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Galois representations attached to elliptic curves
Let E be an elliptic curve over a number field k. For each integer N ≥ 1 the
action of Gk := Gal(k̄/k) on E[N] yields a mod-N Galois representation

ρE,N : Gk → Aut(E[N]) ' GL2(Z/NZ).

Choosing a compatible system of bases and taking the inverse limit yields

ρE : Gk → GL2(Ẑ) '
∏
`

GL2(Z`).

Theorem (Serre 1972)

For non-CM elliptic curves the image of ρE is an open subgroup HE ⊆ GL2(Ẑ).

There is thus a minimal positive integer ME such that ρE factors through ρ̄E,ME

and HE is completely determined by its reduction modulo ME.

There are infinitely many possibilities for M and HE as E/k varies, but it is
believed that only finitely many non-surjective projections to GL2(Z`) arise,
and only finitely many values of [GL2(Ẑ) : HE] (even if only [k : Q] is fixed).



Modular curves
Let H be an open subgroup of GL2(Ẑ) = lim←−GL2(Z/NZ) =: lim←−GL2(N).

Then H contains the kernel of πN : GL2(Ẑ)→ GL2(N) for some N ≥ 1;
the least such N is the level of H, and H is completely determined by πN(H).

Definition (Deligne-Rapoport 1973)
The modular curves XH and YH are coarse spaces for the stacksMH andM0

H
that parameterize elliptic curves with H-level structure.

• XH is a smooth proper Z[ 1
N ]-scheme with open subscheme YH.

The complement X∞H of YH in XH (the cusps) is finite étale over Z[ 1
N ].

• When det(H) = Ẑ× the generic fiber of XH is a nice curve XH/Q,
and XH(C) is a Riemann surface isomorphic to XΓH := ΓH\H,
where ΓH ⊆ SL2(Z) is the inverse image of πN(H) ∩ SL2(N).

• In particular, g(XH) = g(XΓH ), and XH and XΓH have the same cusps.
Note: XΓH = XΓH′ 6⇒XH = XH′ , and the levels of XΓH and XH may differ.

• If det(H) 6= Ẑ× then XH is not geometrically connected (but that’s OK!).



Classical modular curves

For B0(N) := {( ∗ ∗0 ∗ )} ⊆ GL2(N) we have X0(N) = XB0(N) (as curves over Q).
For B1(N) := {

(
1 ∗
0 ∗
)
} ⊆ GL2(N) we have X1(N) = XB1(N).

We similarly define Xs(p), Xns(p), using Cartan subgroups H ⊆ GL2(p).

Example: Let us compute #X1(13)(F37).

Over F37 there are 4 elliptic curves with a rational point of order 13:

y2 = x3 + 4, y2 = x3 + 33x + 33,
y2 = x3 + 8x, y2 = x3 + 24x + 22.

What is #X1(13)(F37)?

The genus 2 curve 169.1.169.1 is a smooth model for X1(13):

y2 + (x3 + x + 1)y = x5 + x4.

It has 23 rational points over F37.

What do these 23 points represent?

http://www.lmfdb.org/Genus2Curve/Q/169/a/169/1


Moduli spaces of elliptic curves with H-level structure

Let H be an open subgroup of GL2(Ẑ) of level N with image H in GL2(N).
Let k be a perfect field whose characteristic does not divide N.

Definition
An H-level structure on an elliptic curve E/k̄ is the equivalence class [ι]H of an
isomorphism ι : E[N]→ (Z/NZ)2, where ι ∼ ι′ if ι = h ◦ ι′ for some h ∈ H.

If we fix a basis so E[N] := (Z/NZ)2, then [ι]H is a right H-coset in GL2(N).

Definition
The set YH(k̄) consists of equivalence classes of pairs (E, [ι]H), where
(E, [ι]H) ∼ (E′, [ι′]H) if there is an isomorphism φ : E → E′ for which the
induced isomorphism φN : E[N]→ E′[N] satisfies ι ∼ ι′ ◦ φN .

Equivalently, YH(k̄) consists of pairs (j(E), α), where α = HgAE is a double
coset in H\GL2(N)/AE, with AE := {ϕN : ϕ ∈ Aut(E)}.



The set of k-rational points YH(k)
The Galois group Gk := Gal(k̄/k) acts on YH(k̄) by acting on coefficients of E
and points in E[N], which induces an action on [ι]H and pairs (E, [ι]H).

More precisely, σ ∈ GK send E to Eσ and induces an isomorphism
σ−1 : Eσ[N]→ E[N] defined by (x : y : z) 7→ (σ−1(x) : σ−1(y) : σ−1(z)).

For P := (E, [ι]H) ∈ YH(k̄) we have σ(P) := (Eσ, [ι ◦ σ−1]H).

The subset of Gk-stable points in YH(k̄) forms the set of k-rational points YH(k).

Lemma (DR73, Z15)
Each P ∈ YH(k) is represented by a pair (E, [ι]H) ∈ YH(k) with E defined over k,
and any such a pair lies in YH(k) if and only if for all σ ∈ Gk there exists a
ϕ ∈ Aut(Ek̄) and an h ∈ H such that

ι ◦ σ−1 = h ◦ ι ◦ ϕN .

In other words, a pair (j(E), α) with j(E) ∈ k and α = HgAE lies in YH(k) if and
only if Hgσ−1AE = HgAE for all σ ∈ Gk, where AE := {ϕN : ϕ ∈ Aut(Ek̄)}.



Interpreting rational points on YH

Recall that if E is an elliptic curve over a number field K, the action of GK on
torsion points of E(K) yields a Galois representation

ρE : GK → Aut(E(K)tor) ' GL2(Ẑ) ' lim←−GL2(N).

For each positive integer N, let ρE,N denote the projection to GL2(N).

Lemma (DR73, RZB15)

Let H be an open subgroup of GL2(Ẑ) of level N and let E be an elliptic curve
over a number field K. There exists an isomorphism ι : E[N]

∼→ (Z/NZ)2 such
that (E, [ι]H) ∈ YH(K) if and only if the image of ρE,N is contained in a subgroup
of GL2(N) conjugate to πN(H).

This is how we should understand the moduli interpretation of YH and XH.



The set of k-rational cusps X∞H (k)

Let U(N) := 〈
(

1 1
0 1

)
,−1〉 ⊆ GL2(N).

We define a right Gk-action on H\GL2(N)/U via hgu 7→ hgχN(σ)u,
where χN(σ) :=

(
e 0
0 1

)
is defined by σ(ζN) = ζe

N .

Lemma (DR73)
The cardinality of X∞H (k) is equal to the cardinality of the subset of
H\GL2(N)/U(N) fixed by χN(Gk).

When k is finite, we can compute both #X∞H (k) and #YH(k) by counting the
fixed points of a right Gk-action on a double coset spaces of GL2(N).

We have

#XH(k) = #(H\GL2(N)/U(N))χN(Gk) +
∑

j(E)∈k

#(H\GL2(N)/AE)Gk .

This does not depend on the choice of E or the choice of basis for E[N].



Where the 23 points of X1(13)(F37) come from

For k = F37 and the action of Gk is generated by the 37-power Frobenius σ,
which induces the action of χ13(Gk) on µ13(k̄) and the Frobenius
endomorphism πE which acts on E[13]. We have

# GL2(13) = 122 · 13 · 14, #B1(13) = 12 · 13, #U = 26,

and the right coset space B1(13)\GL2(13) has cardinality 12 · 14 = 168.

• The space B1(13)\GL2(13)/U(13) partitions B1(13)\GL2(13) as 26266.
These 12 double cosets correspond to the 12 cusps of X1(13).
The 6 partitions of size 26 are fixed by χ13(σ) =

(
11 0
0 1

)
but not the others.

So we have 6 rational cusps.

• The four elliptic curves E/F37 with a points of order 13 have j-invariants
0, 16, 26, 35 (note 1728 ≡ 26 mod 37), so AE is cyclic of order 6, 2, 4, 2.
The 168 right cosets of B1(13) correspond to the 168 points of order 13
in E[13]; in all 4 cases exactly 12 of these are fixed by πE.
We thus get 2 + 6 + 3 + 6 = 17 non-cuspidal rational points.

2 + 6 + 3 + 6 + 6 = 23



Counting Fq-points on XH
Let jH : XH → X(1) be the morphism induced by H ⊆ GL2(Ẑ).

#XH(Fq) = #X∞H (Fq) +
∑

j∈Fq
#{P ∈ YH(Fq) : jH(P) = j}

Every term is computed by counting double cosets fixed by a right action.
Computing χN(σ) is easy (reduce q modulo N). To compute πE we use [DT02].

Theorem (DT02)
Let E/Fq be an elliptic curve, and let πE denote its Frobenius endomorphism.
Define a := trπE = q + 1−#E(Fq) and R := End(E) ∩Q(πE), let ∆ := disc(R)

and δ := ∆ mod 4, and let b :=
√

(a2 − 4q)/∆ if ∆ 6= 1 and b := 0 otherwise.
The integer matrix

Aπ :=

(
(a + bδ)/2 b
b(∆− δ)/4 (a− bδ)/2

)
determines the action of πE on E[N] for all N ≥ 1.

Note: Aπ is determined only up to conjugacy, but we must compute AE and Aπ
with respect to the same basis for E[N].



Computational issues

1 Computing b typically requires determining [OK : End(E)] where
K = Q(

√
a2 − 4q). This is much harder than computing trπE.

The brute force approach tests HD(j(E))
?
= 0 for discriminants D of all

orders in OK containing Z[πE]. This is expensive and unnecessary.

We will enumerate every root of HD for all such D as we enumerate j(E)!

2 Computing an explicit basis for E[N] is painful when N is large; this only
matters when j(E) = 0, 1728, but these two cases can get very expensive.

Solution to (1): Instead of enumerating j-invariants, enumerate Frobenius
traces a and compute Aπ for each triple (a, b,∆) satisfying 4q = a2 − b2∆.
Then multiply the number of double cosets fixed by Aπ by h(D).
This reduces the problem to computing class numbers rather than Hilbert
class polynomials, which is much easier (and can be done via table lookup).

Solution to (2): Instead of computing AE, enumerate twists of elliptic curves
with j(E) = 0, 1728 and compute Aπ for each. No need to fix a basis for E[N].



The algorithm
Given H ⊆ GL2(N) and a prime power q, compute XH(Fq) as follows:

1 Compute fH : GL2(N)→ Z defined by g 7→ #(H\GL2(N)/{±1})g.
Note that fH does not depend on q and factors through the class map.
Indeed: fH(g) = [GL2(N) : H] ·#(±H ∩ gGL2(N)) · (#gGL2(N))−1.

2 Compute n∞ := #X∞H (Fq) = #(H\GL2(N)/U(N))χN(σ).
(this step is fast in practice, but asymptotically annoying).

3 Compute n0 := #j−1
H (0) and n1728 := #j−1

H (1728) by computing Aπ
for each twist, summing fH(Aπ) values, and dividing by # Aut(Ek̄).

4 Set nord := 0 and for a from 1 to b2√qc coprime to q:
Compute D = a2 − 4q, put D0 := discQ(

√
Dπ) and for b2|(D/D0):

Set D′ := b2D0 and δ := D mod 4 and compute Aπ (for D′ < −4).
If fH(Aπ) 6= 0, compute/lookup h(D) and add fH(Aπ)h(D) to nord.

5 Compute nss by computing Aπ for supersingular elliptic curves with
j 6= 0, 1728 (only a = 0,±2q possible), and multiplying fH(Aπ) by the
counts of such curves (using h(

√
−q), h(

√
−4q) and [W69]).

6 Output #XH(Fq) = n∞ + n0 + n1728 + nord + nss.



A trivial (but still very useful) real life example

Consider the following genus 12 subgroup on the Mazur-B 7-adic list:

H := 〈
(

41 1
1 8

)
,
(

37 3
11 26

)
〉 ⊆ GL2(49);

Running the algorithm above produces #XH(F2) = 0.

The curve XH has good reduction at 2, and it follows that XH(Q) = ∅.

There is therefore no elliptic curve E/Q whose 7-adic image lies in H.

This is all we need to know, but for pedagogical purposes we note by counting
points over F2r for r = 1, 2, . . . 12 we may compute the L-polynomial

L2(T) =(23T6 − 12T5 + 4T4 + T3 + 2T2 − 3T + 1)

(23T6 − 8T5 + 10T4 − 7T3 + 5T2 − 2T + 1)2

(23T6 + 16T5 + 18T4 + 15T3 + 9T2 + 4T + 1).



A curve with many points

Consider the following genus 8 group:

H := 〈
(

1 15
12 1

)
,
(

15 16
4 3

)
,
(

9 4
8 3

)
〉 ⊆ GL2(18).

Running the algorithm above with q = 132 yields #XH(F132) = 364.

This sets a new record for genus 8 curves over F132 , see the website

manypoints.org.

There are only finitely many Γ ⊆ SL2(Z) of genus 8, see the

Cummins and Pauli database

there are infinitely many non-isomorphic modular curves XH of genus 8.

https://manypoints.org/
https://mathstats.uncg.edu/sites/pauli/congruence/csg8.html


A non-trivial real life example

Consider the following genus 14 subgroup on the Mazur-B 5-adic list:

H := 〈
(

8 6
4 4

)
,
(

9 18
7 16

)
〉 ⊆ GL2(25);

this is the normalizer of a non-split Cartan subgroup of GL2(25). Counting
points on XH over F2r , F5r , F7r for 1 ≤ r ≤ 14 yields the L-polynomials

L2(T) = (22T4 − 2T3 + 3T2 − T + 1)(22T4 + 2T3 + 3T2 + T + 1)2(28T16 + · · ·+ 5T + 1),

L3(T) = (3T2 − T + 1)2(3T2 + T + 1)2(32T4 + 9T3 + 7T2 + 3T + 1)(38T16 + · · ·+ 5T + 1),

L7(T) = (72T4 − 7T3 + 13T2 − T + 1)(72T4 + 7T3 + 13T2 + T + 1)(72T4 + 7T3 + 3T2 + T + 1)

(78T16 + · · ·+ 10T + 1),

suggesting the Q-isogeny decomposition of the Jacobian has shape 2-2-2-8.
Hashing traces and searching for 5-power conductor genus 2 curves yields

y2 + (x3 + x + 1)y = −3x4 + 7x3 + x2 − 5x + 1,

y2 + (x3 + x + 1)y = x6 − 13x4 + 37x3 + 6x2 − 23x + 6,

y2 + (x3 + x + 1)y = 6x6 − 5x5 + 12x4 − 13x3 + 6x2 − 13x − 4,

each of which have RM by Q(
√

5) and Jacobians of Mordell-Weil rank 2.



Complexity analysis

We can use sub-exponential time Monte-Carlo algorithms to compute class
numbers and still get a provably correct result (in practice we just look up
class numbers in a precomputed table).

As written, the complexity of this algorithm is

N4+o(1) + q1/2+o(1)No(1).

The constant factors are very small (the inner loop is just table lookups).
The dependency on N can easily be improved to N3+o(1), and even to N2+o(1)

for suitable H.

If we wish to compute #XH(Fq) for many values of q (for example, all primes
p - N up to some bound B), the computation of fH : GL2(N)→ Z only needs to
be done once, and we can precompute all the class numbers up to 4B in
O(B3/2+o(1)) time (deterministically) by counting binary quadratic forms.

Corollary: We can compute L(XH, s) in time cond(Jac(XH))3/4+o(1).



Performance comparison

Time to compute #X0(N)(Fp) for all primes p ≤ B.

Pari/GP v2.11 new algorithm

B N = 41 42 209 210 N = 41 42 209 210

212 0.1 0.4 0.2 0.7 0.0 0.0 0.0 0.0
213 0.3 1.0 0.5 1.8 0.0 0.0 0.1 0.0
214 0.6 2.5 1.1 4.8 0.1 0.1 0.1 0.1
215 1.7 7.1 3.1 12.8 0.2 0.2 0.2 0.2
216 4.8 19.6 8.9 35.4 0.4 0.4 0.6 0.5
217 14.4 55.1 25.7 97.8 1.1 0.9 1.5 1.2
218 43.5 156

.0

74.3 274

.0

2.8 2.6 4.0 3.3
219 128

.0

442

.0

214

.0

769

.0

7.8 7.0 11.0 1 9.1
220 374

.0

1260

.0

610

.0

2169

.0

22.2 19.8 31.1 26.2
221 1100

.0

3610

.0

1760

.0

6100

.0

69.0 61.3 91.8 77.9
222 ?

.0

?

.0

?

.0

?

.0

213

.0

187

.0

263

.0

228

.0

223 ?

.0

?

.0

?

.0

?

.0

665

.0

579

.0

762

.0

678

.0

224 ?

.0

?

.0

?

.0

?

.0

2060

.0

1790

.0

2220

.0

1990

.0

Intel Skylake 3.1 GHz CPU times (seconds)

(? entries did not complete within one day)



Zeta functions and L-functions

Let X/Q be a nice (smooth, projective, geometrically integral) curve of
genus g. For primes p of good reduction (for X) we have a zeta function

Z(Xp; s) := exp
(∑

r≥1

#Xp(Fpr )
Tr

r

)
=

Lp(T)

(1− T)(1− pT)
,

in which the L-polynomial Lp ∈ Z[T] in the numerator satisfies

Lp(T) = T2gχp(1/T) = 1− apT + · · ·+ pgT2g;

here χp(T) is the charpoly of the Frobenius endomorphism of Jac(Xp) (this
implies # Jac(Xp) = Lp(1), for example). The L-function of X is

L(X, s) = L(Jac(X), s) :=
∑
n≥1

ann−s :=
∏

p

Lp(p−s)−1,

where the Dirichlet coefficients an ∈ Z are determined by the Lp(T).
In particular, ap = p + 1−#Xp(Fp) is the trace of Frobenius.



The Selberg class with polynomial Euler factors

The Selberg class Spoly contains Dirichlet series L(s) =
∑

n≥1 ann−s satisfying:

1 L(s) has an analytic continuation that is holomorphic at s 6= 1;

2 For some γ(s) = Qs∏r
i=1 Γ(λis + µi) and ε, the completed L-function

Λ(s) := γ(s)L(s) satisfies the functional equation

Λ(s) = εΛ(1− s̄),

where Q > 0, λi > 0, Re(µi) ≥ 0, |ε| = 1. Define deg L := 2
∑r

i λi.

3 a1 = 1 and an = O(nε) for all ε > 0 (Ramanujan conjecture).

4 L(s) has an Euler product L(s) =
∏

p Lp(p−s)−1 in which each local factor
Lp ∈ Z[T] has degree at most deg L.

For any nice curve X the Dirichlet series Lan(s,X) := L(X, s + 1
2 ) satisfies both

(3) and (4) (by Weil), and conjecturally lies in Spoly.
For modular curves we also know (1) and (2), so L(s,XH) ∈ Spoly.



Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)
If A(s) =

∑
n≥1 ann−s and B(s) =

∑
n≥1 bnn−s lie in Spoly and ap = bp for all but

finitely many primes p, then A(s) = B(s).

Corollary
If Lan(s,X) lies in Spoly then it is determined by (any choice of) all but finitely
many coefficients ap. In particular, all of the local factors are completely
determined by the Frobenius traces ap at good primes.

Henceforth we assume that Lan(s,X) ∈ Spoly.

Let ΓC(s) := 2(2π)sΓ(s), and define Λ(X, s) := ΓC(s)gL(X, s). Then

Λ(X, s) = εN1−sΛ(X, 2− s).

where the analytic root number ε = ±1 and analytic conductor N ∈ Z≥1 are
also determined by the Frobenius traces ap at good primes.



Effective strong multiplicity one

Fix a finite set of primes S (e.g. bad primes) and an integer M that we know is
a multiple of the conductor N (e.g. M = ∆(X)).

There is a finite set of possibilities for ε = ±1, N|M, and the Euler factors
Lp ∈ Z[T] for p ∈ S (the coefficients of Lp(T) are bounded).

Suppose we know the an for all n ≤ c1
√

M with p - n for p ∈ S. For a suitably
large c1, exactly one choice of ε, N, and Lp(T) for p ∈ S will make it possible
for L(X, s) to satisfy its functional equation.

One can explicitly determine a set of O(Nε) candidate values of c1, one of
which is guaranteed to work; in practice the first one usually works.

This gives an effective algorithm to compute ε, N, and Lp(T) for p ∈ S,
provided we can compute Lp(T) at good p ≤ B, where B = O(

√
N).
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