Sato-Tate groups of abelian threefolds

Andrew V. Sutherland

Massachusetts Institute of Technology

October 14, 2022

Mikio Sato

John Tate

Joint work with Francesc Fité and Kiran Kedlaya

Sato-Tate in dimension 1

Let E/\mathbb{Q} be an elliptic curve, say,

$$y^2 = x^3 + Ax + B,$$

and let p be a prime of good reduction (so $p \nmid \Delta(E)$).

The number of \mathbb{F}_p -points on the reduction E_p of E modulo p is

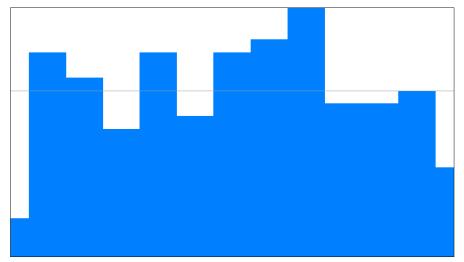
$$\#E_p(\mathbb{F}_p) = p + 1 - t_p,$$

where the trace of Frobenius t_p is an integer in $[-2\sqrt{p},2\sqrt{p}]$.

We are interested in the limiting distribution of $x_p = -t_p/\sqrt{p} \in [-2, 2]$, as p varies over primes of good reduction up to $N \to \infty$.

Sato-Tate distribution of a typical elliptic curve

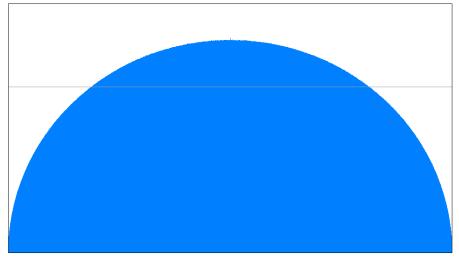
a1 histogram of $y^2 = x^3 + x + 1$ for $p \le 2^{10}$ 170 data points in 13 buckets, $z^1 = 0.029$, out of range data has area 0.018



Moments: 1 0.051 1.039 0.081 2.060 0.294 4.971 1.134 13.278 4.308 37.954

Sato-Tate distribution of a typical elliptic curve

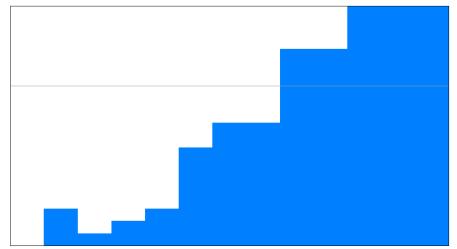
a1 histogram of y^2 = x^3 + x + 1 for p <= 2^40 41203088794 data points in 202985 buckets



Moments: 1 0.000 1.000 0.000 2.000 0.000 5.000 0.000 14.000 0.000 41.999

Sato-Tate distribution of another typical elliptic curve

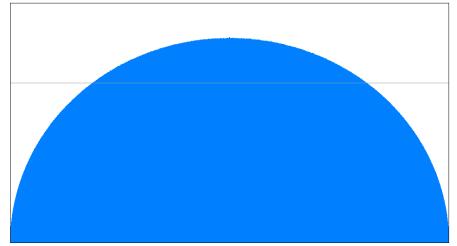
al histogram of $y^2 + xy + y = x^3 - x^2 - 20067762415575526585033208209338542750930230312178956502x + 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for <math>p \le 2^10$ 172 data points in 13 buckets, z = 0.023, out of range data has area 0.250



Moments: 1 1.034 1.716 2.532 4.446 7.203 13.024 22.220 40.854 72.100 133.961

Sato-Tate distribution of another typical elliptic curve

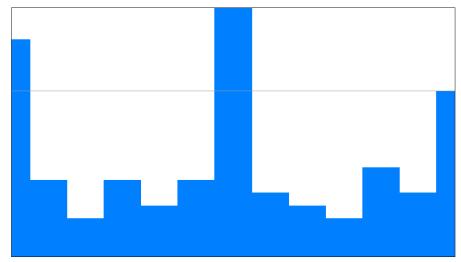
a1 histogram of $y^2 + xy + y = x^3 - x^2 - 2006776241557552658503320820938542750930230312178956502x + 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for p <= 2^40 + 41203088796 data points in 202985 buckets$



Moments: 1 0.000 1.000 0.000 2.000 0.000 5.000 0.001 14.000 0.003 42.000

Sato-Tate distribution of an atypical elliptic curve

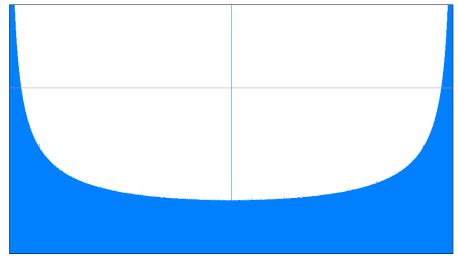
a1 histogram of $y^2 = x^3+1$ for $p \le 2^{10}$ 170 data points in 13 buckets, $z^1 = 0.518$, out of range data has area 0.418



Moments: 1 -0.044 0.934 -0.160 2.754 -0.660 9.051 -2.655 31.232 -10.427 110.831

Sato-Tate distribution of an atypical elliptic curve

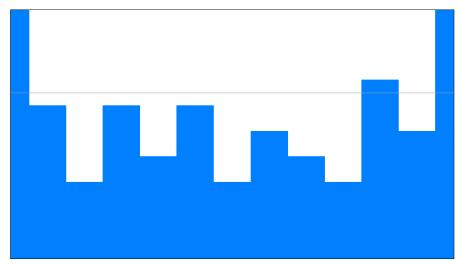
a1 histogram of $y^2 = x^3+1$ for $p \le 2^40$ 41203088794 data points in 202985 buckets, z1 = 0.500, out of range data has area 0.534



Moments: 1 -0.000 1.000 -0.000 3.000 -0.000 10.000 -0.000 35.000 -0.000 126.000

Sato-Tate distribution of another atypical elliptic curve

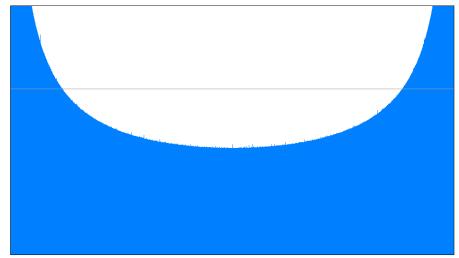
a1 histogram of y^2 = x^3+1 over Q(sqrt(-3)) for split p <= 2^10 164 data points in 13 buckets, out of range data has area 0.122



Moments: 1 -0.092 1.935 -0.331 5.710 -1.368 18.765 -5.504 64.750 -21.616 229.771

Sato-Tate distribution of another atypical elliptic curve

a1 histogram of $y^2 = x^3+1$ over Q(sqrt(-3)) for split p <= 2^4 0 41203047020 data points in 202985 buckets, out of range data has area 0.137



Moments: 1 -0.000 2.000 -0.000 6.000 -0.000 20.000 -0.000 70.000 -0.000 252.000

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E/\mathbb{Q} w/o CM have the semi-circular trace distribution. (Also known for E/k, where k is a totally real or CM number field).

[CHT08, Taylor08, HST10, BGG11, BGHT11, ACCGHHNSTT18]

2. Exceptional cases (CM)

Elliptic curves E/k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.

[Hecke, Deuring, early 20th century]

Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2) that is determined by the ℓ -adic Galois representation attached to E.

A refinement/generalization of the Sato-Tate conjecture states that the distribution of normalized Frobenius traces of E converges to the distribution of traces in its Sato-Tate group G (under its Haar measure).

G	G/G^0	E	k	$\mathrm{E}[x_p^0], \mathrm{E}[x_p^2], \mathrm{E}[x_p^4] \dots$
SU(2)	C_1	$y^2 = x^3 + x + 1$	Q	1, 1, 2, 5, 14, 42,
N(U(1))	C_2	$y^2 = x^3 + 1$	$\mathbb Q$	$1, 1, 3, 10, 35, 126, \dots$
U(1)	C_1	$y^2 = x^3 + 1$	$\mathbb{Q}(\sqrt{-3})$	$1, 2, 6, 20, 70, 252, \dots$

Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2) that is determined by the ℓ -adic Galois representation attached to E.

A refinement/generalization of the Sato-Tate conjecture states that the distribution of normalized Frobenius traces of E converges to the distribution of traces in its Sato-Tate group G (under its Haar measure).

G	G/G^0	E	k	$\mathrm{E}[x_p^0], \mathrm{E}[x_p^2], \mathrm{E}[x_p^4] \dots$
SU(2)	C_1	$y^2 = x^3 + x + 1$	Q	1, 1, 2, 5, 14, 42,
N(U(1))	C_2	$y^2 = x^3 + 1$	$\mathbb Q$	$1, 1, 3, 10, 35, 126, \dots$
U(1)	C_1	$y^2 = x^3 + 1$	$\mathbb{Q}(\sqrt{-3})$	$1, 2, 6, 20, 70, 252, \dots$

Fun fact: in the non-CM case the Sato-Tate conjecture implies that $E[x_p^n] = \frac{1}{2\pi} \int_0^{\pi} (2\cos\theta)^n \sin^2\theta \, d\theta$ is the $\frac{n}{2}$ th Catalan number.

Zeta functions and L-polynomials

For a smooth projective curve X/\mathbb{Q} of genus g and each prime p of good reduction for X we have the zeta function

$$Z(X_p/\mathbb{F}_p;T):=\exp\left(\sum_{k=1}^\infty\#X_p(\mathbb{F}_{p^k})T^k/k\right)=\frac{L_p(T)}{(1-T)(1-pT)},$$

where $L_p \in \mathbb{Z}[T]$ has degree 2g. The normalized L-polynomial

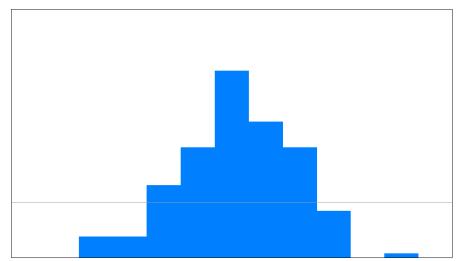
$$\bar{L}_p(T) := L_p(T/\sqrt{p}) = \sum_{i=0}^{2g} a_i T^i \in \mathbb{R}[T]$$

is monic, reciprocal, and unitary, with $|a_i| \leq {2g \choose i}$.

We can now consider the limiting distribution of a_1, a_2, \dots, a_g over all primes $p \leq N$ of good reduction, as $N \to \infty$.

Sato-Tate a_1 -distribution of a typical genus 2 curve

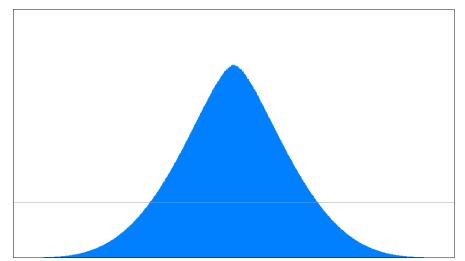
a1 histogram of y^2 = x^5 - x + 1 for p <= 2^10 167 data points in 13 buckets, z1 = 0.030



Moments: 1 0.098 1.031 -0.011 3.041 -0.725 13.944 -3.026 81.644 4.428 547.633

Sato-Tate a_1 -distribution of a typical genus 2 curve

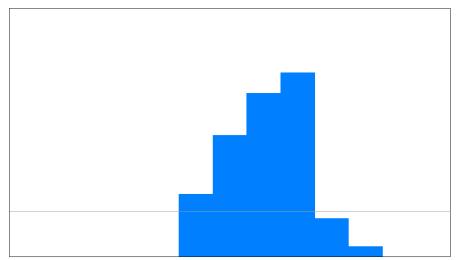
a1 histogram of y^2 = x^5 - x + 1 for p <= 2^32 203280216 data points in 14257 buckets



Moments: 1 0.000 1.000 0.000 2.999 0.002 13.999 0.009 84.014 0.054 594.283

Sato-Tate a_2 -distribution of a typical genus 2 curve

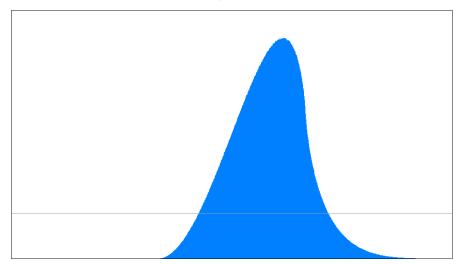
a2 histogram of y^2 = x^5 - x + 1 for p <= 2^10 167 data points in 13 buckets



Moments: 1 0.996 2.058 4.129 10.085 26.401 75.879 231.863 746.430 2496.195 8595.192

Sato-Tate a_2 -distribution of a typical genus 2 curve

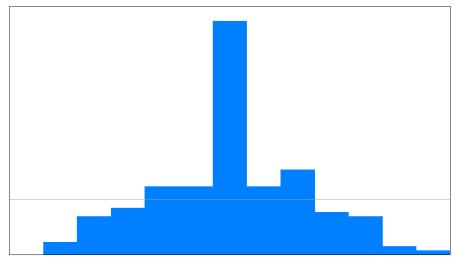
a2 histogram of y^2 = x^5 - x + 1 for p <= 2^32 203280216 data points in 14257 buckets



Moments: 1 1.000 2.000 4.000 10.000 27.001 82.011 268.079 940.466 3478.625 13462.470

Sato-Tate a_1 -distribution of an atypical genus 2 curve

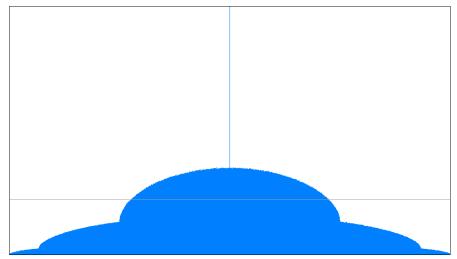
a1 histogram of y^2 = x^5 + 2x^4 - x^3 - 3x^2 - x for p <= 2^10 168 data points in 13 buckets, z1 = 0.196



Moments: 1 0.034 1.822 0.225 9.597 4.081 71.210 68.943 658.625 1080.045 7157.897

Sato-Tate a_1 -distribution of an atypical genus 2 curve

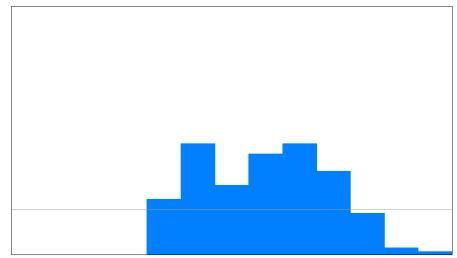
a1 histogram of $y^2 = x^5 + 2x^4 - x^3 - 3x^2 - x$ for $p \le 2^32$ 203280217 data points in 14257 buckets, z1 = 0.167, out of range data has area 0.166



Moments: 1 0.000 2.000 0.000 11.999 0.003 99.983 0.030 979.773 0.286 10581.031

Sato-Tate a_2 -distribution of an atypical genus 2 curve

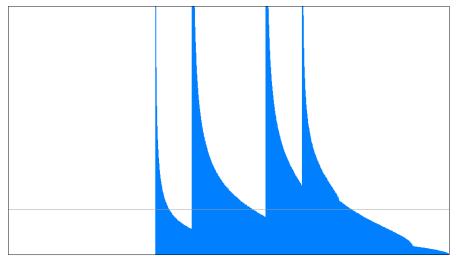
a2 histogram of $y^2 = x^5 + 2x^4 - x^3 - 3x^2 - x$ for $p \le 2^{10}$ 168 data points in 13 buckets, $z^2 = [0.006 \ 0.000 \ 0.000 \ 0.000 \ 0.012]$



Moments: 1 0.914 3.679 8.930 33.618 120.114 506.202 2236.335 10692.989 53523.391 278878.343

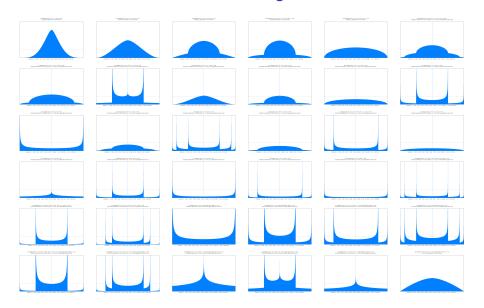
Sato-Tate a_2 -distribution of an atypical genus 2 curve

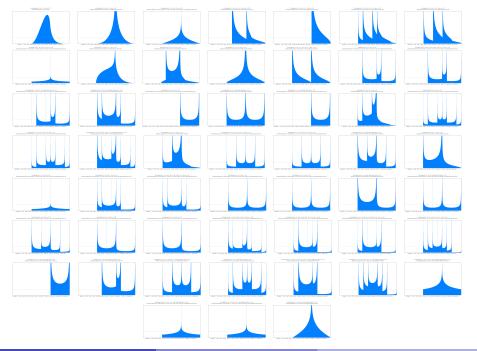
a2 histogram of $y^2 = x^5 + 2x^4 - x^3 - 3x^2 - x$ for $p <= 2^32$ 203280217 data points in 14257 buckets, out of range data has area 0.069



Moments: 1 1.000 4.000 10.999 43.994 171.969 753.838 3396.141 16015.474 77492.145 384452.151

Sato-Tate trace distributions of genus 2 curves:





L-polynomials of Abelian varieties

Let A be an abelian variety over a number field k and fix a prime ℓ . The action of $\operatorname{Gal}(\bar{k}/k)$ on the ℓ -adic Tate module

$$V_{\ell}(A) := \lim_{\longleftarrow} A[\ell^n] \otimes_{\mathbb{Z}} \mathbb{Q}$$

gives rise to a Galois representation

$$\rho_{\ell} \colon \operatorname{Gal}(\bar{k}/k) \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell}).$$

For each prime \mathfrak{p} of good reduction for A we have the L-polynomial

$$L_{\mathfrak{p}}(T) := \det(1 - \rho_{\ell}(\mathrm{Frob}_{\mathfrak{p}})T), \qquad \bar{L}_{\mathfrak{p}}(T) := L_{\mathfrak{p}}(T/\sqrt{\|\mathfrak{p}\|}),$$

which appears as an Euler factor in the *L*-series

$$L(A,s) := \prod_{\mathfrak{p}} L_{\mathfrak{p}}(\|\mathfrak{p}\|^{-s})^{-1}.$$

The Sato-Tate group of an abelian variety

The Zariski closure of the image of

$$\rho_{\ell} \colon G_k \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell})$$

is a \mathbb{Q}_ℓ -algebraic group $G_\ell^{\mathrm{zar}} \subseteq \mathrm{GSp}_{2g}$, and we let $G_\ell^{1,\mathrm{zar}} := G_\ell^{\mathrm{zar}} \cap \mathrm{Sp}_{2g}$. Now fix $\iota \colon \mathbb{Q}_\ell \hookrightarrow \mathbb{C}$, and let $G_{\ell,\iota}^{\mathrm{zar}}$ and $G_{\ell,\iota}^{1,\mathrm{zar}}$ denote base changes to \mathbb{C} .

Definition [Serre]

 $\mathrm{ST}(A)\subseteq \mathrm{USp}(2g)$ is a maximal compact subgroup of $G^{1,\mathrm{zar}}_{\ell,\iota}(\mathbb{C})$ equipped with the map $s\colon \mathfrak{p}\mapsto \mathrm{conj}(\|\mathfrak{p}\|^{-1/2}\rho_{\ell,\iota}(\mathrm{Frob}_{\mathfrak{p}}))\in \mathrm{Conj}(\mathrm{ST}(A)).$

Note that the characteristic polynomial of $s(\mathfrak{p})$ is $\bar{L}_{\mathfrak{p}}(T)$.

The Sato-Tate conjecture for abelian varieties

Conjecture [Mumford-Tate, Algebraic Sato-Tate]

$$(G_\ell^{\mathrm{zar}})^0 = \mathrm{MT}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$$
, equivalently, $(G_\ell^{1,\mathrm{zar}})^0 = \mathrm{Hg}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$.
More generally, $(G_\ell^{\mathrm{zar}}) = \mathrm{AST}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$.

The algebraic Sato-Tate conjecture is known for $g \le 3$ [BK15].

The Sato-Tate conjecture for abelian varieties

Conjecture [Mumford-Tate, Algebraic Sato-Tate]

$$(G_\ell^{\mathrm{zar}})^0 = \mathrm{MT}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$$
, equivalently, $(G_\ell^{1,\mathrm{zar}})^0 = \mathrm{Hg}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$.
More generally, $(G_\ell^{\mathrm{zar}}) = \mathrm{AST}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$.

The algebraic Sato-Tate conjecture is known for $g \le 3$ [BK15].

Sato-Tate conjecture for abelian varieties.

The conjugacy classes $s(\mathfrak{p})$ are equidistributed with respect to $\mu_{\mathrm{ST}(A)}$, the pushforward of the Haar measure to $\mathrm{Conj}(\mathrm{ST}(A))$.

The Sato-Tate conjecture implies that the distribution $\bar{L}_{\mathfrak{p}}(T)$ is given by the distribution of characteristic polynomials in ST(A).

Sato-Tate axioms for abelian varieties

 $G \subseteq \mathrm{USp}(2g)$ satisfies the Sato-Tate axioms (for abelian varieties) if:

- Compact: G is closed;
- **2 Hodge**: G contains a Hodge circle θ : $U(1) \to G^0$ whose elements $\theta(u)$ have eigenvalues u, 1/u with multiplicity g, such that the conjugates of θ conjugates generate a dense subset of G;
- **3 Rationality**: for each component H of G and each irreducible character χ of $GL_{2g}(\mathbb{C})$ we have $E[\chi(\gamma):\gamma\in H]\in\mathbb{Z};$
- **①** Lefschetz: The subgroup of USp(2g) fixing $End(\mathbb{C}^{2g})^{G_0}$ is G^0 .

Sato-Tate axioms for abelian varieties

 $G \subseteq \mathrm{USp}(2g)$ satisfies the Sato-Tate axioms (for abelian varieties) if:

- Compact: G is closed;
- **② Hodge**: G contains a Hodge circle θ : $U(1) \to G^0$ whose elements $\theta(u)$ have eigenvalues u, 1/u with multiplicity g, such that the conjugates of θ conjugates generate a dense subset of G;
- **3 Rationality**: for each component H of G and each irreducible character χ of $GL_{2g}(\mathbb{C})$ we have $E[\chi(\gamma):\gamma\in H]\in\mathbb{Z};$
- **① Lefschetz**: The subgroup of USp(2g) fixing $End(\mathbb{C}^{2g})^{G_0}$ is G^0 .

Theorem [FKRS12, FKS19]

Let A/k be an abelian variety of dimension $g \le 3$. Then ST(A) satisfies the Sato-Tate axioms.

Axioms 1-3 are expected to hold in general, but Axiom 4 fails for g = 4. For any g, the set of G satisfying axioms 1-3 is **finite**.

Galois endomorphism types

Let A be an abelian variety defined over a number field k. Let K be the minimal extension of k for which $\operatorname{End}(A_K) = \operatorname{End}(A_{\bar{k}})$. $\operatorname{Gal}(K/k)$ acts on the \mathbb{R} -algebra $\operatorname{End}(A_K)_{\mathbb{R}} = \operatorname{End}(A_K) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The *Galois endomorphism type* of A is the isomorphism class of $[\operatorname{Gal}(K/k),\operatorname{End}(A_K)_{\mathbb{R}}]$, where $[G,E]\simeq [G',E']$ iff there are isomorphisms $G\simeq G'$ and $E\simeq E'$ compatible with the group actions.

Galois endomorphism types

Let A be an abelian variety defined over a number field k. Let K be the minimal extension of k for which $\operatorname{End}(A_K) = \operatorname{End}(A_{\bar{k}})$. $\operatorname{Gal}(K/k)$ acts on the \mathbb{R} -algebra $\operatorname{End}(A_K)_{\mathbb{R}} = \operatorname{End}(A_K) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The *Galois endomorphism type* of A is the isomorphism class of $[\operatorname{Gal}(K/k),\operatorname{End}(A_K)_{\mathbb{R}}]$, where $[G,E]\simeq [G',E']$ iff there are isomorphisms $G\simeq G'$ and $E\simeq E'$ compatible with the group actions.

Theorem [FKRS12]

For abelian varieties A/k of dimension $g \le 3$ there is a one-to-one correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G^0 is uniquely determined by $\operatorname{End}(A_K)_{\mathbb{R}}$ and $G/G^0 \simeq \operatorname{Gal}(K/k)$ (with corresponding actions).

Real endomorphism algebras of abelian surfaces

abelian surface	$\operatorname{End}(A_K)_{\mathbb{R}}$	$ST(A)^0$
square of CM elliptic curve	$M_2(\mathbb{C})$	$U(1)_2$
QM abelian surface	$M_2(\mathbb{R})$	SU(2) ₂
• square of non-CM elliptic curve		
CM abelian surface	$\mathbb{C} \times \mathbb{C}$	$U(1) \times U(1)$
product of CM elliptic curves		
product of CM and non-CM elliptic curves	$\mathbb{C} imes \mathbb{R}$	$U(1) \times SU(2)$
RM abelian surface	$\mathbb{R} \times \mathbb{R}$	$SU(2) \times SU(2)$
product of non-CM elliptic curves		
generic abelian surface	\mathbb{R}	USp(4)

(factors in products are assumed to be non-isogenous)

Sato-Tate groups of abelian surfaces

Theorem [FKRS12]

Up to conjugacy in USp(4), there are 52 Sato-Tate groups ST(A) that arise for abelian surfaces A/k over number fields; 34 occur for $k = \mathbb{Q}$.

This theorem says nothing about equidistribution, however this is now known in many special cases [FS12, Johansson13, Taylor18].

Maximal Sato-Tate groups of abelian surfaces

G_0	G/G_0	X
USp(4)	C_1	$y^2 = x^5 - x + 1$
$SU(2) \times SU(2)$	C_2	$y^2 = x^6 + x^5 + x - 1$
$U(1) \times SU(2)$	C_2	$y^2 = x^6 + 3x^4 - 2$
$U(1) \times U(1)$	D_2	$y^2 = x^6 + 3x^4 + x^2 - 1$
	C_4	$y^2 = x^5 + 1$
$SU(2)_2$	D_4	$y^2 = x^5 + x^3 + 2x$
	D_6	$y^2 = x^6 + x^3 - 2$
$U(1)_2$	$\mathrm{D}_6 \times \mathrm{C}_2$	$y^2 = x^6 + 3x^5 + 10x^3 - 15x^2 + 15x - 6$
	$S_4 \times C_2 \\$	$y^2 = x^6 - 5x^4 + 10x^3 - 5x^2 + 2x - 1$

Each of the 9 maximal Sato-Tate groups in dimension 2 can be realized by the Jacobian of a genus 2 curve X/\mathbb{Q} .

One can now verify this using the algorithm of [CMSV19].

Maximal Sato-Tate groups of abelian surfaces

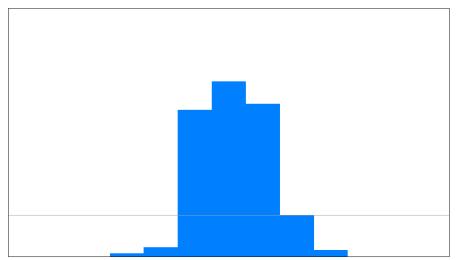
G_0	G/G_0	X
USp(4)	C_1	$y^2 = x^5 - x + 1$
$SU(2) \times SU(2)$	C_2	$y^2 = x^6 + x^5 + x - 1$
$U(1) \times SU(2)$	C_2	$y^2 = x^6 + 3x^4 - 2$
$U(1) \times U(1)$	D_2	$y^2 = x^6 + 3x^4 + x^2 - 1$
	C_4	$y^2 = x^5 + 1$
$SU(2)_2$	D_4	$y^2 = x^5 + x^3 + 2x$
	D_6	$y^2 = x^6 + x^3 - 2$
$U(1)_2$	$\mathrm{D}_6 \times \mathrm{C}_2$	$y^2 = x^6 + 3x^5 + 10x^3 - 15x^2 + 15x - 6$
	$S_4 \times C_2 \\$	$y^2 = x^6 - 5x^4 + 10x^3 - 5x^2 + 2x - 1$

Each of the 9 maximal Sato-Tate groups in dimension 2 can be realized by the Jacobian of a genus 2 curve X/\mathbb{Q} . One can now verify this using the algorithm of [CMSV19].

There are 3 subgroups of $N(\mathrm{U}(1) \times \mathrm{U}(1))$ that satisfy the Sato-Tate axioms but do not occur as Sato-Tate groups of abelian surfaces.

Sato-Tate a_1 -distribution of a typical genus 3 curve

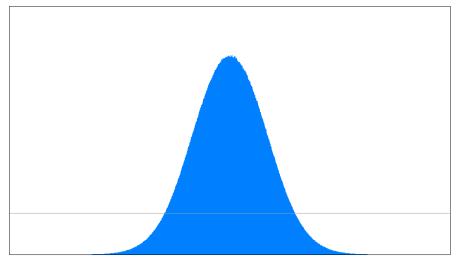
a1 histogram of y^2 = x^7-x+1 for p <= 2^10 168 data points in 13 buckets, z1 = 0.030



Moments: 1 0.167 0.879 0.552 2.166 2.195 9.022 10.737 48.674 61.554 297.030

Sato-Tate a_1 -distribution of a typical genus 3 curve

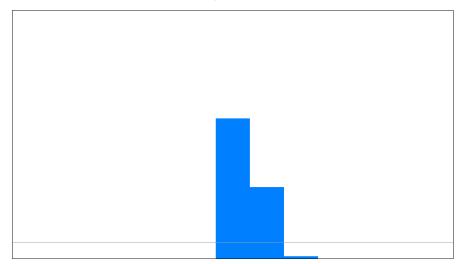
a1 histogram of y^2 = x^7-x+1 for p <= 2^30 54400023 data points in 7375 buckets



Moments: 1 0.000 1.000 -0.000 3.000 -0.005 14.996 -0.093 103.963 -1.573 908.557

Sato-Tate a_2 -distribution of a typical genus 3 curve

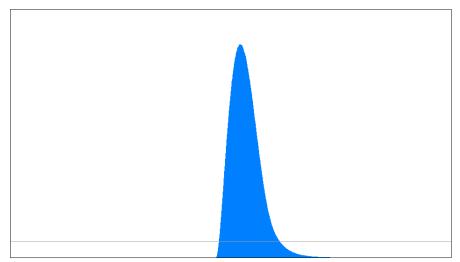
a2 histogram of y^2 = x^7-x+1 for p <= 2^10 168 data points in 13 buckets



Moments: 1 0.887 1.661 3.767 10.599 34.421 124.148 480.397 1947.535

Sato-Tate a_2 -distribution of a typical genus 3 curve

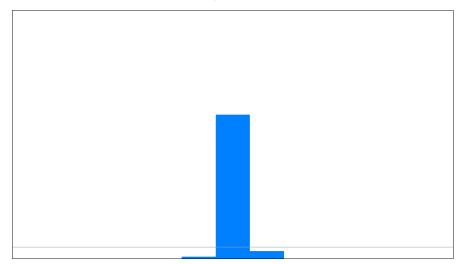
a2 histogram of y^2 = x^7-x+1 for p <= 2^30 54400023 data points in 7375 buckets



Moments: 1 1.000 2.000 4.999 15.995 61.973 281.845 1457.892 8365.112

Sato-Tate *a*₃-distribution of a typical genus 3 curve

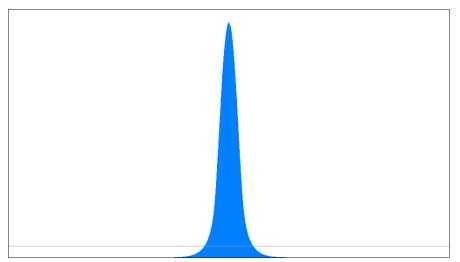
a3 histogram of y^2 = x^7-x+1 for p <= 2^10 168 data points in 13 buckets



Moments: 1 0.249 1.649 2.164 12.036 34.226 186.537 736.915 3906.256

Sato-Tate *a*₃-distribution of a typical genus 3 curve

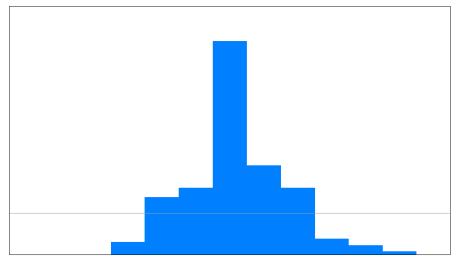
a3 histogram of y^2 = x^7-x+1 for p <= 2^30 54400023 data points in 7375 buckets



Moments: 1 0.000 2.000 -0.005 22.988 -0.542 683.402 -57.456 34685.843

Sato-Tate a_1 -distribution of an atypical genus 3 curve

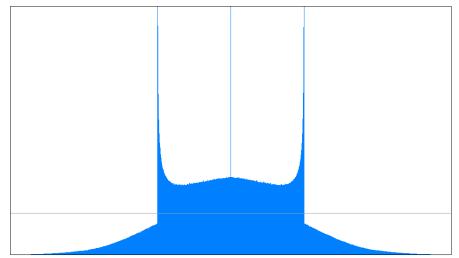
a1 histogram of y^2 = x^7 + 3x^6 + 2x^5 + 6x^4 + 4x^3 + 12x^2 + 8x for p <= 2^10 168 data points in 13 buckets, z1 = 0.274



Moments: 1 0.180 1.787 1.517 10.487 18.166 95.714 248.342 1133.880 3645.317 15564.971

Sato-Tate a_1 -distribution of an atypical genus 3 curve

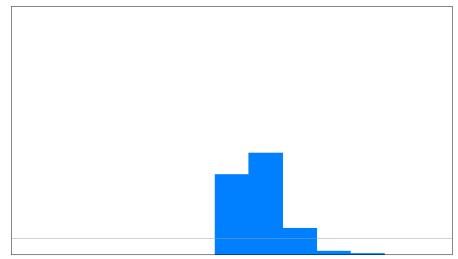
a1 histogram of $y^2 = x^7 + 3x^6 + 2x^5 + 6x^4 + 4x^3 + 12x^2 + 8x$ for $p \le 2^30$ 54400024 data points in 7375 buckets, z1 = 0.250, out of range data has area 0.256



Moments: 1 0.000 2.000 0.002 13.997 0.039 164.995 0.786 2640.472 18.388 50318.872

Sato-Tate a_2 -distribution of an atypical genus 3 curve

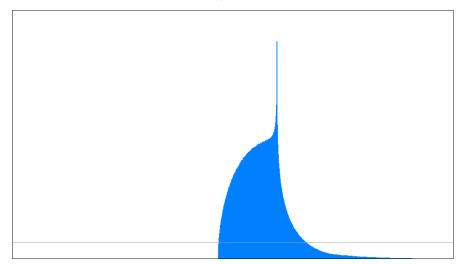
a2 histogram of $y^2 = x^7 + 3x^6 + 2x^5 + 6x^4 + 4x^3 + 12x^2 + 8x$ for $p <= 2^{10}$ 168 data points in 13 buckets, $z^2 = [0.000 \ 0.000 \ 0.000 \ 0.000 \ 0.000 \ 0.000 \ 0.000$



Moments: 1 1.865 6.180 24.999 122.705 697.662 4429.294 30391.457 220003.581

Sato-Tate a_2 -distribution of an atypical genus 3 curve

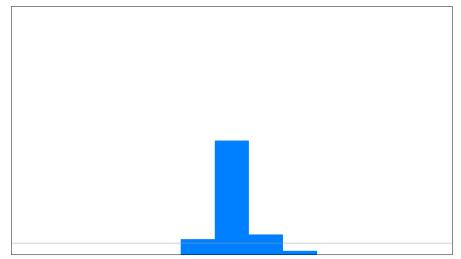
a2 histogram of y^2 = x^7 + 3x^6 + 2x^5 + 6x^4 + 4x^3 + 12x^2 + 8x for p <= 2^30 54400024 data points in 7375 buckets



Moments: 1 2.000 6.999 31.995 190.998 1402.539 11916.253 111587.554 1116443.514

Sato-Tate a_3 -distribution of a typical genus 3 curve

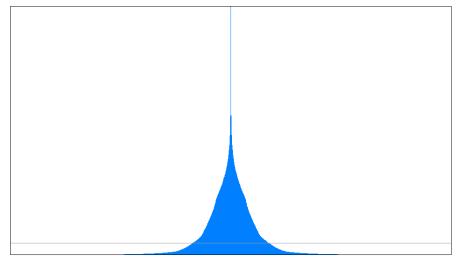
a3 histogram of $y^2 = x^7 + 3x^6 + 2x^5 + 6x^4 + 4x^3 + 12x^2 + 8x$ for $p \le 2^{10}$ 168 data points in 13 buckets, $z^3 = 0.274$



Moments: 1 0.395 5.812 16.472 208.554 1226.780 13225.147 105527.791 1072037.628

Sato-Tate *a*₃-distribution of a typical genus 3 curve

a3 histogram of $y^2 = x^7 + 3x^6 + 2x^5 + 6x^4 + 4x^3 + 12x^2 + 8x$ for $p <= 2^30$ 54400024 data points in 7375 buckets, $z^3 = 0.250$, out of range data has area 0.249



Moments: 1 0.000 6.998 0.033 389.044 5.825 46574.838 1453.082 7858059.139

Sato-Tate groups of abelian threefolds

Theorem [FKS19]

Up to conjugacy in USp(6), 433 groups satisfy the Sato-Tate axioms for g=3, but 23 cannot arise as Sato-Tate groups of abelian threefolds.

Sato-Tate groups of abelian threefolds

Theorem [FKS19]

Up to conjugacy in USp(6), 433 groups satisfy the Sato-Tate axioms for g=3, but 23 cannot arise as Sato-Tate groups of abelian threefolds.

Theorem [FKS19]

Up to conjugacy in USp(6) there are 410 Sato-Tate groups of abelian threefolds over number fields, of which 33 are maximal.

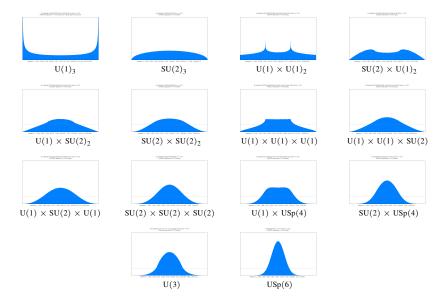
The 33 maximal groups all arise as the Sato-Tate group of an abelian threefold defined over \mathbb{Q} ; the rest can be realized via base change.

There are 14 distinct identity components that arise, and the order of every component group always divides one of the following integers: $192 = 2^6 \cdot 3$, $336 = 2^4 \cdot 3 \cdot 7$, $432 = 2^4 \cdot 3^3$.

Real endomorphism algebras of abelian threefolds

abelian threefold	$\operatorname{End}(A_K)_{\mathbb{R}}$	$ST(A)^0$
cube of a CM elliptic curve	$M_3(\mathbb{C})$	U(1) ₃
cube of a non-CM elliptic curve	$M_3(\mathbb{R})$	SU(2) ₃
product of CM elliptic curve and square of CM elliptic curve	$\mathbb{C} \times M_2(\mathbb{C})$	$U(1) \times U(1)_2$
product of non-CM elliptic curve and square of CM elliptic curve	$\mathbb{R} \times M_2(\mathbb{C})$	$SU(2) \times U(1)_2$
product of CM elliptic curve and QM abelian surface	$\mathbb{C} \times M_2(\mathbb{R})$	$U(1) \times SU(2)_2$
 product of CM elliptic curve and square of non-CM elliptic curve 		
 product of non-CM elliptic curve and QM abelian surface 	$\mathbb{R} \times M_2(\mathbb{R})$	$SU(2) \times SU(2)_2$
 product of non-CM elliptic curve and square of non-CM elliptic curve 		
CM abelian threefold	$\mathbb{C} \times \mathbb{C} \times \mathbb{C}$	$U(1) \times U(1) \times U(1)$
 product of CM elliptic curve and CM abelian surface 		
product of three CM elliptic curves		
 product of non-CM elliptic curve and CM abelian surface 	$\mathbb{C} \times \mathbb{C} \times \mathbb{R}$	$U(1) \times U(1) \times SU(2)$
 product of non-CM elliptic curve and two CM elliptic curves 		
 product of CM elliptic curve and RM abelian surface 	$\mathbb{C} \times \mathbb{R} \times \mathbb{R}$	$U(1) \times SU(2) \times SU(2)$
 product of CM elliptic curve and two non-CM elliptic curves 		
RM abelian threefold	$\mathbb{R} \times \mathbb{R} \times \mathbb{R}$	$SU(2) \times SU(3) \times SU(3)$
 product of non-CM elliptic curve and RM abelian surface 		
 product of 3 non-CM elliptic curves 		
product of CM elliptic curve and abelian surface	$\mathbb{C} \times \mathbb{R}$	$U(1) \times USp(4)$
product of non-CM elliptic curve and abelian surface	$\mathbb{R} \times \mathbb{R}$	$SU(2) \times USp(4)$
quadratic CM abelian threefold	C	U(3)
generic abelian threefold	\mathbb{R}	USp(6)

Connected Sato-Tate groups of abelian threefolds:



Maximal Sato-Tate groups of abelian threefolds

G_0	G/G_0	$ G/G_0 $
USp(6)	C_1	1
U(3)	C_2	2
$SU(2) \times USp(4)$	C_1	1
$U(1) \times USp(4)$	C_2	2
$SU(2)^{3}$	S_3	6
$U(1) \times SU(2)^2$	D_2	4
$U(1)^2 \times SU(2)$	$C_2,\ D_2$	4
$U(1)^3$	$S_3,\ {C_2}^3,\ C_2\times C_4$	6, 8
$SU(2) \times SU(2)_2$	D_4, D_6	8, 12
$U(1) \times SU(2)_2$	$D_4\times C_2,\ D_6\times C_2$	16, 24
$SU(2) \times U(1)_2$	$D_6\times C_2,\ S_4\times C_2$	48
$U(1) \times U(1)_2$	$D_6 \times C_2^2$, $S_4 \times C_2^2$	48, 96
$SU(2)_3$	D_6 , S_4	12, 24
$U(1)_3$	see below	$48^{\times 4}$, 96, $144^{\times 2}$,
		$192^{\times 2}$, 336, $432^{\times 2}$

(48, 15), (48, 15), (48, 38), (48, 41), (96, 193), (144, 125), (144, 127), (192, 988), (192, 956), (336, 208), (432, 523), (432, 734).

References

- [ACCGHHNSTT18] P. Allen, F. Calegari, A. Caraiani, T. Gee, D. Helm, B. Le-Hung, J. Newton, P. Scholze, R. Taylor, J. Thorne, *Potential automorphy over CM fields*, arXiv:1812.09999.
- [BGG11] T. Barnet-Lamb, D. Geraghty, and T. Gee, The Sato-Tate conjecture for Hilbert modular forms, J. Amer. Math. Soc. 24 (2011), 411–469.
- [BGHT11] T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publications of the Research Institute for Mathematical Sciences 47 (2011), 29–98.
- [BK15] G. Banaszak and K. S. Kedlaya, An algebraic Sato-Tate group and Sato-Tate conjecture, Indiana U. Math. Journal 64 (2015), 245–274.
- [CHT08] L. Clozel, M. Harris, and R. Taylor, Automorphy for some ℓ-adic lifts of automorphic mod-ℓ Galois representations, Publ. Math. IHES 108 (2008), 1–181.
- [CMSV19] E. Costa, N. Mascot, J. Sijsling, J. Voight, Rigorous computation of the endomorphism ring of a Jacobian, Math. Comp. 88 (2019), 1303-1339.
- [FKRS12] F. Fité, K. S. Kedlaya, V. Rotger, and A. V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Compositio Mathematica 148 (2012), 1390–1442.

References

- [FKS19] F. Fité, K. S. Kedlaya, and A. V. Sutherland, Sato-Tate groups of abelian threefolds: a preview of the classification, Arithmetic Geometry, Cryptography, and Coding Theory, Contemp. Math., AMS, to appear.
- [FS14] F. Fité and A. V. Sutherland, Sato-Tate distributions of twists of $y^2 = x^5 x$ and $y^2 = x^6 + 1$, Algebra and Number Theory **8** (2014), 543–585.
- [HST10] M. Harris, N. Shepherd-Barron, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy, Annals Math. 171 (2010), 779–813.
- [Johansson13] C. Johansson, On the Sato-Tate conjecture for non-generic abelian surfaces, with an appendix by Francesc Fité, Transactions of the AMS 369 (2017), 6303–6325.
- [Serre12] J.-P. Serre, *Lectures on* $N_X(p)$, Research Notes in Mathematics 11, CRC Press, 2012.
- [Sutherland18] A. V. Sutherland, Sato-Tate distributions, Analytic Methods in Arithmetic Geometry, Contemp. Math. 740 (2019), AMS, 197-248.
- [Taylor18] N. Taylor, Sato-Tate distributions of abelian surfaces, Trans. Amer. Math. Soc. 373 (2020), 3541-3559
- [Taylor08] R. Taylor, Automorphy for some ℓ-adic lifts of automorphic mod ℓ
 Galois representations II, Publ. Math. IHES 108 (2008) 183–239.