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Definitions

For an elliptic curve E/K and a prime ` 6= char(K ),
the group Gal(K̄/K ) acts on the `-adic Tate module

T`(E) = lim←−
n

E [`n].

This yields a group representation

ρE ,` : Gal(K̄/K )→ Aut
(
T`(E)

) ∼= GL2(Z`).

For this talk K = Q.
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Surjectivity of ρE ,`

For E without complex multiplication, ρE ,` is usually surjective.

Theorem (Serre)
Let K be a number field and assume E/K does not have CM.

1. The image of ρE ,` has finite index in GL2(Z`) for all `.
2. There exists `0 such that im ρE ,` = GL2(Z`) for all ` > `0.

Conjecturally, there is an `0 that depends only on K .
For K = Q, it is believed that `0 = 37.

For this talk E does not have CM.
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Reduction modulo `

We will restrict our attention to ρ̄E ,` : Gal(K̄/K )→ GL2(Z/`Z).

Theorem (Serre)
For K = Q and ` > 3, the map ρE ,` is surjective iff ρ̄E ,` is.

Conjecturally, im ρ̄E ,` determines im ρE ,` for all ` > 3.

The theorem fails for ` = 2 and ` = 3 [Elkies], but it then
suffices to consider ρE ,` mod `k for small k (empirically k ≤ 3).
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When is ρ̄E ,` non-surjective?

If E [`](Q) is non-trivial, then ρ̄E ,` cannot be surjective.
This occurs for ` ≤ 7 (and no others [Mazur]).

If E/Q admits a rational `-isogeny then ρ̄E ,` is not surjective.
This occurs for ` ≤ 17 and ` = 37 (and no others, without CM).

However, ρ̄E ,` may be non-surjective even when E/Q has no
rational `-isogenies, and im ρ̄E ,` may vary in any case.

Classifying the possibilities for im ρ̄E ,` ⊆ GL2[Z/`Z] may be
viewed as a generalization of Mazur’s Theorem.
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Distribution of Frobenius traces

For primes p of good reduction, let ap = p + 1−#E(Fp).

The Čebotarev density theorem implies that for c ∈ Z/`Z,

dens(ap ≡ c mod `) =
#{A : tr A = c,A ∈ im ρ̄E ,`}

# im ρ̄E ,`
.

When im ρ̄E ,` is small, these densities can become highly
non-uniform (even zero).

The constants appearing in both the Lang-Trotter conjecture
and Koblitz’ conjecture depend on dens(ap ≡ c mod m).
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Main results

An algorithm to compute im ρ̄E ,` for small ` (up to isomorphism).
If ρ̄E ,` is surjective, the algorithm proves this unconditionally.
Otherwise its output is heuristically correct with high probability
(in principle, this can also be made unconditional).

I Very fast, usually well under a millisecond per curve.
I We have computed ρ̄E ,` for every E in the Stein-Watkins

database (over 100 million curves), for primes ` < 60.

Previous work addressed curves of conductor up to 200
[Reverter-Vila], with partial results up to 30000 [Stein].
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A probabilistic approach

The action of the Frobenius endomorphism on E [`](Fp)
corresponds to a matrix Ap ∈ im ρ̄` ⊆ GL2(Z/`Z).

We have tr Ap = ap mod ` and det Ap = p mod `, hence we
know the characteristic polynomial λ2 − apλ+ p mod `.

By varying p, we can “randomly” sample im ρ̄E ,`.
The Čebotarev density theorem implies equidistribution.

Unfortunately, this does not give enough information.
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The Čebotarev density theorem implies equidistribution.

Unfortunately, this does not give enough information.

Andrew V. Sutherland (MIT) Computing the image of Galois 8 of 18



The case ` = 2

GL2(Z/2Z) ∼= S3 has 6 subgroups in 4 conjugacy classes.

For H ⊆ GL2(Z/2Z), let ti(H) = #{A ∈ H : tr A = i}.
We consider the possible vectors t(H) = (t0(H), t1(H)).

1. For H = GL2(Z/2Z) we have t(H) = (4,2).
2. The subgroup H ∼= Z/3Z has t(H) = (1,2).
3. Three conjugate H ∼= Z/2Z have t(H) = (2,0)

4. The trivial H has t(H) = (1,0).

1-2 are distinguished from 3-4 by a trace 1 element (easy).
We can distinguish 1 from 2 by comparing frequencies (harder).
We can’t distinguish 3 from 4 (impossible).
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Using the fixspace of Ap

The Frobenius endomorphism fixes E(Fp)[`], hence we have

cok(Ap − I) ∼= E(Fp)[`],

when viewed as submodules of Z/`Z× Z/`Z.

We can easily compute E(Fp)[`], and this yields additional
information about Ap that cannot be derived from ap.

We can now easily distinguish all 4 subgroups when ` = 2.
This generalizes nicely.
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Signatures in GL2(Z/`Z)

For each subgroup H of GL2(Z/`Z), we define the extended
signature of H as the multiset

SH =
{(

det A, tr A, cok(A− I)
)

: A ∈ H
}
.

The signature sH is simply the set SH , ignoring multiplicities.
Note that sH and SH are invariant under conjugation.

Lemma
Let ` < 60 be prime and let G and H be subgroups of
GL2(Z/`Z) for which the determinant map is surjective.

1. sG = sH ⇐⇒ SG = SH

2. SG = SH =⇒ G ∼= H.
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The lattice of conjugacy classes in GL2(Z/`Z)

Up to conjugacy, we may determine im ρ̄E ,` identifying its
location in the lattice of conjugacy classes of GL2(Z/`Z).

We may restrict our attention to the (upwardly closed) subset of
classes C` for which the determinant map is surjective.

For any signature set s and H ∈ C`, we say sH minimally covers
s if s ⊂ sH and for each G ∈ C` we have s ⊂ sG =⇒ sH ⊂ sG.

Note that if s minimally covered by sG and sH , then sG = sH
and therefore G ∼= H (by the lemma).
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The algorithm

Given an elliptic curve E/Q, a prime `, and ε > 0,
set s ← ∅, k ← 0 and for each good prime p 6= `:

1. Compute E(Fp) to obtain ap and Vp = E(Fp)[`].

2. Set s ← s ∪ (p mod `,ap mod `,Vp), and increment k .

3. If s is minimally covered by sH for some H ∈ C` and we
have δk

H < ε, then output H and terminate.

Here δH is the maximum over G ) H of the probability that the
signature of a random element of G lies in sH , which we take to
be zero when H = GL2(Z/`Z).

The values of sH and δH for all H ∈ C` are precomputed.
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Efficient implementation

If ρ̄E ,` is surjective, we expect the algorithm to terminate in
O(log `) iterations (around ten). Otherwise, for ε = 2−n, we
typically need O(n) iterations (a few hundred).

For small p we can quickly compute #E(Fp) and determine
the structure of E(Fp) using generic group algorithms.

This is much faster than an `-adic approach for ` > 2, and
allows us to treat many ` simultaneously at almost no cost.

Precomputing the sH and δH is non-trivial, but this only needs
to be done once for each `.
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Computational results for the Stein-Watkins database

Testing 136,663,068 curves E/Q without CM for all ` < 60 took
12 CPU-hours, using ε = 2−100, or about 307 µs per curve.

Approximately 1 in 4 curves had non-surjective ρ̄E ,` for some `,
about 1 in 600 for some ` > 3.

In the surjective cases, an average of 9.2 primes p were used,
versus 168.5 primes in the non-surjective case.

The most primes used for any one curve was 2061.
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mod ` images of Galois for E/Q without CM
` #H δH abelian all traces all n torsion/isogeny SW curves

2 1 0.500 yes no no Z/2Z× Z/2Z 1673058
2 0.500 yes no no Z/2Z 33352376
3 0.333 yes yes yes none 128670

3 2 0.250 yes no no Z/3Z 3519
4 0.167 yes yes no 3-isogeny 74933
6 0.250 no no no Z/3Z 354246
8 0.250 no yes yes none 18642

12 0.375 no yes no 3-isogeny 3165972
16 0.167 no yes yes none 53202

5 4 0.200 yes no no Z/5Z 4
4 0.200 yes no no 5-isogeny 4
8 0.100 yes yes no 5-isogeny 3120

16 0.050 yes yes yes 5-isogeny 500
16 0.250 no yes yes none 512
20 0.375 no no no Z/5Z 504

* 20 0.375 no no no 5-isogeny 520
32 0.333 no yes yes none 3480
40 0.250 no yes no 5-isogeny 109970
48 0.300 no yes yes none 3090
80 0.417 no yes yes 5-isogeny 44272
96 0.217 no yes yes none 15246
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` #H δH abelian all traces all n torsion/isogeny SW curves

7 18 0.250 no yes no 7-isogeny 2
36 0.333 no yes no 7-isogeny 414
42 0.250 no no no 7-isogeny 8
42 0.417 no no no Z/7Z 24

* 42 0.417 no no no 7-isogeny 24
72 0.399 no yes yes none 52
84 0.667 no yes no 7-isogeny 1194
84 0.444 no yes no 7-isogeny 12172
96 0.357 no yes yes none 112

126 0.250 no yes yes 7-isogeny 1042
252 0.438 no yes yes 7-isogeny 28922

11 110 0.450 no no no 11-isogeny 2
* 110 0.450 no no no 11-isogeny 2

220 0.640 no no no 11-isogeny 2044
240 0.409 no yes yes none 0

13 288 0.250 no yes yes none 108
468 0.375 no yes yes 13-isogeny 14

* 468 0.375 no yes yes 13-isogeny 12
624 0.667 no yes no 13-isogeny 184
624 0.444 no yes yes 13-isogeny 580
936 0.250 no yes yes 13-isogeny 3194

1872 0.464 no yes yes 13-isogeny 3352
17 1088 0.375 no yes yes 17-isogeny 368
37 15984 0.444 no yes yes 37-isogeny 1024
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Future work

This is a work in progress, with much still to be done:

1. Test more curves, analyze the results.

2. Compute mod `k and mod m Galois images.

3. Consider curves over number fields other than Q.

4. Look at genus 2 Galois images in GSp(4,Z/`Z).
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