Computing the image of Galois representations attached to an elliptic curve

Andrew V. Sutherland (MIT)

December 1, 2009

joint work with Nicholas Katz (Princeton)

Definitions

For an elliptic curve E / K and a prime $\ell \neq \operatorname{char}(K)$, the group $\operatorname{Gal}(\bar{K} / K)$ acts on the ℓ-adic Tate module

$$
T_{\ell}(E)=\underset{{ }_{n}}{\lim _{n}} E\left[\ell^{n}\right]
$$

This yields a group representation

$$
\rho_{E, \ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{Aut}\left(T_{\ell}(E)\right) \cong \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)
$$

For this talk $K=\mathbb{Q}$.

Surjectivity of $\rho_{E, \ell}$

For E without complex multiplication, $\rho_{E, \ell}$ is usually surjective.
Theorem (Serre)
Let K be a number field and assume E / K does not have $C M$.

1. The image of $\rho_{E, \ell}$ has finite index in $\mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ for all ℓ.
2. There exists ℓ_{0} such that im $\rho_{E, \ell}=\mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ for all $\ell>\ell_{0}$.

Conjecturally, there is an ℓ_{0} that depends only on K.
For $K=\mathbb{Q}$, it is believed that $\ell_{0}=37$.

For this talk E does not have CM.

Reduction modulo ℓ

We will restrict our attention to $\bar{\rho}_{E, \ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$.
Theorem (Serre)
For $K=\mathbb{Q}$ and $\ell>3$, the map $\rho_{E, \ell}$ is surjective iff $\bar{\rho}_{E, \ell}$ is.
Conjecturally, im $\bar{\rho}_{E, \ell}$ determines im $\rho_{E, \ell}$ for all $\ell>3$.

The theorem fails for $\ell=2$ and $\ell=3$ [Elkies], but it then suffices to consider $\rho_{E, \ell} \bmod \ell^{k}$ for small k (empirically $k \leq 3$).

When is $\bar{\rho}_{E, \ell}$ non-surjective?

If $E[\ell](\mathbb{Q})$ is non-trivial, then $\bar{\rho}_{E, \ell}$ cannot be surjective.
This occurs for $\ell \leq 7$ (and no others [Mazur]).
If E / \mathbb{Q} admits a rational ℓ-isogeny then $\bar{\rho}_{E, \ell}$ is not surjective. This occurs for $\ell \leq 17$ and $\ell=37$ (and no others, without CM).

However, $\bar{\rho}_{E, \ell}$ may be non-surjective even when E / \mathbb{Q} has no rational ℓ-isogenies, and im $\bar{\rho}_{E, \ell}$ may vary in any case.

When is $\bar{\rho}_{E, \ell}$ non-surjective?

If $E[\ell](\mathbb{Q})$ is non-trivial, then $\bar{\rho}_{E, \ell}$ cannot be surjective.
This occurs for $\ell \leq 7$ (and no others [Mazur]).
If E / \mathbb{Q} admits a rational ℓ-isogeny then $\bar{\rho}_{E, \ell}$ is not surjective. This occurs for $\ell \leq 17$ and $\ell=37$ (and no others, without CM).

However, $\bar{\rho}_{E, \ell}$ may be non-surjective even when E / \mathbb{Q} has no rational ℓ-isogenies, and im $\bar{\rho}_{E, \ell}$ may vary in any case.

Classifying the possibilities for im $\bar{\rho}_{E, \ell} \subseteq \mathrm{GL}_{2}[\mathbb{Z} / \ell \mathbb{Z}]$ may be viewed as a generalization of Mazur's Theorem.

Distribution of Frobenius traces

For primes p of good reduction, let $a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)$.
The Čebotarev density theorem implies that for $c \in \mathbb{Z} / \ell \mathbb{Z}$,

$$
\operatorname{dens}\left(a_{p} \equiv c \bmod \ell\right)=\frac{\#\left\{A: \operatorname{tr} A=c, A \in \operatorname{im} \bar{\rho}_{E, \ell}\right\}}{\# \operatorname{im} \bar{\rho}_{E, \ell}} .
$$

When im $\bar{\rho}_{E, \ell}$ is small, these densities can become highly non-uniform (even zero).

The constants appearing in both the Lang-Trotter conjecture and Koblitz' conjecture depend on dens ($a_{p} \equiv c \bmod m$).

Main results

An algorithm to compute im $\bar{\rho}_{E, \ell}$ for small ℓ (up to isomorphism). If $\bar{\rho}_{E, \ell}$ is surjective, the algorithm proves this unconditionally. Otherwise its output is heuristically correct with high probability (in principle, this can also be made unconditional).

Main results

An algorithm to compute im $\bar{\rho}_{E, \ell}$ for small ℓ (up to isomorphism). If $\bar{\rho}_{E, \ell}$ is surjective, the algorithm proves this unconditionally. Otherwise its output is heuristically correct with high probability (in principle, this can also be made unconditional).

- Very fast, usually well under a millisecond per curve.
- We have computed $\bar{\rho}_{E, \ell}$ for every E in the Stein-Watkins database (over 100 million curves), for primes $\ell<60$.

Main results

An algorithm to compute $\operatorname{im} \bar{\rho}_{E, \ell}$ for small ℓ (up to isomorphism). If $\bar{\rho}_{E, \ell}$ is surjective, the algorithm proves this unconditionally. Otherwise its output is heuristically correct with high probability (in principle, this can also be made unconditional).

- Very fast, usually well under a millisecond per curve.
- We have computed $\bar{\rho}_{E, \ell}$ for every E in the Stein-Watkins database (over 100 million curves), for primes $\ell<60$.

Previous work addressed curves of conductor up to 200 [Reverter-Vila], with partial results up to 30000 [Stein].

A probabilistic approach

The action of the Frobenius endomorphism on $E[\ell]\left(\mathbb{F}_{p}\right)$ corresponds to a matrix $A_{p} \in \operatorname{im} \bar{\rho}_{\ell} \subseteq \mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$.

We have $\operatorname{tr} A_{p}=a_{p} \bmod \ell$ and $\operatorname{det} A_{p}=p \bmod \ell$, hence we know the characteristic polynomial $\lambda^{2}-a_{p} \lambda+p \bmod \ell$.

By varying p, we can "randomly" sample im $\bar{\rho}_{E, \ell}$.
The Čebotarev density theorem implies equidistribution.

A probabilistic approach

The action of the Frobenius endomorphism on $E[\ell]\left(\mathbb{F}_{p}\right)$ corresponds to a matrix $A_{p} \in \operatorname{im} \bar{\rho}_{\ell} \subseteq \mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$.

We have $\operatorname{tr} A_{p}=a_{p} \bmod \ell$ and $\operatorname{det} A_{p}=p \bmod \ell$, hence we know the characteristic polynomial $\lambda^{2}-a_{p} \lambda+p \bmod \ell$.

By varying p, we can "randomly" sample im $\bar{\rho}_{E, \ell}$.
The Čebotarev density theorem implies equidistribution.
Unfortunately, this does not give enough information.

The case $\ell=2$

$G L_{2}(\mathbb{Z} / 2 \mathbb{Z}) \cong S_{3}$ has 6 subgroups in 4 conjugacy classes.
For $H \subseteq G L_{2}(\mathbb{Z} / 2 \mathbb{Z})$, let $t_{i}(H)=\#\{A \in H: \operatorname{tr} A=i\}$.
We consider the possible vectors $t(H)=\left(t_{0}(H), t_{1}(H)\right)$.

1. For $H=\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ we have $t(H)=(4,2)$.
2. The subgroup $H \cong \mathbb{Z} / 3 \mathbb{Z}$ has $t(H)=(1,2)$.
3. Three conjugate $H \cong \mathbb{Z} / \mathbb{Z}$ have $t(H)=(2,0)$
4. The trivial H has $t(H)=(1,0)$.

1-2 are distinguished from 3-4 by a trace 1 element (easy).
We can distinguish 1 from 2 by comparing frequencies (harder).
We can't distinguish 3 from 4 (impossible).

Using the fixspace of A_{p}

The Frobenius endomorphism fixes $E\left(\mathbb{F}_{p}\right)[\ell]$, hence we have

$$
\operatorname{cok}\left(A_{p}-I\right) \cong E\left(\mathbb{F}_{p}\right)[\ell]
$$

when viewed as submodules of $\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$.
We can easily compute $E\left(\mathbb{F}_{p}\right)[\ell]$, and this yields additional information about A_{p} that cannot be derived from a_{p}.

We can now easily distinguish all 4 subgroups when $\ell=2$. This generalizes nicely.

Signatures in $\mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$

For each subgroup H of $\mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$, we define the extended signature of H as the multiset

$$
S_{H}=\{(\operatorname{det} A, \operatorname{tr} A, \operatorname{cok}(A-I)): A \in H\} .
$$

The signature s_{H} is simply the set S_{H}, ignoring multiplicities. Note that s_{H} and S_{H} are invariant under conjugation.

Signatures in $\mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$

For each subgroup H of $\mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$, we define the extended signature of H as the multiset

$$
S_{H}=\{(\operatorname{det} A, \operatorname{tr} A, \operatorname{cok}(A-I)): A \in H\} .
$$

The signature s_{H} is simply the set S_{H}, ignoring multiplicities. Note that s_{H} and S_{H} are invariant under conjugation.
Lemma
Let $\ell<60$ be prime and let G and H be subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$ for which the determinant map is surjective.

$$
\begin{aligned}
& \text { 1. } s_{G}=s_{H} \quad \Longleftrightarrow \quad s_{G}=s_{H} \\
& \text { 2. } s_{G}=s_{H} \quad \Longleftrightarrow \quad G \cong H .
\end{aligned}
$$

The lattice of conjugacy classes in $\mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$

Up to conjugacy, we may determine $\operatorname{im} \bar{\rho}_{E, \ell}$ identifying its location in the lattice of conjugacy classes of $\mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$.

We may restrict our attention to the (upwardly closed) subset of classes \mathcal{C}_{ℓ} for which the determinant map is surjective.

For any signature set s and $H \in \mathcal{C}_{\ell}$, we say s_{H} minimally covers s if $s \subset s_{H}$ and for each $G \in \mathcal{C}_{\ell}$ we have $s \subset s_{G} \Longrightarrow s_{H} \subset s_{G}$.

Note that if s minimally covered by s_{G} and s_{H}, then $s_{G}=s_{H}$ and therefore $G \cong H$ (by the lemma).

The algorithm

Given an elliptic curve E / \mathbb{Q}, a prime ℓ, and $\epsilon>0$, set $s \leftarrow \emptyset, k \leftarrow 0$ and for each good prime $p \neq \ell$:

1. Compute $E\left(\mathbb{F}_{p}\right)$ to obtain a_{p} and $V_{p}=E\left(\mathbb{F}_{p}\right)[\ell]$.
2. Set $s \leftarrow s \cup\left(p \bmod \ell, a_{p} \bmod \ell, V_{p}\right)$, and increment k.
3. If s is minimally covered by s_{H} for some $H \in \mathcal{C}_{\ell}$ and we have $\delta_{H}^{k}<\epsilon$, then output H and terminate.

The algorithm

Given an elliptic curve E / \mathbb{Q}, a prime ℓ, and $\epsilon>0$, set $s \leftarrow \emptyset, k \leftarrow 0$ and for each good prime $p \neq \ell$:

1. Compute $E\left(\mathbb{F}_{p}\right)$ to obtain a_{p} and $V_{p}=E\left(\mathbb{F}_{p}\right)[\ell]$.
2. Set $s \leftarrow s \cup\left(p \bmod \ell, a_{p} \bmod \ell, V_{p}\right)$, and increment k.
3. If s is minimally covered by s_{H} for some $H \in \mathcal{C}_{\ell}$ and we have $\delta_{H}^{k}<\epsilon$, then output H and terminate.

Here δ_{H} is the maximum over $G \supsetneq H$ of the probability that the signature of a random element of G lies in s_{H}, which we take to be zero when $H=G L_{2}(\mathbb{Z} / \ell \mathbb{Z})$.

The values of s_{H} and δ_{H} for all $H \in \mathcal{C}_{\ell}$ are precomputed.

Efficient implementation

If $\bar{\rho}_{E, \ell}$ is surjective, we expect the algorithm to terminate in $O(\log \ell)$ iterations (around ten). Otherwise, for $\epsilon=2^{-n}$, we typically need $O(n)$ iterations (a few hundred).

Efficient implementation

If $\bar{\rho}_{E, \ell}$ is surjective, we expect the algorithm to terminate in $O(\log \ell)$ iterations (around ten). Otherwise, for $\epsilon=2^{-n}$, we typically need $O(n)$ iterations (a few hundred).

For small p we can quickly compute $\# E\left(\mathbb{F}_{p}\right)$ and determine the structure of $E\left(\mathbb{F}_{p}\right)$ using generic group algorithms.

This is much faster than an ℓ-adic approach for $\ell>2$, and allows us to treat many ℓ simultaneously at almost no cost.

Efficient implementation

If $\bar{\rho}_{E, \ell}$ is surjective, we expect the algorithm to terminate in $O(\log \ell)$ iterations (around ten). Otherwise, for $\epsilon=2^{-n}$, we typically need $O(n)$ iterations (a few hundred).

For small p we can quickly compute $\# E\left(\mathbb{F}_{p}\right)$ and determine the structure of $E\left(\mathbb{F}_{p}\right)$ using generic group algorithms.

This is much faster than an ℓ-adic approach for $\ell>2$, and allows us to treat many ℓ simultaneously at almost no cost.

Precomputing the s_{H} and δ_{H} is non-trivial, but this only needs to be done once for each ℓ.

Computational results for the Stein-Watkins database

Testing 136,663,068 curves E / \mathbb{Q} without CM for all $\ell<60$ took 12 CPU-hours, using $\epsilon=2^{-100}$, or about 307μ s per curve.

Approximately 1 in 4 curves had non-surjective $\bar{\rho}_{E, \ell}$ for some ℓ, about 1 in 600 for some $\ell>3$.

In the surjective cases, an average of 9.2 primes p were used, versus 168.5 primes in the non-surjective case.

The most primes used for any one curve was 2061.

$\bmod \ell$ images of Galois for E / \mathbb{Q} without CM

ℓ	$\# H$	δ_{H}	abelian	all traces	all n	torsion/isogeny	SW curves
2	1	0.500	yes	no	no	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	1673058
	2	0.500	yes	no	no	$\mathbb{Z} / 2 \mathbb{Z}$	33352376
	3	0.333	yes	yes	yes	none	128670
3	2	0.250	yes	no	no	$\mathbb{Z} / 3 \mathbb{Z}$	3519
	4	0.167	yes	yes	no	3-isogeny	74933
	6	0.250	no	no	no	$\mathbb{Z} / 3 \mathbb{Z}$	354246
	8	0.250	no	yes	yes	none	18642
	12	0.375	no	yes	no	3-isogeny	3165972
	16	0.167	no	yes	yes	none	53202
5	4	0.200	yes	no	no	$\mathbb{Z} / 5 \mathbb{Z}$	4
	4	0.200	yes	no	no	5-isogeny	4
	8	0.100	yes	yes	no	5-isogeny	3120
	16	0.050	yes	yes	yes	5-isogeny	500
	16	0.250	no	yes	yes	none	512
	20	0.375	no	no	no	$\mathbb{Z} / 5 \mathbb{Z}$	504
	20	0.375	no	no	no	5-isogeny	520
	32	0.333	no	yes	yes	none	3480
	40	0.250	no	yes	no	5-isogeny	109970
	48	0.300	no	yes	yes	none	3090
	80	0.417	no	yes	yes	5-isogeny	44272
	96	0.217	no	yes	yes	none	15246

ℓ	\#H	δ_{H}	abelian	all traces	all n	torsion/isogeny	SW curves
7	18	0.250	no	yes	no	7-isogeny	2
	36	0.333	no	yes	no	7-isogeny	414
	42	0.250	no	no	no	7-isogeny	8
	42	0.417	no	no	no	$\mathbb{Z} / 7 \mathbb{Z}$	24
${ }^{*}$	42	0.417	no	no	no	7-isogeny	24
	72	0.399	no	yes	yes	none	52
	84	0.667	no	yes	no	7-isogeny	1194
	84	0.444	no	yes	no	7-isogeny	12172
	96	0.357	no	yes	yes	none	112
	126	0.250	no	yes	yes	7-isogeny	1042
	252	0.438	no	yes	yes	7-isogeny	28922
11	110	0.450	no	no	no	11-isogeny	2
	110	0.450	no	no	no	11-isogeny	2
	220	0.640	no	no	no	11-isogeny	2044
	240	0.409	no	yes	yes	none	0
13	288	0.250	no	yes	yes	none	108
	468	0.375	no	yes	yes	13-isogeny	14
*	468	0.375	no	yes	yes	13-isogeny	12
	624	0.667	no	yes	no	13-isogeny	184
	624	0.444	no	yes	yes	13-isogeny	580
	936	0.250	no	yes	yes	13-isogeny	3194
	1872	0.464	no	yes	yes	13-isogeny	3352
17	1088	0.375	no	yes	yes	17-isogeny	368
37	15984	0.444	no	yes	yes	37-isogeny	1024

Future work

This is a work in progress, with much still to be done:

1. Test more curves, analyze the results.
2. Compute mod ℓ^{k} and mod m Galois images.
3. Consider curves over number fields other than \mathbb{Q}.
4. Look at genus 2 Galois images in $\operatorname{GSp}(4, \mathbb{Z} / \ell \mathbb{Z})$.

Computing the image of Galois representations attached to an elliptic curve

Andrew V. Sutherland (MIT)

December 1, 2009

joint work with Nicholas Katz (Princeton)

