Computing the image of Galois representations attached to an elliptic curve

Andrew V. Sutherland (MIT)

December 1, 2009

joint work with Nicholas Katz (Princeton)

Definitions

For an elliptic curve E/K and a prime $\ell \neq \text{char}(K)$, the group $\text{Gal}(\overline{K}/K)$ acts on the ℓ -adic Tate module

$$T_{\ell}(E) = \varprojlim_{n} E[\ell^{n}].$$

This yields a group representation

$$\rho_{E,\ell}: \operatorname{Gal}(\bar{K}/K) \to \operatorname{Aut}(T_{\ell}(E)) \cong \operatorname{GL}_2(\mathbb{Z}_{\ell}).$$

For this talk $K = \mathbb{Q}$.

Surjectivity of $\rho_{E,\ell}$

For *E* without complex multiplication, $\rho_{E,\ell}$ is usually surjective.

Theorem (Serre)

Let K be a number field and assume E/K does not have CM.

- 1. The image of $\rho_{E,\ell}$ has finite index in $GL_2(\mathbb{Z}_\ell)$ for all ℓ .
- 2. There exists ℓ_0 such that im $\rho_{E,\ell} = GL_2(\mathbb{Z}_\ell)$ for all $\ell > \ell_0$.

Conjecturally, there is an ℓ_0 that depends only on *K*. For $K = \mathbb{Q}$, it is believed that $\ell_0 = 37$.

For this talk *E* does not have CM.

Reduction modulo ℓ

We will restrict our attention to $\bar{\rho}_{E,\ell}$: $\text{Gal}(\bar{K}/K) \to \text{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$.

Theorem (Serre) For $K = \mathbb{Q}$ and $\ell > 3$, the map $\rho_{E,\ell}$ is surjective iff $\bar{\rho}_{E,\ell}$ is. Conjecturally, im $\bar{\rho}_{E,\ell}$ determines im $\rho_{E,\ell}$ for all $\ell > 3$.

The theorem fails for $\ell = 2$ and $\ell = 3$ [Elkies], but it then suffices to consider $\rho_{E,\ell} \mod \ell^k$ for small *k* (empirically $k \leq 3$).

When is $\bar{\rho}_{E,\ell}$ non-surjective?

If $E[\ell](\mathbb{Q})$ is non-trivial, then $\bar{\rho}_{E,\ell}$ cannot be surjective. This occurs for $\ell \leq 7$ (and no others [Mazur]).

If E/\mathbb{Q} admits a rational ℓ -isogeny then $\bar{\rho}_{E,\ell}$ is not surjective. This occurs for $\ell \leq 17$ and $\ell = 37$ (and no others, without CM).

However, $\bar{\rho}_{E,\ell}$ may be non-surjective even when E/\mathbb{Q} has no rational ℓ -isogenies, and im $\bar{\rho}_{E,\ell}$ may vary in any case.

When is $\bar{\rho}_{E,\ell}$ non-surjective?

If $E[\ell](\mathbb{Q})$ is non-trivial, then $\bar{\rho}_{E,\ell}$ cannot be surjective. This occurs for $\ell \leq 7$ (and no others [Mazur]).

If E/\mathbb{Q} admits a rational ℓ -isogeny then $\bar{\rho}_{E,\ell}$ is not surjective. This occurs for $\ell \leq 17$ and $\ell = 37$ (and no others, without CM).

However, $\bar{\rho}_{E,\ell}$ may be non-surjective even when E/\mathbb{Q} has no rational ℓ -isogenies, and im $\bar{\rho}_{E,\ell}$ may vary in any case.

Classifying the possibilities for im $\bar{\rho}_{E,\ell} \subseteq GL_2[\mathbb{Z}/\ell\mathbb{Z}]$ may be viewed as a generalization of Mazur's Theorem.

Distribution of Frobenius traces

For primes *p* of good reduction, let $a_p = p + 1 - \#E(\mathbb{F}_p)$.

The Čebotarev density theorem implies that for $c \in \mathbb{Z}/\ell\mathbb{Z}$,

$$\operatorname{dens}(a_{\rho} \equiv c \mod \ell) = \frac{\#\{A : \operatorname{tr} A = c, A \in \operatorname{im} \bar{\rho}_{E,\ell}\}}{\#\operatorname{im} \bar{\rho}_{E,\ell}}$$

When im $\bar{\rho}_{E,\ell}$ is small, these densities can become highly non-uniform (even zero).

The constants appearing in both the Lang-Trotter conjecture and Koblitz' conjecture depend on dens($a_p \equiv c \mod m$).

Main results

An algorithm to compute im $\bar{\rho}_{E,\ell}$ for small ℓ (up to isomorphism). If $\bar{\rho}_{E,\ell}$ is surjective, the algorithm proves this unconditionally. Otherwise its output is heuristically correct with high probability (in principle, this can also be made unconditional).

Main results

An algorithm to compute im $\bar{\rho}_{E,\ell}$ for small ℓ (up to isomorphism). If $\bar{\rho}_{E,\ell}$ is surjective, the algorithm proves this unconditionally. Otherwise its output is heuristically correct with high probability (in principle, this can also be made unconditional).

- Very fast, usually well under a millisecond per curve.
- We have computed p
 _{E,ℓ} for every E in the Stein-Watkins database (over 100 million curves), for primes ℓ < 60.</p>

Main results

An algorithm to compute im $\bar{\rho}_{E,\ell}$ for small ℓ (up to isomorphism). If $\bar{\rho}_{E,\ell}$ is surjective, the algorithm proves this unconditionally. Otherwise its output is heuristically correct with high probability (in principle, this can also be made unconditional).

- Very fast, usually well under a millisecond per curve.
- We have computed p
 _{E,ℓ} for every E in the Stein-Watkins database (over 100 million curves), for primes ℓ < 60.</p>

Previous work addressed curves of conductor up to 200 [Reverter-Vila], with partial results up to 30000 [Stein].

A probabilistic approach

The action of the Frobenius endomorphism on $E[\ell](\overline{\mathbb{F}}_p)$ corresponds to a matrix $A_p \in \operatorname{im} \bar{\rho}_{\ell} \subseteq \operatorname{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$.

We have tr $A_p = a_p \mod \ell$ and det $A_p = p \mod \ell$, hence we know the characteristic polynomial $\lambda^2 - a_p \lambda + p \mod \ell$.

By varying p, we can "randomly" sample im $\bar{\rho}_{E,\ell}$. The Čebotarev density theorem implies equidistribution.

A probabilistic approach

The action of the Frobenius endomorphism on $E[\ell](\overline{\mathbb{F}}_p)$ corresponds to a matrix $A_p \in \operatorname{im} \bar{\rho}_{\ell} \subseteq \operatorname{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$.

We have tr $A_p = a_p \mod \ell$ and det $A_p = p \mod \ell$, hence we know the characteristic polynomial $\lambda^2 - a_p \lambda + p \mod \ell$.

By varying p, we can "randomly" sample im $\bar{\rho}_{E,\ell}$. The Čebotarev density theorem implies equidistribution.

Unfortunately, this does not give enough information.

The case $\ell = 2$

 $\operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \cong S_3$ has 6 subgroups in 4 conjugacy classes.

For $H \subseteq GL_2(\mathbb{Z}/2\mathbb{Z})$, let $t_i(H) = \#\{A \in H : \text{tr } A = i\}$. We consider the possible vectors $t(H) = (t_0(H), t_1(H))$.

- 1. For $H = GL_2(\mathbb{Z}/2\mathbb{Z})$ we have t(H) = (4, 2).
- 2. The subgroup $H \cong \mathbb{Z}/3\mathbb{Z}$ has t(H) = (1, 2).
- 3. Three conjugate $H \cong \mathbb{Z}/2\mathbb{Z}$ have t(H) = (2,0)
- 4. The trivial *H* has t(H) = (1, 0).

1-2 are distinguished from 3-4 by a trace 1 element (easy). We can distinguish 1 from 2 by comparing frequencies (harder). We can't distinguish 3 from 4 (impossible).

Using the fixspace of A_{ρ}

The Frobenius endomorphism fixes $E(\mathbb{F}_{\rho})[\ell]$, hence we have

$$\operatorname{cok}(A_{\rho}-I)\cong E(\mathbb{F}_{\rho})[\ell],$$

when viewed as submodules of $\mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$.

We can easily compute $E(\mathbb{F}_p)[\ell]$, and this yields additional information about A_p that cannot be derived from a_p .

We can now easily distinguish all 4 subgroups when $\ell = 2$. This generalizes nicely.

Signatures in $GL_2(\mathbb{Z}/\ell\mathbb{Z})$

For each subgroup *H* of $GL_2(\mathbb{Z}/\ell\mathbb{Z})$, we define the *extended* signature of *H* as the multiset

$$S_H = \{(\det A, \operatorname{tr} A, \operatorname{cok}(A - I)) : A \in H\}.$$

The signature s_H is simply the set S_H , ignoring multiplicities. Note that s_H and S_H are invariant under conjugation.

Signatures in $GL_2(\mathbb{Z}/\ell\mathbb{Z})$

For each subgroup *H* of $GL_2(\mathbb{Z}/\ell\mathbb{Z})$, we define the *extended* signature of *H* as the multiset

$$S_H = \{(\det A, \operatorname{tr} A, \operatorname{cok}(A - I)) : A \in H\}.$$

The signature s_H is simply the set S_H , ignoring multiplicities. Note that s_H and S_H are invariant under conjugation.

Lemma

Let $\ell < 60$ be prime and let G and H be subgroups of $GL_2(\mathbb{Z}/\ell\mathbb{Z})$ for which the determinant map is surjective.

1.
$$s_G = s_H \iff S_G = S_H$$

2. $S_G = S_H \implies G \cong H$.

The lattice of conjugacy classes in $GL_2(\mathbb{Z}/\ell\mathbb{Z})$

Up to conjugacy, we may determine im $\bar{\rho}_{E,\ell}$ identifying its location in the lattice of conjugacy classes of $GL_2(\mathbb{Z}/\ell\mathbb{Z})$.

We may restrict our attention to the (upwardly closed) subset of classes C_{ℓ} for which the determinant map is surjective.

For any signature set *s* and $H \in C_{\ell}$, we say s_H minimally covers *s* if $s \subset s_H$ and for each $G \in C_{\ell}$ we have $s \subset s_G \Longrightarrow s_H \subset s_G$.

Note that if *s* minimally covered by s_G and s_H , then $s_G = s_H$ and therefore $G \cong H$ (by the lemma).

The algorithm

Given an elliptic curve E/\mathbb{Q} , a prime ℓ , and $\epsilon > 0$, set $s \leftarrow \emptyset, k \leftarrow 0$ and for each good prime $p \neq \ell$:

- 1. Compute $E(\mathbb{F}_p)$ to obtain a_p and $V_p = E(\mathbb{F}_p)[\ell]$.
- 2. Set $s \leftarrow s \cup (p \mod \ell, a_p \mod \ell, V_p)$, and increment *k*.
- If s is minimally covered by s_H for some H ∈ C_ℓ and we have δ^k_H < ϵ, then output H and terminate.

The algorithm

Given an elliptic curve E/\mathbb{Q} , a prime ℓ , and $\epsilon > 0$, set $s \leftarrow \emptyset, k \leftarrow 0$ and for each good prime $p \neq \ell$:

- 1. Compute $E(\mathbb{F}_p)$ to obtain a_p and $V_p = E(\mathbb{F}_p)[\ell]$.
- 2. Set $s \leftarrow s \cup (p \mod \ell, a_p \mod \ell, V_p)$, and increment *k*.
- If s is minimally covered by s_H for some H ∈ C_ℓ and we have δ^k_H < ϵ, then output H and terminate.

Here δ_H is the maximum over $G \supseteq H$ of the probability that the signature of a random element of *G* lies in s_H , which we take to be zero when $H = \text{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$.

The values of s_H and δ_H for all $H \in C_\ell$ are precomputed.

Efficient implementation

If $\bar{\rho}_{E,\ell}$ is surjective, we expect the algorithm to terminate in $O(\log \ell)$ iterations (around ten). Otherwise, for $\epsilon = 2^{-n}$, we typically need O(n) iterations (a few hundred).

Efficient implementation

If $\bar{\rho}_{E,\ell}$ is surjective, we expect the algorithm to terminate in $O(\log \ell)$ iterations (around ten). Otherwise, for $\epsilon = 2^{-n}$, we typically need O(n) iterations (a few hundred).

For small p we can quickly compute $\#E(\mathbb{F}_p)$ and determine the structure of $E(\mathbb{F}_p)$ using generic group algorithms.

This is much faster than an ℓ -adic approach for $\ell > 2$, and allows us to treat many ℓ simultaneously at almost no cost.

Efficient implementation

If $\bar{\rho}_{E,\ell}$ is surjective, we expect the algorithm to terminate in $O(\log \ell)$ iterations (around ten). Otherwise, for $\epsilon = 2^{-n}$, we typically need O(n) iterations (a few hundred).

For small p we can quickly compute $\#E(\mathbb{F}_p)$ and determine the structure of $E(\mathbb{F}_p)$ using generic group algorithms.

This is much faster than an ℓ -adic approach for $\ell > 2$, and allows us to treat many ℓ simultaneously at almost no cost.

Precomputing the s_H and δ_H is non-trivial, but this only needs to be done once for each ℓ .

Computational results for the Stein-Watkins database

Testing 136,663,068 curves E/\mathbb{Q} without CM for all $\ell < 60$ took 12 CPU-hours, using $\epsilon = 2^{-100}$, or about 307 μ s per curve.

Approximately 1 in 4 curves had non-surjective $\bar{\rho}_{E,\ell}$ for some ℓ , about 1 in 600 for some $\ell > 3$.

In the surjective cases, an average of 9.2 primes p were used, versus 168.5 primes in the non-surjective case.

The most primes used for any one curve was 2061.

mod ℓ images of Galois for E/\mathbb{Q} without CM

l	#H	δ_H	abelian	all traces	all <i>n</i>	torsion/isogeny	SW curves
2	1	0.500	yes	no	no	$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	1673058
	2	0.500	yes	no	no	$\mathbb{Z}/2\mathbb{Z}$	33352376
	3	0.333	yes	yes	yes	none	128670
3	2	0.250	yes	no	no	$\mathbb{Z}/3\mathbb{Z}$	3519
	4	0.167	yes	yes	no	3-isogeny	74933
	6	0.250	no	no	no	$\mathbb{Z}/3\mathbb{Z}$	354246
	8	0.250	no	yes	yes	none	18642
	12	0.375	no	yes	no	3-isogeny	3165972
	16	0.167	no	yes	yes	none	53202
5	4	0.200	yes	no	no	$\mathbb{Z}/5\mathbb{Z}$	4
	4	0.200	yes	no	no	5-isogeny	4
	8	0.100	yes	yes	no	5-isogeny	3120
	16	0.050	yes	yes	yes	5-isogeny	500
	16	0.250	no	yes	yes	none	512
	20	0.375	no	no	no	$\mathbb{Z}/5\mathbb{Z}$	504
*	20	0.375	no	no	no	5-isogeny	520
	32	0.333	no	yes	yes	none	3480
	40	0.250	no	yes	no	5-isogeny	109970
	48	0.300	no	yes	yes	none	3090
	80	0.417	no	yes	yes	5-isogeny	44272
	96	0.217	no	yes	yes	none	15246

ℓ	#H	δ_H	abelian	all traces	all <i>n</i>	torsion/isogeny	SW curves
7	18	0.250	no	yes	no	7-isogeny	2
	36	0.333	no	yes	no	7-isogeny	414
	42	0.250	no	no	no	7-isogeny	8
	42	0.417	no	no	no	$\mathbb{Z}/7\mathbb{Z}$	24
*	42	0.417	no	no	no	7-isogeny	24
	72	0.399	no	yes	yes	none	52
	84	0.667	no	yes	no	7-isogeny	1194
	84	0.444	no	yes	no	7-isogeny	12172
	96	0.357	no	yes	yes	none	112
	126	0.250	no	yes	yes	7-isogeny	1042
	252	0.438	no	yes	yes	7-isogeny	28922
11	110	0.450	no	no	no	11-isogeny	2
*	110	0.450	no	no	no	11-isogeny	2
	220	0.640	no	no	no	11-isogeny	2044
	240	0.409	no	yes	yes	none	0
13	288	0.250	no	yes	yes	none	108
	468	0.375	no	yes	yes	13-isogeny	14
*	468	0.375	no	yes	yes	13-isogeny	12
	624	0.667	no	yes	no	13-isogeny	184
	624	0.444	no	yes	yes	13-isogeny	580
	936	0.250	no	yes	yes	13-isogeny	3194
	1872	0.464	no	yes	yes	13-isogeny	3352
17	1088	0.375	no	yes	yes	17-isogeny	368
37	15984	0.444	no	yes	yes	37-isogeny	1024

Future work

This is a work in progress, with much still to be done:

- 1. Test more curves, analyze the results.
- 2. Compute mod ℓ^k and mod *m* Galois images.
- 3. Consider curves over number fields other than $\mathbb{Q}.$
- 4. Look at genus 2 Galois images in $GSp(4, \mathbb{Z}/\ell\mathbb{Z})$.

Computing the image of Galois representations attached to an elliptic curve

Andrew V. Sutherland (MIT)

December 1, 2009

joint work with Nicholas Katz (Princeton)