Almost primes in almost all very short intervals

Kaisa Matomäki

University of Turku, Finland
MIT Number Theory Seminar, April 6th, 2021

Contents

(1) Background and results

- Primes
- Primes in short intervals
- Primes in almost all short intervals
- Almost primes in (almost all) short intervals
(2) Methods
- The sieve method
- Type I sums
- To Kloosterman sums
(3) Summary and further thoughts

Outline

(1) Background and results

- Primes
- Primes in short intervals
- Primes in almost all short intervals
- Almost primes in (almost all) short intervals
(2) Methods
- The sieve method
- Type I sums
- To Kloosterman sums
(3) Summary and further thoughts
- Letter p always denotes a prime, $p \in\{2,3,5,7,11,13, \ldots\}$, i.e. a natural number >1 that is only divisible by 1 and itself.
- Letter p always denotes a prime, $p \in\{2,3,5,7,11,13, \ldots\}$, i.e. a natural number >1 that is only divisible by 1 and itself.
- Hadamard and de la Vallee Poussin showed independently in 1896 that the number of primes up to x is

$$
(1+o(1)) \int_{2}^{x} \frac{d x}{\log x}=(1+o(1)) \frac{x}{\log x}
$$

- Letter p always denotes a prime, $p \in\{2,3,5,7,11,13, \ldots\}$, i.e. a natural number >1 that is only divisible by 1 and itself.
- Hadamard and de la Vallee Poussin showed independently in 1896 that the number of primes up to x is

$$
(1+o(1)) \int_{2}^{x} \frac{d x}{\log x}=(1+o(1)) \frac{x}{\log x}
$$

- This is called the prime number theorem (PNT).
- It asserts that the "probability" that an integer n is prime is about $1 / \log n$.
- Letter p always denotes a prime, $p \in\{2,3,5,7,11,13, \ldots\}$, i.e. a natural number >1 that is only divisible by 1 and itself.
- Hadamard and de la Vallee Poussin showed independently in 1896 that the number of primes up to x is

$$
(1+o(1)) \int_{2}^{x} \frac{d x}{\log x}=(1+o(1)) \frac{x}{\log x}
$$

- This is called the prime number theorem (PNT).
- It asserts that the "probability" that an integer n is prime is about $1 / \log n$.
- PNT is equivalent to the fact that the Riemann zeta function does not have zeros with $\Re s=1$.
- One wants to know about primes in short intervals: If we look at a "short" segment $(x, x+H]$ around x, is the density of primes in that segment still $1 / \log x$?
- One wants to know about primes in short intervals: If we look at a "short" segment $(x, x+H]$ around x, is the density of primes in that segment still $1 / \log x$?
- The smaller the H, the more difficult the problem.
- One wants to know about primes in short intervals: If we look at a "short" segment $(x, x+H]$ around x, is the density of primes in that segment still $1 / \log x$?
- The smaller the H, the more difficult the problem.
- Huxley's prime number theorem from 1972 gives

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log x}, \quad H \geq x^{7 / 12+\varepsilon}
$$

- One wants to know about primes in short intervals: If we look at a "short" segment $(x, x+H]$ around x, is the density of primes in that segment still $1 / \log x$?
- The smaller the H, the more difficult the problem.
- Huxley's prime number theorem from 1972 gives

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log x}, \quad H \geq x^{7 / 12+\varepsilon} .
$$

- This is based on Huxley's zero-density estimate for the zeta function and has resisted improvements, except Heath-Brown (1988) has shown this for $H \geq x^{7 / 12-o(1)}$.

Primes in short intervals

- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<p \leq x+H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<p \leq x+H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- For shorter intervals one does not even know existence of primes!
- Assuming RH one knows that $\left[x, x+x^{1 / 2} \log x\right]$ always contains primes.
- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<p \leq x+H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- For shorter intervals one does not even know existence of primes!
- Assuming RH one knows that $\left[x, x+x^{1 / 2} \log x\right]$ always contains primes.
- Cramer made a probabilistic model based on "probability of n being prime is $1 / \log n "$. Based on this, one expects that intervals $\left[x, x+(\log x)^{2+\varepsilon}\right]$ contain primes for all large x.
- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<p \leq x+H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- For shorter intervals one does not even know existence of primes!
- Assuming RH one knows that $\left[x, x+x^{1 / 2} \log x\right]$ always contains primes.
- Cramer made a probabilistic model based on "probability of n being prime is $1 / \log n "$. Based on this, one expects that intervals $\left[x, x+(\log x)^{2+\varepsilon}\right]$ contain primes for all large x.
- Huge gap between what's known and what's expected!
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right]$ always contains primes.
- What if one only requires that almost all intervals contain primes?
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right.$] always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley's prime number theorem says that, for almost all $x \in[X, 2 X]$ (i.e. with $o(X)$ exceptions),

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log X}, \quad H \geq x^{1 / 6+\varepsilon}
$$

- This can be proved using the same zero-density estimates and has also resisted improvements.
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right.$] always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley's prime number theorem says that, for almost all $x \in[X, 2 X]$ (i.e. with $o(X)$ exceptions),

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log X}, \quad H \geq x^{1 / 6+\varepsilon}
$$

- This can be proved using the same zero-density estimates and has also resisted improvements.
- A lower bound has been shown for $H \geq X^{1 / 20}$ by Jia.
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right.$] always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley's prime number theorem says that, for almost all $x \in[X, 2 X]$ (i.e. with $o(X)$ exceptions),

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log X}, \quad H \geq x^{1 / 6+\varepsilon}
$$

- This can be proved using the same zero-density estimates and has also resisted improvements.
- A lower bound has been shown for $H \geq X^{1 / 20}$ by Jia.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains primes for almost all $x \in[X / 2, X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains primes for almost all $x \in[X / 2, X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.
- Teräväinen has showed that, for almost all $x \in[X / 2, X]$, the interval $\left(x-(\log X)^{3.51}, x\right]$ contain an E_{2}-number and the interval $\left(x-(\log \log X)^{6+\varepsilon} \log X, x\right]$ contains an E_{3}-number.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains primes for almost all $x \in[X / 2, X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.
- Teräväinen has showed that, for almost all $x \in[X / 2, X]$, the interval $\left(x-(\log X)^{3.51}, x\right]$ contain an E_{2}-number and the interval $\left(x-(\log \log X)^{6+\varepsilon} \log X, x\right]$ contains an E_{3}-number.
- Wu has shown that the interval $\left(x-x^{101 / 232}, x\right]$ contains P_{2} numbers for all sufficiently large x.

P_{k} numbers in almost all short intervals

- From now on we will concentrate on P_{k} numbers in almost all short intervals.
- From now on we will concentrate on P_{k} numbers in almost all short intervals.
- Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{19}-numbers for almost all $x \in[X / 2, X]$.
- From now on we will concentrate on P_{k} numbers in almost all short intervals.
- Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{19}-numbers for almost all $x \in[X / 2, X]$.
- They used β-sieve with $\beta=8$ and had level of distribution $D=X^{1 / 2} /(\log X)^{A}$.
- From now on we will concentrate on P_{k} numbers in almost all short intervals.
- Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{19}-numbers for almost all $x \in[X / 2, X]$.
- They used β-sieve with $\beta=8$ and had level of distribution $D=X^{1 / 2} /(\log X)^{A}$.
- They say that if one was careful, one could use linear sieve instead and this would give P_{4}-numbers (with no prime factors $\leq X^{1 / 4-\varepsilon}$.
- From now on we will concentrate on P_{k} numbers in almost all short intervals.
- Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{19}-numbers for almost all $x \in[X / 2, X]$.
- They used β-sieve with $\beta=8$ and had level of distribution $D=X^{1 / 2} /(\log X)^{A}$.
- They say that if one was careful, one could use linear sieve instead and this would give P_{4}-numbers (with no prime factors $\leq X^{1 / 4-\varepsilon}$).
- Furthermore, they say that, using Duke-Friedlander-Iwaniec bounds on bilinear forms with Kloosterman fractions, one could slightly increase the level of distribution and obtain P_{3} numbers.
- From now on we will concentrate on P_{k} numbers in almost all short intervals.
- Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{19}-numbers for almost all $x \in[X / 2, X]$.
- They used β-sieve with $\beta=8$ and had level of distribution $D=X^{1 / 2} /(\log X)^{A}$.
- They say that if one was careful, one could use linear sieve instead and this would give P_{4}-numbers (with no prime factors $\leq X^{1 / 4-\varepsilon}$).
- Furthermore, they say that, using Duke-Friedlander-Iwaniec bounds on bilinear forms with Kloosterman fractions, one could slightly increase the level of distribution and obtain P_{3} numbers.
- They write "It would be interesting to get integers with at most two prime divisors".

P_{2} numbers in almost all very short intervals

Theorem (M. (202?))

As soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{2}-numbers for almost all $x \in[X / 2, X]$.

P_{2} numbers in almost all very short intervals

Theorem (M. (202?))

As soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{2}-numbers for almost all $x \in[X / 2, X]$.

Write $\Omega(n)$ for the number of prime factors, counted with multiplicity. E.g. $\Omega(18)=\Omega(2 \cdot 3 \cdot 3)=3$.

P_{2} numbers in almost all very short intervals

Theorem (M. (202?))

As soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{2}-numbers for almost all $x \in[X / 2, X]$.

Write $\Omega(n)$ for the number of prime factors, counted with multiplicity. E.g. $\Omega(18)=\Omega(2 \cdot 3 \cdot 3)=3$. We have the following more precise theorem.

Theorem (M. (202?))

Let $h \leq X^{1 / 100}$. There exist constants $c, C>0$ such that

$$
c h \leq \sum_{\substack{x-h \log X<n \leq x \\ p \mid n \Longrightarrow p>X^{1 / 8}}} 1_{\Omega(n) \leq 2} \leq C h
$$

for all $x \in[X / 2, X]$ apart from an exceptional set of measure $O(X / h)$.

P_{2} numbers in almost all very short intervals

Theorem (M. (202?))

Let $h \leq X^{1 / 100}$. There exists constant $c>0$ such that

$$
\sum_{\substack{x-h \log X<n \leq x \\ p \mid n \Longrightarrow p>X^{1 / 8}}} 1_{\Omega(n) \leq 2} \geq c h
$$

for all $x \in[X / 2, X]$ apart from an exceptional set of measure $O(X / h)$.

Theorem (M. (202?))

Let $h \leq X^{1 / 100}$. There exists constant $c>0$ such that

$$
\sum_{\substack{x-h \log X<n \leq x \\ p \mid n \Longrightarrow p>X^{1 / 8}}} 1_{\Omega(n) \leq 2} \geq c h
$$

for all $x \in[X / 2, X]$ apart from an exceptional set of measure $O(X / h)$.

- We use Richert's weighted sieve with well-factorability and Vaughan's identity. We get level of distribution $D=X^{5 / 9}$ (not optimized) from Deshouillers-Iwaniec bounds for averages of Kloosterman sums. Mikawa used similar strategy with Weil bound, but lost some logs in h.

Outline

(1) Background and results

- Primes
- Primes in short intervals
- Primes in almost all short intervals
- Almost primes in (almost all) short intervals
(2) Methods
- The sieve method
- Type I sums
- To Kloosterman sums
(3) Summary and further thoughts

Theorem (M. (202?))

Let $h \leq X^{1 / 100}$. There exists constant $c>0$ such that

$$
\sum_{\substack{x-h \log X<n \leq x \\ p \mid n \Longrightarrow p>X^{1 / 8}}} 1_{\Omega(n) \leq 2} \geq c h
$$

for all $x \in[X / 2, X]$ apart from an exceptional set of measure $O(X / h)$.

- We use Richert's weighted sieve with well-factorability and Vaughan's identity. We get level of distribution $D=X^{5 / 9}$ (not optimized) from Deshouillers-Iwaniec bounds for averages of Kloosterman sums.

Setting up Richert's weighted sieve

Write $\mathcal{A}(x)=(x-h \log X, x] \cap \mathbb{N}$ and $P(z)=\prod_{p<z} p$. Define $z:=X^{5 / 36}$ and $y=X^{1 / 2}$. Study, for $x \in(X / 2, X]$,

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n}:=\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}}\left(1-\sum_{\substack{p \mid n \\ z \leq p<y}}\left(1-\frac{\log p}{\log y}\right)\right)
$$

Setting up Richert's weighted sieve

Write $\mathcal{A}(x)=(x-h \log X, x] \cap \mathbb{N}$ and $P(z)=\prod_{p<z} p$. Define $z:=X^{5 / 36}$ and $y=X^{1 / 2}$. Study, for $x \in(X / 2, X]$,

$$
\begin{aligned}
\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}} w_{n} & :=\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\sum_{\substack{p \mid n \\
z \leq p<y}}\left(1-\frac{\log p}{\log y}\right)\right) \\
& \leq \sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\sum_{p \mid n}\left(1-\frac{\log p}{\log y}\right)\right)
\end{aligned}
$$

Setting up Richert's weighted sieve

Write $\mathcal{A}(x)=(x-h \log X, x] \cap \mathbb{N}$ and $P(z)=\prod_{p<z} p$. Define $z:=X^{5 / 36}$ and $y=X^{1 / 2}$. Study, for $x \in(X / 2, X]$,

$$
\begin{aligned}
\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}} w_{n} & :=\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\sum_{\substack{p \mid n \\
z \leq p<y}}\left(1-\frac{\log p}{\log y}\right)\right) \\
& \leq \sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\sum_{p \mid n}\left(1-\frac{\log p}{\log y}\right)\right) \\
& \lesssim \sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\Omega(n)+\frac{\log X}{\log y}\right)
\end{aligned}
$$

Setting up Richert's weighted sieve

Write $\mathcal{A}(x)=(x-h \log X, x] \cap \mathbb{N}$ and $P(z)=\prod_{p<z} p$. Define $z:=X^{5 / 36}$ and $y=X^{1 / 2}$. Study, for $x \in(X / 2, X]$,

$$
\begin{aligned}
\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}} w_{n} & :=\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\sum_{\substack{p \mid n \\
z \leq p<y}}\left(1-\frac{\log p}{\log y}\right)\right) \\
& \leq \sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\sum_{p \mid n}\left(1-\frac{\log p}{\log y}\right)\right) \\
& \lesssim \sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\Omega(n)+\frac{\log X}{\log y}\right) \leq 2 \sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}} 1_{\Omega(n) \leq 2}
\end{aligned}
$$

Setting up Richert's weighted sieve

Write $\mathcal{A}(x)=(x-h \log X, x] \cap \mathbb{N}$ and $P(z)=\prod_{p<z} p$. Define $z:=X^{5 / 36}$ and $y=X^{1 / 2}$. Study, for $x \in(X / 2, X]$,

$$
\begin{aligned}
\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}} w_{n} & :=\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\sum_{\substack{p \mid n \\
z \leq p<y}}\left(1-\frac{\log p}{\log y}\right)\right) \\
& \leq \sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\sum_{p \mid n}\left(1-\frac{\log p}{\log y}\right)\right) \\
& \lesssim \sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}}\left(1-\Omega(n)+\frac{\log X}{\log y}\right) \leq 2 \sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}} 1_{\Omega(n) \leq 2} .
\end{aligned}
$$

Hence it suffices to show that, with $O(X / h)$ exceptions,

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n} \gg h .
$$

Recall $\mathcal{A}(x)=(x-h \log X, x] \cap \mathbb{N}$ and $P(z)=\prod_{p<z} p$. We need

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n}=\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} 1-\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{\substack{n p \in \mathcal{A}(x) \\(n, P(z))=1}} 1 \gg h
$$

Recall $\mathcal{A}(x)=(x-h \log X, x] \cap \mathbb{N}$ and $P(z)=\prod_{p<z} p$. We need

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n}=\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} 1-\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{\substack{n p \in \mathcal{A}(x) \\(n, P(z))=1}} 1 \gg h
$$

By sieve theory we have nice α_{d}^{+}and $\alpha_{d, p}^{-}$such that

$$
\sum_{\substack{d \mid(n, P(z)) \\ d \leq D}} \alpha_{d}^{-} \leq 1_{(n, P(z))=1} \leq \sum_{\substack{d \mid(n, P(z)) \\ d \leq D / p}} \alpha_{d, p}^{+}
$$

where $D=X^{5 / 9}$,

Recall $\mathcal{A}(x)=(x-h \log X, x] \cap \mathbb{N}$ and $P(z)=\prod_{p<z} p$. We need

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n}=\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} 1-\sum_{z \leq p<y}\left(1-\frac{\log p)}{\log y y}\right) \sum_{\substack{n p \in \mathcal{A}(x) \\(n, P(z))=1}} 1 \gg h
$$

By sieve theory we have nice α_{d}^{+}and $\alpha_{d, p}^{-}$such that

$$
\sum_{\substack{d \mid(n, P(z)) \\ d \leq D}} \alpha_{d}^{-} \leq 1_{(n, P(z))=1} \leq \sum_{\substack{d \mid(n, P(z)) \\ d \leq D / p}} \alpha_{d, p}^{+},
$$

where $D=X^{5 / 9}$, so that, with $\mathcal{B}_{d}:=\{n \in \mathbb{N}: d n \in \mathcal{B}\}$,

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n} \geq \sum_{\substack{d \mid P(z) \\ d \leq D}} \alpha_{d}^{-}\left|\mathcal{A}(x)_{d}\right|-\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{\substack{d \mid P(z) \\ d \leq D / p}} \alpha_{d, p}^{+}\left|\mathcal{A}(x)_{d p}\right|
$$

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n} \geq \sum_{\substack{d \mid P(z) \\ d \leq D}} \alpha_{d}^{-}\left|\mathcal{A}(x)_{d}\right|-\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{\substack{d \mid P(z) \\ d \leq D / p}} \alpha_{d, p}^{+}\left|\mathcal{A}(x)_{d p}\right|
$$

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n} \geq \sum_{\substack{d \mid P(z) \\ d \leq D}} \alpha_{d}^{-}\left|\mathcal{A}(x)_{d}\right|-\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{\substack{d \mid P(z) \\ d \leq D / p}} \alpha_{d, p}^{+}\left|\mathcal{A}(x)_{d p}\right|
$$

Writing, for $e \in\{d, d p\},\left|\mathcal{A}(x)_{e}\right|=\frac{h \log X}{e}+\left(\left|\mathcal{A}(x)_{e}\right|-\frac{h \log X}{e}\right)$,

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n} \geq \sum_{\substack{d \mid P(z) \\ d \leq D}} \alpha_{d}^{-}\left|\mathcal{A}(x)_{d}\right|-\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y)} \sum_{\substack{d \mid P(z) \\ d \leq D / p}} \alpha_{d, p}^{+}\left|\mathcal{A}(x)_{d p}\right|\right.
$$

Writing, for $e \in\{d, d p\},\left|\mathcal{A}(x)_{e}\right|=\frac{h \log X}{e}+\left(\left|\mathcal{A}(x)_{e}\right|-\frac{h \log X}{e}\right)$,

$$
\begin{aligned}
\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}} w_{n} & \geq h \log X \cdot M(z, y)+E^{-}(x, y, z)-E^{+}(x, y, z), \\
M(z, y) & :=\sum_{d \mid P(z)} \frac{\alpha_{d}^{-}}{d}-\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{d \mid P(z)} \frac{\alpha_{d, p}^{+}}{d p} \gg \frac{1}{\log X} \\
E^{-}(x, y, z) & :=\sum_{d \mid P(z)} \alpha_{d}^{-}\left(\left|\mathcal{A}(x)_{d}\right|-\frac{h \log X}{d}\right)
\end{aligned}
$$

$$
E^{+}(x, y, z):=\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{d \mid P(z)} \alpha_{d, p}^{+}\left(\left|\mathcal{A}(x)_{d p}\right|-\frac{h \log X}{d p}\right) .
$$

A reduction to mean square estimates

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n} \geq 3 c h+E^{-}(x, y, z)-E^{+}(x, y, z)
$$

where $c>0$,

$$
E^{-}(x, y, z):=\sum_{d \mid P(z)} \alpha_{d}^{-}\left(\left|\mathcal{A}(x)_{d}\right|-\frac{h \log X}{d}\right)
$$

$$
E^{+}(x, y, z):=\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{d \mid P(z)} \alpha_{d, p}^{+}\left(\left|\mathcal{A}(x)_{d p}\right|-\frac{h \log X}{d p}\right)
$$

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n} \geq 3 c h+E^{-}(x, y, z)-E^{+}(x, y, z)
$$

where $c>0$,

$$
\begin{aligned}
E^{-}(x, y, z) & :=\sum_{d \mid P(z)} \alpha_{d}^{-}\left(\left|\mathcal{A}(x)_{d}\right|-\frac{h \log X}{d}\right) \\
E^{+}(x, y, z) & :=\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{d \mid P(z)} \alpha_{d, p}^{+}\left(\left|\mathcal{A}(x)_{d p}\right|-\frac{h \log X}{d p}\right) .
\end{aligned}
$$

Hence $\sum w_{n} \geq c h$ with $O(X / h)$ exceptions if $\left|E^{ \pm}(x, y, z)\right| \leq c h$ with $O(X / h)$ exceptions.

$$
\sum_{\substack{n \in \mathcal{A}(x) \\(n, P(z))=1}} w_{n} \geq 3 c h+E^{-}(x, y, z)-E^{+}(x, y, z)
$$

where $c>0$,

$$
\begin{aligned}
E^{-}(x, y, z) & :=\sum_{d \mid P(z)} \alpha_{d}^{-}\left(\left|\mathcal{A}(x)_{d}\right|-\frac{h \log X}{d}\right) \\
E^{+}(x, y, z) & :=\sum_{z \leq p<y}\left(1-\frac{\log p}{\log y}\right) \sum_{d \mid P(z)} \alpha_{d, p}^{+}\left(\left|\mathcal{A}(x)_{d p}\right|-\frac{h \log X}{d p}\right) .
\end{aligned}
$$

Hence $\sum w_{n} \geq c h$ with $O(X / h)$ exceptions if $\left|E^{ \pm}(x, y, z)\right| \leq c h$ with $O(X / h)$ exceptions. This follows if

$$
\int_{X / 2}^{X}\left|E^{ \pm}(x, y, z)\right|^{2} d x=O(h X)
$$

- We need to show that

$$
\int_{X / 2}^{X}\left|\sum_{d \leq D} \lambda_{d}\left(\left|\mathcal{A}(x)_{d}\right|-\frac{h \log X}{d}\right)\right|^{2} d y=O(h X)
$$

with $\lambda_{d}=\alpha_{d}^{-}$in case of $E^{-}(x, y, z)$ and with

$$
\lambda_{d}=\sum_{\substack{d=p e \\ z \leq p<y}}\left(1-\frac{\log p}{\log y}\right) \alpha_{e, p}^{+}
$$

in case of $E^{+}(x, y, z)$.

- We need to show that

$$
\int_{X / 2}^{X}\left|\sum_{d \leq D} \lambda_{d}\left(\left|\mathcal{A}(x)_{d}\right|-\frac{h \log X}{d}\right)\right|^{2} d y=O(h X)
$$

with $\lambda_{d}=\alpha_{d}^{-}$in case of $E^{-}(x, y, z)$ and with

$$
\lambda_{d}=\sum_{\substack{d=p e \\ z \leq p<y}}\left(1-\frac{\log p}{\log y}\right) \alpha_{e, p}^{+}
$$

in case of $E^{+}(x, y, z)$.

- In other words, we need type I information for almost all very short intervals with level of distribution $D=X^{5 / 9}$ and some useful bilinear structure in the coefficients.

Mean square of type I sums

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth, supported on $[1 / 4,2], H=h \log X$

$$
\int_{-\infty}^{\infty} g\left(\frac{y}{X}\right)\left|\sum_{d \leq D} \lambda_{d}\left(\left|\mathcal{A}(x)_{d}\right|-\frac{H}{d}\right)\right|^{2} d y
$$

Mean square of type I sums

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth, supported on $[1 / 4,2], H=h \log X$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} g\left(\frac{y}{X}\right)\left|\sum_{d \leq D} \lambda_{d}\left(\left|\mathcal{A}(x)_{d}\right|-\frac{H}{d}\right)\right|^{2} d y \\
& \ll H X \sum_{d \leq D} d\left(\sum_{m \equiv 0} \frac{\lambda_{m}}{m}\right)^{2}+H^{3} X^{\varepsilon} \\
& (\bmod d)
\end{aligned}
$$

$$
+\sum_{0<|k| \leq H}(H-|k|) \sum_{\substack{d_{1}, d_{2} \leq D \\\left(d_{1}, d_{2}\right) \mid k}} \lambda_{d_{1}} \lambda_{d_{2}}\left(\sum_{\substack{m_{1}, m_{2} \\ d_{1} m_{1}=d_{2} m_{2}+k}} g\left(\frac{d_{1} m_{1}}{X}\right)-\frac{\widehat{g}(0) X}{\left[d_{1}, d_{2}\right]}\right)
$$

$$
+H \sum_{n} g\left(\frac{n}{X}\right)\left(\sum_{d \mid n} \lambda_{d}\right)^{2}+H X \frac{1}{X^{10}} \sum_{n \leq X^{10}}\left(\sum_{d \mid n} \lambda_{d}\right)^{2} .
$$

Mean square of type I sums

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth, supported on $[1 / 4,2], H=h \log X$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} g\left(\frac{y}{X}\right)\left|\sum_{d \leq D} \lambda_{d}\left(\left|\mathcal{A}(x)_{d}\right|-\frac{H}{d}\right)\right|^{2} d y \\
& \ll H X \sum_{d \leq D} d\left(\sum_{m \equiv 0}^{m \leq D} \frac{\lambda_{m}}{m}\right)^{2}+H^{3} X^{\varepsilon} \\
& +\sum_{0<|k| \leq H}(H-|k|) \sum_{\substack{d_{1}, d_{2} \leq D \\
\left(d_{1}, d_{2}\right) \mid k}} \lambda_{d_{1}} \lambda_{d_{2}}\left(\sum_{\substack{m_{1}, m_{2} \\
d_{1} m_{1}=d_{2} m_{2}+k}} g\left(\frac{d_{1} m_{1}}{X}\right)-\frac{\widehat{g}(0) X}{\left[d_{1}, d_{2}\right]}\right) \\
& +H \sum_{n} g\left(\frac{n}{X}\right)\left(\sum_{d \mid n} \lambda_{d}\right)^{2}+H X \frac{1}{X^{10}} \sum_{n \leq X^{10}}\left(\sum_{d \mid n} \lambda_{d}\right)^{2} .
\end{aligned}
$$

First and third lines $\ll h X$ utilizing definition of sieve coefficients.

Need to bound, for $H=h \log X$,
$\sum_{0<|k| \leq H}(H-|k|) \sum_{\substack{d_{1}, d_{2} \leq D \\\left(d_{1}, d_{2}\right) \mid k}} \lambda_{d_{1}} \lambda_{d_{2}}\left(\sum_{\substack{m_{1}, m_{2} \\ d_{1} m_{1}=d_{2} m_{2}+k}} g\left(\frac{d_{1} m_{1}}{X}\right)-\frac{\widehat{g}(0) X}{\left[d_{1}, d_{2}\right]}\right)$.
with $\lambda_{d}=\alpha_{d}^{-}$in case of $E^{-}(x, y, z)$ and with

$$
\lambda_{d}=\sum_{\substack{d=p e \\ z \leq p<y}}\left(1-\frac{\log p}{\log y}\right) \alpha_{e, p}^{+}
$$

in case of $E^{+}(x, y, z)$.

Need to bound, for $H=h \log X$,
$\sum_{0<|k| \leq H}(H-|k|) \sum_{\substack{d_{1}, d_{2} \leq D \\\left(d_{1}, d_{2}\right) \mid k}} \lambda_{d_{1}} \lambda_{d_{2}}\left(\sum_{\substack{m_{1}, m_{2} \\ d_{1} m_{1}=d_{2} m_{2}+k}} g\left(\frac{d_{1} m_{1}}{X}\right)-\frac{\widehat{g}(0) X}{\left[d_{1}, d_{2}\right]}\right)$.
with $\lambda_{d}=\alpha_{d}^{-}$in case of $E^{-}(x, y, z)$ and with

$$
\lambda_{d}=\sum_{\substack{d=p e \\ z \leq p<y}}\left(1-\frac{\log p}{\log y}\right) \alpha_{e, p}^{+}
$$

in case of $E^{+}(x, y, z)$. Note that in both cases λ_{d} can be factored to type I and II sums since the linear sieve weights are well-factorable and Vaughan's identity applicable to p.

Need to bound, for $H=h \log X$,
$\sum_{0<|k| \leq H}(H-|k|) \sum_{\substack{d_{1}, d_{2} \leq D \\\left(d_{1}, d_{2}\right) \mid k}} \lambda_{d_{1}} \lambda_{d_{2}}\left(\sum_{\substack{m_{1}, m_{2} \\ d_{1} m_{1}=d_{2} m_{2}+k}} g\left(\frac{d_{1} m_{1}}{X}\right)-\frac{\widehat{g}(0) X}{\left[d_{1}, d_{2}\right]}\right)$.

Need to bound, for $H=h \log X$,
$\sum_{0<|k| \leq H}(H-|k|) \sum_{\substack{d_{1}, d_{2} \leq D \\\left(d_{1}, d_{2}\right) \mid k}} \lambda_{d_{1}} \lambda_{d_{2}}\left(\sum_{\substack{m_{1}, m_{2} \\ d_{1} m_{1}=d_{2} m_{2}+k}} g\left(\frac{d_{1} m_{1}}{X}\right)-\frac{\widehat{g}(0) X}{\left[d_{1}, d_{2}\right]}\right)$.
Concentrate on $\left(d_{1}, d_{2}\right)=1$. The sum is over $m_{1} \equiv \bar{d}_{1} k\left(\bmod d_{2}\right)$

Need to bound, for $H=h \log X$,
$\sum_{0<|k| \leq H}(H-|k|) \sum_{\substack{d_{1}, d_{2} \leq D \\\left(d_{1}, d_{2}\right) \mid k}} \lambda_{d_{1}} \lambda_{d_{2}}\left(\sum_{\substack{m_{1}, m_{2} \\ d_{1} m_{1}=d_{2} m_{2}+k}} g\left(\frac{d_{1} m_{1}}{X}\right)-\frac{\widehat{g}(0) X}{\left[d_{1}, d_{2}\right]}\right)$.
Concentrate on $\left(d_{1}, d_{2}\right)=1$. The sum is over $m_{1} \equiv \overline{d_{1}} k\left(\bmod d_{2}\right)$ and by Poisson this is

$$
\leq H X \sum_{0<|k| \leq H}\left|\sum_{\substack{d_{1}, d_{d} \leq D \\\left(d_{1}, d_{2}\right)=1}} \frac{\lambda_{d_{1}} \lambda_{d_{2}}}{d_{1} d_{2}} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} \hat{g}\left(\frac{\ell X}{d_{1} d_{2}}\right) e\left(-\frac{k \ell \overline{d_{1}}}{d_{2}}\right)\right|
$$

which is an average of incomplete Kloosterman sums.

Suffices to show that, for some $\varepsilon>0$,

$$
\sum_{0<|k| \leq H}\left|\sum_{\substack{d_{1}, d_{2} \leq D \\\left(d_{1}, d_{2}\right)=1}} \frac{\lambda_{d_{1}} \lambda_{d_{2}}}{d_{1} d_{2}} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} \widehat{g}\left(\frac{\ell X}{d_{1} d_{2}}\right) e\left(-\frac{k \ell \overline{d_{1}}}{d_{2}}\right)\right| \ll X^{-\varepsilon} .
$$

The Kloosterman sums

Suffices to show that, for some $\varepsilon>0$,

$$
\sum_{0<|k| \leq H}\left|\sum_{\substack{d_{1}, d_{2} \leq D \\\left(d_{1}, d_{2}\right)=1}} \frac{\lambda_{d_{1}} \lambda_{d_{2}}}{d_{1} d_{2}} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} \widehat{g}\left(\frac{\ell X}{d_{1} d_{2}}\right) e\left(-\frac{k \ell \overline{d_{1}}}{d_{2}}\right)\right| \ll X^{-\varepsilon} .
$$

Decompose λ_{d} to type I and II sums and use Deshouillers-Iwaniec bounds for averages of Kloosterman sums.

Suffices to show that, for some $\varepsilon>0$,

$$
\sum_{0<|k| \leq H}\left|\sum_{\substack{d_{1}, d_{2} \leq D \\\left(d_{1}, d_{2}\right)=1}} \frac{\lambda_{d_{1}} \lambda_{d_{2}}}{d_{1} d_{2}} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} \widehat{g}\left(\frac{\ell X}{d_{1} d_{2}}\right) e\left(-\frac{k \ell \overline{d_{1}}}{d_{2}}\right)\right| \ll X^{-\varepsilon} .
$$

Decompose λ_{d} to type I and II sums and use Deshouillers-Iwaniec bounds for averages of Kloosterman sums. They imply e.g.

Lemma (Type II estimate)

Assume that α_{n}, β_{n} and γ_{n} are bounded complex coefficients. Let $H \leq X^{1 / 60}$ and $N \leq M \leq X^{21 / 50}$ and $\max \{M N, Q\} \leq X^{14 / 25}$. Let g be smooth with compact support. Then

$$
\sum_{\substack{|k| \leq H \\ k \neq 0}}\left|\sum_{\substack{m \sim M \\ n \sim N}} \frac{\alpha_{m} \beta_{n}}{m n} \sum_{\substack{q \sim Q \\(m n, q)=1}} \frac{\gamma_{q}}{q} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} \hat{g}\left(\frac{\ell X}{m n q}\right) e\left(-\frac{k \ell \overline{m n}}{q}\right)\right| \ll X^{-\frac{1}{1000}}
$$

Outline

(1) Background and results

- Primes
- Primes in short intervals
- Primes in almost all short intervals
- Almost primes in (almost all) short intervals
(2) Methods
- The sieve method
- Type I sums
- To Kloosterman sums
(3) Summary and further thoughts

Showed

Theorem (M. (202?))

Let $h \leq X^{1 / 100}$. There exist constants $c, C>0$ such that

$$
c h \leq \sum_{\substack{x-h \log X<n \leq x \\ p \mid n \Longrightarrow p>X^{1 / 8}}} 1_{\Omega(n) \leq 2} \leq C h
$$

for almost $x \in[X / 2, X]$ apart from an exceptional set of measure $O(X / h)$.

Showed

Theorem (M. (202?))

Let $h \leq X^{1 / 100}$. There exist constants $c, C>0$ such that

$$
c h \leq \sum_{\substack{x-h \log X<n \leq x \\ p \mid n \Longrightarrow p>X^{1 / 8}}} 1_{\Omega(n) \leq 2} \leq C h
$$

for almost $x \in[X / 2, X]$ apart from an exceptional set of measure $O(X / h)$.

We used Richert's weighted sieve with well-factorability and Vaughan's identity. We got level of distribution $D=X^{5 / 9}$ (not optimized) from Deshouillers-Iwaniec bounds for averages of Kloosterman sums.

Further thoughts - optimizing

- We have optimized neither the sieve weights or the level of distribution. Rather we have used a very simple sieve and worked out a sufficent level of distribution for that.
- Now that we have shown that as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{2}-numbers for almost all $x \in[X / 2, X]$, it is natural to ask, what about primes?
- Now that we have shown that as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval ($x-h \log X, x]$ contains P_{2}-numbers for almost all $x \in[X / 2, X]$, it is natural to ask, what about primes?
- Unfortunately, there are no chances to replace P_{2} by P_{1} since we only use type I information. Due to the parity barrier, type I information never suffices for finding primes.
- Furthermore, our type I information is new only when the intervals are extremely short. In particular it does not help when trying to improve on Jia's result that almost all intervals $\left(x-x^{1 / 20}, x\right]$ contain primes. Same issue for E_{k} numbers.
- Now that we have shown that as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval ($x-h \log X, x]$ contains P_{2}-numbers for almost all $x \in[X / 2, X]$, it is natural to ask, what about primes?
- Unfortunately, there are no chances to replace P_{2} by P_{1} since we only use type I information. Due to the parity barrier, type I information never suffices for finding primes.
- Furthermore, our type I information is new only when the intervals are extremely short. In particular it does not help when trying to improve on Jia's result that almost all intervals $\left(x-x^{1 / 20}, x\right]$ contain primes. Same issue for E_{k} numbers.
- In an on-going work with J. Merikoski we are showing that if there are infinitely many exceptional characters, then there are many scales X such that $(x-h \log X, x]$ contains primes for almost all $x \in(X / 2, X]$ as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$.

Thank you!

