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Elliptic curves and their L-functions
Let E/Q be an elliptic curve, say E : y2 = x3 + Ax + B with A, B ∈ Z.
For primes p ∤ ∆(E ) := −16(4A3 + 27B2) this equation defines an elliptic curve E/Fp.
For all such primes p we have the trace of Frobenius ap(E ) := p + 1 − #E (Fp) ∈ Z.

One can also define ap(E ) for p|∆(E ), and then construct the L-function

L(E , s) :=
∏
p

(1 − app−s + χ(p)p1−2s)−1 =
∑
n≥1

ann−s

where χ(p) = 0 for p|N(E ) and χ(p) = 1 otherwise and N(E )|∆(E ) is the conductor.

But in fact the ap for p ∤ ∆(E ) determine L(E , s) (via strong multiplicity one), and also
the conductor and root number w(E ) = ±1, which appear in the functional equation

Λ(E , s) = w(E )N(E )1−sΛ(E , 2 − s)

where Λ(s) := ΓC(s)L(E , s). The L-function L(E , s) determines the isogeny class of E .



Arithmetic statistics of Frobenius traces of elliptic curves E/Q

Three conjectures from the 1960s and 1970s (the first is now a theorem):

1. Sato–Tate: The sequence xp := ap(E )/√p is equidistributed with respect to the
pushforward of the Haar measure of of ST(E ) (= SU(2) if E does not have CM).

2. Birch and Swinnerton-Dyer:

lim
x→∞

1
log x

∑
p≤x

ap(E ) log p
p = 1

2 − r ,

3. Lang–Trotter: For every nonzero t ∈ Z there is a real number CE ,t for which

#{p ≤ x : ap(E ) = t} ∼ CE ,t

√
x

log x .

These conjectures depend only on L(E , s) and generalize to other L-functions.



Example: Elkies’ curve of rank ≥ 28 (= 28 under GRH).
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How rank effects trace distributions

An early form of the BSD conjecture implies that

lim
x→∞

1
log x

∑
p≤x

ap(E ) log p
p = 1

2 − r , (1)

and sums of this form (Mestre-Nagao sums) are often used as a tool when searching
for elliptic curves of large rank (which necessarily have large conductor N).1 2

Theorem (Kim-Murty 2023)
If the limit on the LHS of (1) exists then it equals the RHS with r the analytic rank,
and the L-function of E satisfies the Riemann hypothesis.

1See Sarnak’s 2007 letter to Mazur.
2See Kazalicki-Vlah for some recent machine-learning work on this topic.

https://arxiv.org/abs/2105.10805
https://publications.ias.edu/sites/default/files/MazurLtrMay08.PDF
https://rdcu.be/df9td
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Murmurations of elliptic curves
In their 2022 preprint Murmurations of elliptic curves, Yang-Hui He, Kyu-Hwan Lee,
Thomas Oliver, and Alexey Pozdnyakov observed a curious fluctuation in average
Frobenius traces of elliptic curves in a given conductor interval depending on the rank.

https://arxiv.org/abs/2204.10140


Murmurations of elliptic curves
Elliptic curve L-functions of conductor N ∈ (M, 2M] for M = 211, 212, . . . , 217, 250000.
The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
average of ap or mp := w(E )ap(E ) over even/odd or all E/Q with NE ∈ (M, 2M].
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Murmurations of elliptic curves over an (not just ap)

Elliptic curve L-functions of conductor N ∈ (M, 2M] for M = 211, 212, . . . , 217, 250000.
The x -axis range is [0, 2M]. Dots at (n, m̄n) show the average of mn := w(E )an(E )
over all E/Q with NE ∈ (M, 2M].

The color of the dot indicates the number of prime factors of n (with multiplicity).
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Murmurations are an aggregate phenomenon

Moving average line plots of m̄p for 8 individual and all E/Q with NE ∈ (M, 2M],
using subintervals of size

√
M for p ≤ 2M, with M = 217.

147455.b2, 163839.a1, 180222.be2, 196606.b1, 212990.l1, 229374.a1, 245758.a1, 262143.d1

https://www.lmfdb.org/EllipticCurve/Q/\color {mplsalmon}147455.b2
https://www.lmfdb.org/EllipticCurve/Q/\color {mplskyblue}163839.a1
https://www.lmfdb.org/EllipticCurve/Q/\color {mpldeepskyblue}180222.be2
https://www.lmfdb.org/EllipticCurve/Q/\color {mpltomato}196606.b1
https://www.lmfdb.org/EllipticCurve/Q/\color {mpldodgerblue}212990.l1
https://www.lmfdb.org/EllipticCurve/Q/\color {mplslateblue}229374.a1
https://www.lmfdb.org/EllipticCurve/Q/\color {mplroyalblue}245758.a1
https://www.lmfdb.org/EllipticCurve/Q/\color {mplcrimson}262143.d1


Murmurations depend critically on the conductor
Elliptic curves with ht(E ) := max(4|A|3, 27B2) in (M, 2M] for M = 216, . . . , 225.
The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
average of ap or mp over even/odd or all E/Q with NE ∈ (M, 2M].
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Murmurations scale
Elliptic curves in the SWDB of conductor N ∈ (M, 2M] for M = 212, . . . , 225.
The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
average of ap or mp over even/odd or all E/Q with NE ∈ (M, 2M].
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Arithmetic L-functions
We call an L-function is analytic if it has the properties every good L-function should:
analytic continuation, functional equation, Euler product, temperedness, central
character; see FPRS18; it is analytically normalized if its central value is at s = 1/2.

An analytically normalized L-function Lan(s) =
∑

ann−s is arithmetic if annω/2 ∈ OK
for some number field K and ω ∈ Z≥0. The least such ω is the motivic weight.
Its arithmetic normalization L(s) := Lan(s + ω/2) has coefficients in OK and satisfies

Λ(s) = N1−sw Λ̄(1 + ω − s).

L-functions of abelian varieties have motivic weight ω = 1.
L-functions of weight-k holomorphic cuspforms have motivic weight ω = k − 1.

We consider Galois-closed families of self-dual arithmetically normalized L-functions.
In any such family the values of ap and mp are integers and w = ±1.

When averaging ap’s in motivic weight ω > 1 we normalize them via ap 7→ ap/p(ω−1)/2.
This ensures that we always have |ap| = O(√p), as with elliptic curves.

https://www.ams.org/journals/bull/2019-56-02/S0273-0979-2018-01646-7/


Newforms for Γ0(N) of weight k = 2, 4, 6 with rational coefficients.
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Newforms for Γ0(N) of weight k = 2, 4, 6, 8.
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Zubrilina’s theorem (click me!)
Definition. Let Un ∈ Z[x ] denote the Chebyshev polynomial defined by
Un(cos ϑ) sin ϑ = sin((n + 1)ϑ). The murmuration density function is

Mk(y) := Dk
(
Ay − (−1)k/2B

∑
1≤r≤2y

c(r)
√

4y2 − r2 Uk−2( r
2y ) − πy2δk=2

)
,

A :=
∏

p

(
1 + p

(p+1)2(p−1)

)
, B :=

∏
p

p4−2p2−p+1
(p2−1)2 , c(r) :=

∏
p|r

(
1 + p2

p4−2p2−p+1

)
, Dk := 12

(k−1)π
∏

p
(1− 1

p2+p
) .

Theorem [Zubrilina 2023]. Let
∑

an(f )qn denote a weight-k newform for Γ0(N) with
root number w(f ). Let X , Y , P → ∞ with P prime, Y ∼ X 1−δ, P ≪ X 1+δ1 , δ, δ1 > 0
and 2δ1 < δ < 1, and put y :=

√
P/X . Then for every ε > 0 we have∑□-free

N∈[X ,X+Y ]
∑

f w(f )aP(f )P(1−k/2)∑□-free
N∈[X ,X+Y ]

∑
f 1

= Mk(y) + Oε(X−δ′+ε + P−1)

where δ′ := max(δ/2 − δ1, (δ + 1)/9 − δ1); for δ1 < 2/9 we can choose δ so δ′ > 0.

https://math.mit.edu/~drew/murm/zub.html


Murmurations of elliptic curves with squareroot normalization
Elliptic curve L-functions of conductor N ∈ (M, 2M] for M = 211, 212, . . . , 217, 250000.
The x -axis range is [0, 2M]. A blue/red or purple dot at (√p, āp or m̄p) shows the
average of ap or mp := w(E )ap(E ) over even/odd or all E/Q with NE ∈ (M, 2M].



Murmurations of elliptic curves with squareroot normalization
Elliptic curve L-functions of conductor N ∈ (M, 2M] for M = 211, 212, . . . , 217, 250000.
The x -axis range is [0, 2M]. A blue/red or purple dot at (√p, āp or m̄p) shows the
average of ap or mp := w(E )ap(E ) over even/odd or all E/Q with NE ∈ (M, 2M].



L-functions of genus 2 curves over Q with Sato-Tate group USp(4).
Recently constructed database of more than 5 million genus 2 curves X/Q of conductor
at most 220 includes 1,440,894 isogeny classes with Sato–Tate group USp(4).
Conductor of L(X , s) in (M, 2M] for M = 212, . . . , 219 with x -axis range [0, M/2].

Coming soon to the LMFDB.

https://www.lmfdb.org
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L-functions of genus 3 curves over Q with Sato-Tate group USp(6).
Recently constructed database of genus 3 curves X/Q of conductor at most 107

includes 59,214 isogeny classes of hyperelliptic curves with ST group USp(6).
Conductor of L(X , s) in (M, 2M] for M = 216, . . . , 222 with x -axis range [0, M/2].

Coming soon to the LMFDB.

https://www.lmfdb.org
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Computing trace averages of many E/Q

When computing ap(E ) for many elliptic curves E/Q we construct a lookup table
T [j] = ap(E ) for E : y2 = x3 + Ax + B with j(E ) = j ̸= 0, 1728 and B = □.

• Naive: O(p) per curve.
• Mestre BSGS: O(p1/4 log p) per curve.
• Schoof: O(log5p) per curve.
• SEA: O(log4p) per curve.
• CM torsor (isogenies): O(log3p) per curve (GRH).
• CM torsor (isogenies): O(log2p) per curve (heuristic).
• CM torsor (GCDs): O(log p) per curve (heuristic).

Complexity estimates ignore log log p factors.



Realizing the CM torsor via isogenies
Having computed ap(E ) for one E/Fp, we can (typically) easily compute End(E ) = O,
since discO divides ap(E )2 − 4p. Let EllO(Fp) := {j(E ) : E/Fp has End(E ) = O}.

Gal(KO/K ) ≃ cl(O) acts on Ell(O) via (horizontal) isogenies.
If [l] ∈ cl(O) has norm ℓ and j1 ∈ EllO(Fp) then

Φℓ(j1, [l]j1) = 0,

where Φℓ(X , Y ) is the classical modular polynomial. Typically [l]j1 and [̄l]j1 are the
only roots of Φℓ(j1, X ) in Fp, and we can choose them to ensure this.

A polycyclic presentation for cl(O) is a sequence of ideals l1, . . . , lk such that every
[a] ∈ cl(O) may be written uniquely as

[a] = [le1
1 ] · · · [lek

k ] (0 ≤ ei < ri),

where ri = min{r : [lri ] ∈ ⟨[l1], . . . , [li−1]⟩} is [li ]’s relative order.



Using GCDs
We can replace most root-finding steps with GCDs.

Suppose we have computed a cycle of ℓ-isogenies. After computing a single ℓ′-isogeny,
we can compute the next cycle of ℓ-isogenies using GCDs.

j1 j2 j3 jr

j′
1 j′

2

· · ·
l′ l′

l l l l

l

Provided 4ℓ2ℓ′2 < |D|, the monic polynomial

φ(X ) = gcd(Φℓ(j ′
1, X ), Φ′

ℓ(j2, X )) ∈ Fp[X ]

will have degree 1 and we can compute j ′
2 = −φ(0) as its unique root.

Even when our polycyclic presentation with one generator, we can choose an auxiliary
prime ℓ′ so [l′] = [l]n and use GCDs to a single line of j-invariants after n steps.



Computing murmurations using the trace formula
The sum of w(f )ap(f ) over f ∈ Snew

k (N) is equal to the trace of Tn ◦ W acting on
Snew

k (N), where the Fricke involution W is defined by W (f ) := f |
( 0 −1

N 0
)
.

By massaging a theorem of Popa, one finds that

tr(Tn ◦ W , Sk(N)) = −1
2

∑
t2N<4n

D:=t2N2−4nN

gk(t2N, n)h∗(D, N) − 1
2sk(N, n) + δ

k=2
σN(n) − δ

N=1
n=□

k−1
12 nk/2−1,

h∗(D, N) :=
∑
u|N
u2|D

µ(u)H ′( D
u2 ), sk(N, n) := φ(N)

Nk/2

∑
uv=Nn

N|(u+v)

min(u, v)k−1, σN(n) :=
∑
m|n

m⊥N

n
m ,

where gk := gk(b, c) is defined by g2 := 1, g4 := b − c, gk+4 := (b − 2c)gk+2 − c2gk .

Assaf’s recent paper gives formulas for tr(Tn ◦ W , Snew
k (N)) via tr(Tn ◦ W , Sk(N)).

Key point: For n = O(N) the sum contains O(1) terms!

https://doi.org/10.1007/s40687-018-0125-5
https://arxiv.org/abs/2311.03523


Computing murmurations using the trace formula
We compute h∗(D, N) as the product of a multiplicative function and a class number

h∗(D, N) =
∑

u|N,u2|D
µ(u)H ′( D

u2 ) =
∑
u| c

w

µ(u)H ′( D
u2 ) = φ

D/w2

1 (w)h′( D
w2 ),

where φD
1 (n) is the multiplicative function defined on prime powers as

φD
1 (pe) = 1 + pe − 1

p − 1
(
p −

(D
p

))
.

The class numbers for |D| ≤ 240 have been computed by Jacobson and Mosunov and
can be downloaded from the LMFDB, and can be crammed into a 1.125TB lookup
table. Using a memory mapped file on fast SSD it takes 40s to load.

It then takes less than a minute to compute tr(Tp ◦ W , Snew
k (N)) for 218 ≤ N < 219

and p ≤ 219 for any reasonably small k (on 256 cores).

https://doi.org/10.1090/mcom3050
https://www.lmfdb.org/NumberField/QuadraticImaginaryClassGroups


Computing murmurations of genus 2 and genus 3 curves

The average polynomial time algorithms described in [Harvey-S 2016] and
[Costa-Harvey-S 2022] can readily compute the desired trace sums.

The main challenge is finding curves (and abelian varieties) of small conductor.

The algorithms described in [BSSVY 2016] and [S 2018] enumerate curves by
discriminant, but curves with very large discriminants can have very small conductors.

This is already an issue in genus 1 with the Stein-Watkins database: it misses about
1/4 of the isogeny classes of conductor up to 5 · 105, despite ranging up to 108, but
the situation is much worse in higher genus.

Curves may have bad reduction at primes of good reduction for the Jacobian (this
happens a lot!). The genus 2 murmurations here use a new dataset of some 5 million
curves with conductor below 106 (98% of these are not in the LMFDB yet).

https://arxiv.org/abs/1410.5222
https://doi.org/10.1007/s40993-022-00397-8
https://doi.org/10.1112/S146115701600019X
https://doi.org/10.2140/obs.2019.2.443


L-functions of genus 2 curves over Q with Sato-Tate group USp(4).

Before and after genus 2 murmuration plots (top LMFDB, bottom new dataset).



L-functions of genus 2 curves over Q with Sato-Tate group USp(4).

Before and after genus 2 murmuration plots (top LMFDB, bottom new dataset).



Thank you!

Animations available at https://math.mit.edu/~drew/murmurations.html.

https://math.mit.edu/~drew/murmurations.html

