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How many primes are there?

Letter p always denotes a prime, p ∈ {2, 3, 5, 7, 11, 13, . . . },
i.e. a natural number > 1 that is only divisible by 1 and itself.

Hadamard and de la Vallee Poussin showed independently in
1896 that the number of primes up to x is

(1 + o(1))

∫ x

2

dx

log x
= (1 + o(1))

x

log x
.

This is called the prime number theorem (PNT).

It asserts that the ”probability” that an integer n is prime is
about 1/ log n.

PNT is equivalent to the fact that the Riemann zeta function
does not have zeros with <s = 1.
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What about primes in short intervals?

One wants to know about primes in short intervals: If we look
at a ”short” segment (x , x + H] around x , is the density of
primes in that segment still 1/ log x?

The smaller the H, the more difficult the problem.

Huxley’s prime number theorem from 1972 gives∑
x<p≤x+H

1 = (1 + o(1))
H

log x
, H ≥ x7/12+ε.

This is based on Huxley’s zero-density estimate for the zeta
function and has resisted improvements, except Heath-Brown
(1988) has shown this for H ≥ x7/12−o(1).
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Primes in short intervals

Baker-Harman-Pintz (2001) showed with a sieve method∑
x<p≤x+H

1 ≥ ε H

logX
, H ≥ x0.525

for some ε > 0.

For shorter intervals one does not even know existence of
primes!

Assuming RH one knows that [x , x + x1/2 log x ] always
contains primes.

Cramer made a probabilistic model based on ”probability of n
being prime is 1/ log n”. Based on this, one expects that
intervals [x , x + (log x)2+ε] contain primes for all large x .

Huge gap between what’s known and what’s expected!

Kaisa Matomäki Almost primes in almost all very short intervals



Primes in short intervals

Baker-Harman-Pintz (2001) showed with a sieve method∑
x<p≤x+H

1 ≥ ε H

logX
, H ≥ x0.525

for some ε > 0.

For shorter intervals one does not even know existence of
primes!

Assuming RH one knows that [x , x + x1/2 log x ] always
contains primes.

Cramer made a probabilistic model based on ”probability of n
being prime is 1/ log n”. Based on this, one expects that
intervals [x , x + (log x)2+ε] contain primes for all large x .

Huge gap between what’s known and what’s expected!
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Kaisa Matomäki Almost primes in almost all very short intervals



Primes in almost all short intervals

Even under RH it is not known that [x , x + x1/2] always
contains primes.

What if one only requires that almost all intervals contain
primes?

A variant of Huxley’s prime number theorem says that, for
almost all x ∈ [X , 2X ] (i.e. with o(X ) exceptions),∑

x<p≤x+H

1 = (1 + o(1))
H

logX
, H ≥ x1/6+ε.

This can be proved using the same zero-density estimates and
has also resisted improvements.

A lower bound has been shown for H ≥ X 1/20 by Jia.

One expects that, for any h→∞ with X →∞, the interval
(x , x + h log x ] contains primes for almost all x ∈ [X , 2X ].
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Almost primes

One expects that, for any h→∞ with X →∞, the interval
(x − h logX , x ] contains primes for almost all x ∈ [X/2,X ].

One can ask similar questions about almost-primes, i.e. Pk

numbers that have at most k prime factors or Ek numbers
that have exactly k prime factors.

Teräväinen has showed that, for almost all x ∈ [X/2,X ], the
interval (x − (logX )3.51, x ] contain an E2-number and the
interval (x − (log logX )6+ε logX , x ] contains an E3-number.

Wu has shown that the interval (x − x101/232, x ] contains P2

numbers for all sufficiently large x .
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Pk numbers in almost all short intervals

From now on we will concentrate on Pk numbers in almost all
short intervals.

Following Friedlander, Friedlander and Iwaniec showed that as
soon as h→∞ with X →∞, the interval (x − h logX , x ]
contains P19-numbers for almost all x ∈ [X/2,X ].

They used β-sieve with β = 8 and had level of distribution
D = X 1/2/(logX )A.

They say that if one was careful, one could use linear sieve
instead and this would give P4-numbers (with no prime
factors ≤ X 1/4−ε).

Furthermore, they say that, using Duke-Friedlander-Iwaniec
bounds on bilinear forms with Kloosterman fractions, one
could slightly increase the level of distribution and obtain P3

numbers.

They write ”It would be interesting to get integers with at
most two prime divisors”.
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P2 numbers in almost all very short intervals

Theorem (M. (202?))

As soon as h→∞ with X →∞, the interval (x − h logX , x ]
contains P2-numbers for almost all x ∈ [X/2,X ].

Write Ω(n) for the number of prime factors, counted with
multiplicity. E.g. Ω(18) = Ω(2 · 3 · 3) = 3. We have the following
more precise theorem.

Theorem (M. (202?))

Let h ≤ X 1/100. There exist constants c ,C > 0 such that

ch ≤
∑

x−h log X<n≤x
p|n =⇒ p>X 1/8

1Ω(n)≤2 ≤ Ch

for all x ∈ [X/2,X ] apart from an exceptional set of measure
O(X/h).
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P2 numbers in almost all very short intervals

Theorem (M. (202?))

Let h ≤ X 1/100. There exists constant c > 0 such that∑
x−h log X<n≤x
p|n =⇒ p>X 1/8

1Ω(n)≤2 ≥ ch

for all x ∈ [X/2,X ] apart from an exceptional set of measure
O(X/h).

We use Richert’s weighted sieve with well-factorability and
Vaughan’s identity. We get level of distribution D = X 5/9

(not optimized) from Deshouillers-Iwaniec bounds for averages
of Kloosterman sums. Mikawa used similar strategy with Weil
bound, but lost some logs in h.
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Setting up Richert’s weighted sieve

Write A(x) = (x − h logX , x ] ∩ N and P(z) =
∏

p<z p. Define

z := X 5/36 and y = X 1/2. Study, for x ∈ (X/2,X ],∑
n∈A(x)

(n,P(z))=1

wn :=
∑

n∈A(x)
(n,P(z))=1

(
1−

∑
p|n

z≤p<y

(
1− log p

log y

))

≤
∑

n∈A(x)
(n,P(z))=1

(
1−

∑
p|n

(
1− log p

log y

))

/
∑

n∈A(x)
(n,P(z))=1

(
1− Ω(n) +

logX

log y

)
≤ 2

∑
n∈A(x)

(n,P(z))=1

1Ω(n)≤2

.

Hence it suffices to show that, with O(X/h) exceptions,∑
n∈A(x)

(n,P(z))=1

wn � h.
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Setting up Richert’s weighted sieve

Write A(x) = (x − h logX , x ] ∩ N and P(z) =
∏

p<z p. Define

z := X 5/36 and y = X 1/2. Study, for x ∈ (X/2,X ],∑
n∈A(x)

(n,P(z))=1

wn :=
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∑
p|n
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1− log p
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∑
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1− log p
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A sieve lower bound

Recall A(x) = (x − h logX , x ] ∩ N and P(z) =
∏

p<z p. We need∑
n∈A(x)

(n,P(z))=1

wn =
∑

n∈A(x)
(n,P(z))=1

1−
∑

z≤p<y

(
1− log p

log y

) ∑
np∈A(x)

(n,P(z))=1

1� h

By sieve theory we have nice α+
d and α−d ,p such that∑

d |(n,P(z))
d≤D

α−d ≤ 1(n,P(z))=1 ≤
∑

d |(n,P(z))
d≤D/p

α+
d ,p,

where D = X 5/9, so that, with Bd := {n ∈ N : dn ∈ B},∑
n∈A(x)

(n,P(z))=1

wn ≥
∑

d |P(z)
d≤D

α−d |A(x)d | −
∑

z≤p<y

(
1− log p

log y

) ∑
d |P(z)
d≤D/p

α+
d ,p|A(x)dp|,
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A sieve lower bound

∑
n∈A(x)

(n,P(z))=1

wn ≥
∑

d |P(z)
d≤D

α−d |A(x)d | −
∑

z≤p<y

(
1− log p

log y

) ∑
d |P(z)
d≤D/p

α+
d ,p|A(x)dp|

Writing, for e ∈ {d , dp}, |A(x)e | = h log X
e +

(
|A(x)e | − h log X

e

)
,∑

n∈A(x)
(n,P(z))=1

wn ≥ h logX ·M(z , y) + E−(x , y , z)− E+(x , y , z),

M(z , y) :=
∑

d |P(z)

α−d
d
−
∑

z≤p<y

(
1− log p

log y

) ∑
d |P(z)

α+
d ,p

dp
� 1

logX

E−(x , y , z) :=
∑

d |P(z)

α−d

(
|A(x)d | −

h logX

d

)

E+(x , y , z) :=
∑

z≤p<y

(
1− log p

log y

) ∑
d |P(z)

α+
d ,p

(
|A(x)dp| −

h logX

dp

)
.
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A reduction to mean square estimates

∑
n∈A(x)

(n,P(z))=1

wn ≥ 3ch + E−(x , y , z)− E+(x , y , z),

where c > 0,

E−(x , y , z) :=
∑

d |P(z)

α−d

(
|A(x)d | −

h logX

d

)

E+(x , y , z) :=
∑

z≤p<y

(
1− log p

log y

) ∑
d |P(z)

α+
d ,p

(
|A(x)dp| −

h logX

dp

)
.

Hence
∑

wn ≥ ch with O(X/h) exceptions if |E±(x , y , z)| ≤ ch
with O(X/h) exceptions. This follows if∫ X

X/2
|E±(x , y , z)|2dx = O(hX ).
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The requirement

We need to show that∫ X

X/2

∣∣∣∑
d≤D

λd

(
|A(x)d | −

h logX

d

)∣∣∣2dy = O(hX )

with λd = α−d in case of E−(x , y , z) and with

λd =
∑
d=pe
z≤p<y

(
1− log p

log y

)
α+
e,p.

in case of E+(x , y , z).

In other words, we need type I information for almost all very
short intervals with level of distribution D = X 5/9 and some
useful bilinear structure in the coefficients.

Kaisa Matomäki Almost primes in almost all very short intervals



The requirement

We need to show that∫ X

X/2

∣∣∣∑
d≤D

λd

(
|A(x)d | −

h logX

d

)∣∣∣2dy = O(hX )

with λd = α−d in case of E−(x , y , z) and with

λd =
∑
d=pe
z≤p<y

(
1− log p

log y

)
α+
e,p.

in case of E+(x , y , z).

In other words, we need type I information for almost all very
short intervals with level of distribution D = X 5/9 and some
useful bilinear structure in the coefficients.
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Mean square of type I sums

Let g : R→ R be a smooth, supported on [1/4, 2], H = h logX∫ ∞
−∞

g
( y
X

) ∣∣∣∑
d≤D

λd

(
|A(x)d | −

H

d

)∣∣∣2dy

� HX
∑
d≤D

d
( ∑

m≤D
m≡0 (mod d)

λm
m

)2
+ H3X ε

+
∑

0<|k|≤H

(H − |k |)
∑

d1,d2≤D
(d1,d2)|k

λd1λd2

 ∑
m1,m2

d1m1=d2m2+k

g

(
d1m1

X

)
− ĝ(0)X

[d1, d2]



+ H
∑
n

g
( n

X

)∑
d |n

λd

2

+ HX
1

X 10

∑
n≤X 10

∑
d |n

λd

2

.

First and third lines � hX utilizing definition of sieve coefficients.
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The critical terms

Need to bound, for H = h logX ,

∑
0<|k|≤H

(H − |k |)
∑

d1,d2≤D
(d1,d2)|k

λd1λd2

 ∑
m1,m2

d1m1=d2m2+k

g

(
d1m1

X

)
− ĝ(0)X

[d1, d2]

 .

with λd = α−d in case of E−(x , y , z) and with

λd =
∑
d=pe
z≤p<y

(
1− log p

log y

)
α+
e,p.

in case of E+(x , y , z).

Note that in both cases λd can be factored
to type I and II sums since the linear sieve weights are
well-factorable and Vaughan’s identity applicable to p.
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To Kloosterman sums

Need to bound, for H = h logX ,

∑
0<|k|≤H

(H − |k |)
∑

d1,d2≤D
(d1,d2)|k

λd1λd2

 ∑
m1,m2

d1m1=d2m2+k

g

(
d1m1

X

)
− ĝ(0)X

[d1, d2]

 .

Concentrate on (d1, d2) = 1. The sum is over m1 ≡ d1k (mod d2)
and by Poisson this is

≤ HX
∑

0<|k|≤H

∣∣∣∣∣∣∣∣
∑

d1,d2≤D
(d1,d2)=1

λd1λd2

d1d2

∑
`∈Z
6̀=0

ĝ

(
`X

d1d2

)
e

(
−k`d1

d2

)∣∣∣∣∣∣∣∣
which is an average of incomplete Kloosterman sums.
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− ĝ(0)X

[d1, d2]

 .

Concentrate on (d1, d2) = 1. The sum is over m1 ≡ d1k (mod d2)
and by Poisson this is

≤ HX
∑

0<|k|≤H

∣∣∣∣∣∣∣∣
∑

d1,d2≤D
(d1,d2)=1

λd1λd2

d1d2

∑
`∈Z
6̀=0

ĝ
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The Kloosterman sums

Suffices to show that, for some ε > 0,

∑
0<|k|≤H

∣∣∣∣∣∣∣∣
∑

d1,d2≤D
(d1,d2)=1

λd1λd2

d1d2

∑
`∈Z
6̀=0

ĝ

(
`X

d1d2

)
e

(
−k`d1

d2

)∣∣∣∣∣∣∣∣� X−ε.

Decompose λd to type I and II sums and use Deshouillers-Iwaniec
bounds for averages of Kloosterman sums. They imply e.g.

Lemma (Type II estimate)

Assume that αn, βn and γn are bounded complex coefficients. Let
H ≤ X 1/60 and N ≤ M ≤ X 21/50 and max{MN,Q} ≤ X 14/25. Let
g be smooth with compact support. Then

∑
|k|≤H
k 6=0

∣∣∣∣∣∑
m∼M
n∼N

αmβn
mn

∑
q∼Q

(mn,q)=1

γq
q

∑
`∈Z
` 6=0

ĝ

(
`X

mnq

)
e

(
−k`mn

q

)∣∣∣∣∣� X−
1

1000
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∑
0<|k|≤H

∣∣∣∣∣∣∣∣
∑
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(d1,d2)=1

λd1λd2

d1d2
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6̀=0

ĝ

(
`X

d1d2

)
e

(
−k`d1

d2

)∣∣∣∣∣∣∣∣� X−ε.

Decompose λd to type I and II sums and use Deshouillers-Iwaniec
bounds for averages of Kloosterman sums. They imply e.g.

Lemma (Type II estimate)

Assume that αn, βn and γn are bounded complex coefficients. Let
H ≤ X 1/60 and N ≤ M ≤ X 21/50 and max{MN,Q} ≤ X 14/25. Let
g be smooth with compact support. Then
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Summary

Showed

Theorem (M. (202?))

Let h ≤ X 1/100. There exist constants c ,C > 0 such that

ch ≤
∑

x−h log X<n≤x
p|n =⇒ p>X 1/8

1Ω(n)≤2 ≤ Ch

for almost x ∈ [X/2,X ] apart from an exceptional set of measure
O(X/h).

We used Richert’s weighted sieve with well-factorability and
Vaughan’s identity. We got level of distribution D = X 5/9 (not
optimized) from Deshouillers-Iwaniec bounds for averages of
Kloosterman sums.
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Further thoughts — optimizing

We have optimized neither the sieve weights or the level of
distribution. Rather we have used a very simple sieve and
worked out a sufficent level of distribution for that.
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Further thoughts — primes and Ek numbers

Now that we have shown that as soon as h→∞ with
X →∞, the interval (x − h logX , x ] contains P2-numbers for
almost all x ∈ [X/2,X ], it is natural to ask, what about
primes?

Unfortunately, there are no chances to replace P2 by P1 since
we only use type I information. Due to the parity barrier, type
I information never suffices for finding primes.

Furthermore, our type I information is new only when the
intervals are extremely short. In particular it does not help
when trying to improve on Jia’s result that almost all intervals
(x − x1/20, x ] contain primes. Same issue for Ek numbers.

In an on-going work with J. Merikoski we are showing that if
there are infinitely many exceptional characters, then there are
many scales X such that (x − h logX , x ] contains primes for
almost all x ∈ (X/2,X ] as soon as h→∞ with X →∞.
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Kaisa Matomäki Almost primes in almost all very short intervals



Thank you!
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