓH SL2(N).

• If det(H) 6= Ẑ× then XH is not geometrically connected, but it is a curve over Q, and
there is an abelian variety JH/Q given by the (sheafification of) the functor Pic0 XH.
Note: The simple isogeny factors of JH may have dimension greater than g(H).



Quadratic twists

Let H be an open subgroup of GL2(Ẑ) and suppose −I ∈ H.

If ρE(Gk) ≤ H for an elliptic curve E/k, then ρE′(Gk) ≤ H for every quadratic twist Ẽ of E.

Provided j(E) 6= 0, 1728, this means that

(E, [ι]H) ∈ XH(k)⇐⇒ j(E) ∈ jH(XH).

For each H′ < H with 〈H′,−I〉 = H there is a unique Ẽ with ρẼ(Gk) H-conjugate to H′.

When −I ∈ H it suffices to determine exceptional j-invariants, but
when −I 6∈ H we want to identify the quadratic twists Ẽ.

If we let U be the complement of the cusps and preimages of j = 0, 1728 on XH.
There is a universal curve E → U such that for j(E) 6= 0, 1728 we have ρE,N(GQ) ≤ H
if and only if E ' Et for some t ∈ U(K). For U ' A1, E : y2 = x3 + a(t)x + b(t) with t ∈ Z[t].



Computing canonical models of modular curves

• For a non-hyperelliptic curve of genus g ≥ 3 the canonical ring
RH := ⊕d≥0H0(XH,Ω

⊗d) is generated in degree d = 1.

• To compute jH : XH → X(1) we represent E4 and E6 as ratios of elements of RH.

• We show that E4 is a rational of an element of weight k and weight k − 4 whenever

k ≥ 2e∞ + e2 + e3 + 5g− 4
2(g− 1)

• We used this method to compute canonical models for many curves of large genus.

• This notably includes 27.729.43.1 and 25.625.36.1, and we were able to use
these models to show they have no points over Q3 and Q5, respectively.



An equationless Mordell-Weil sieve
We used standard techniques to determine XH(Q) for many arithmetically maximal H,
including descent and variations of Chabauty’s method, as well as leveraging prior work.

But in a few cases we had to do something different, including the group 121.605.41.1.

In this case the curve XH has local points everywhere, and analytic rank = genus = 41.

Reduction modulo 11 yields a map to X+
ns(11), which is an elliptic curve of rank 1. For any

set of primes S not containing 11 we have a commutative diagram

XH(Q)
π //

α

��

X+
ns(11)(Q)

β

��∏
p∈S XH(Fp)

πS //
∏

p∈S X+
ns(11)(Fp).

We want to choose S so that the intersection of the images of β and πS is empty.



An equationless Mordell-Weil sieve

We have the commutative diagram

XH(Q)
π //

α

��

X+
ns(11)(Q)

β

��∏
p∈S XH(Fp)

πS //
∏

p∈S X+
ns(11)(Fp).

For our chosen generator R ∈ X+
ns(11)(Q) ' Z, we find that for p = 13 the image of any

point in YH(Q) maps to nR with n ≡ 1, 5 mod 7, which we determine by computing Aπ
for elliptic curves E/F13, it does not require a model for XH the map πS.

Similarly, for p = 307 any point in YH(Q) maps to nR with n ≡ 2, 3, 4, 7, 10, 13 mod 14.
Thus if we take S = {13, 307} the intersection of the images of β and πS must be empty.

Therefore YH(Q) = ∅ (and in fact XH(Q) = ∅, there are no rational cusps).


