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Tables of elliptic curves over Q have a rich history...



Building a database of genus 1 curves over Q

1 Prove modularity

2 Enumerate rational weight 2 newforms by conductor

3 Construct corresponding elliptic curves

4 Walk the isogeny graph

5 Compute L-functions

6 Test BSD ∗ (well, mostly)

7 Find integer and rational points (in practice, if not in theory)

8 Compute endomorphism rings and Sato-Tate groups (trivial)

9 Images of Galois representations (mod-` and mod-2∞)



Building a database of genus 2 curves over Q
1 Prove modularity ×

2 Enumerate rational degree 2 Siegel modular forms by conductor ×

3 Construct corresponding genus 2 curves ×

4 Walk the isogeny graph ×∗ (some progress)

5 Compute L-functions ∗ (this is very feasible!)

6 Test BSD ∗ (this is feasible!)

7 Find integer and rational points ∗ (feasible in many cases)

8 Compute endomorphism rings and Sato-Tate groups (rigorous)

9 Compute images of Galois representations ×∗ (some progress)

How do we organize curves if we can’t enumerate them by conductor?
We need small conductors to compute L-functions!



Discriminants

Every hyperelliptic curve X/Q of genus g has a minimal Weierstrass model

y2 + h(x)y = f (x)

with deg f ≤ 2g + 2 and deg h ≤ g + 1. The discriminant of X is then

∆(X ) = 24g disc2g+2(f + h2/4) ∈ Z

The curve X has bad reduction at a prime p if and only if p|∆(X ).

This needn’t apply to Jac(X ), but if p|N(Jac(X )) =: N(X ), then p|∆(X ).

In general, one expects N(X )|∆(X ); this is known for g = 2 (Liu 1994),
and for curves with a rational Weierstrass point (Srinivasan 2015).



The L-functions and modular forms database (LMFDB)

www.lmfdb.org

www.lmfdb.org


Smooth plane curves

The discriminant of a smooth plane curve f (x , y , z) = 0 of degree d is the
resultant of the three partial derivatives fx , fy , fz , with suitable powers of
p|d removed so that discriminants are integers and generate the unit ideal.
(divide by the GCD of the coefficients of the discriminant polynomial).

For d = 4 the discriminant can be computed as the determinant of a
15× 15 matrix whose entries are homogeneous polynomials in 15 variables
(corresponding to the 15 homogeneous monomials of degree 4).

The discriminant polynomial for d = 4 is a homogeneous polynomial of
degree 27 in 15 variables with 50, 767, 957 terms. With a suitable ordering
of variables the monomial tree has 246, 798, 254 nodes.

Remarkably, using a monomial tree is not only feasible, but dramatically
faster than computing discriminants individually (for a big enough box).

The inner loop boils down to ten 64-bit word operations (22 clock cycles).



Parallel computation
The computation was parallelized by dividing boxes into sub-boxes then
run on Google’s Cloud Platform. We spread the load across multiple
data-centers in ten geographic zones.

For the smooth plane quartic search we used a total of approximately
19,000 pre-emptible 32-core compute instances. At peak usage we had
580,000 cores running at full load (a new record).

This 300 core-year computation took about 10 hours.

https://cloudplatform.googleblog.com/2017/04/220000-cores-and-counting-MIT-math-professor-breaks-record-for-largest-ever-Compute-Engine-job.html


The boxes we searched and what we found therein

For genus 3 hyperelliptic curves y2 + h(x)y = f (x) we used a flat box with
hi ∈ {0, 1} and |fi | ≤ 31, approximately 3× 1017 equations, as in genus 2.

For smooth plane quartics f (x , y , z) = 0 we used a flat box with |fi | ≤ 9,
more than 1019 equations, but after taking advantage of the 48
symmetries the number we considered was approximately 3× 1017.

In both cases we used a discriminant bound of 107 (versus 106 in genus 2).
We found about two million hyperelliptic and ten million non-hyperelliptic
equations meeting this bound.

Among the hyperelliptic curves we found 67,879 non-isomorphic curves in
(at least) 67,830 isogeny classes of Jacobians.

Among the non-hyperelliptic curves we found 82,240 non-isomorphic
curves in (at least) 82,011 isogeny classes of Jacobians.



Isomorphism testing

From a practical perspective, isomorphism testing of curves over number
fields is an unsolved problem (even for smooth plane quartics over Q).

Some open problems in this area:

Practical isomorphism testing with certifiable results.
(This is non-trivial even over finite fields).

Exhibit non-isomorphic genus g curves X1,X2 over Q with isomorphic
reductions at all good primes. For which g is this possible?

Let S(g ,K ) be the set of genus g curves over a number field K .
Give an effectively computable map ϕ : S → {0, 1}∗ such that:

1 ϕ(X1) = ϕ(X2) if and only if X1 ' X2 (over K );
2 |ϕ(X )| = Õ(|X |).

Such a ϕ would have many other applications.



A few hyperelliptic highlights

65,272 conductors, including 10 below 10,000, and 6992 primes.

Smallest conductor found is 3993 for the Jacobian of the curve:

y2 + (x4 + x2 + 1)y = x7 + x6 + x5 + x3 + x2 + x

which is isogenous (but not isomorphic) to X0(33).

Analytic rank bounds (conditional on Selberg class assumption):
rank count proportion

0 7,700 11%
1 30,840 46%
2 25,486 37%
3 3,723 5%
4 8 0%

Rank computations for 52 curves still in progress.



A few non-hyperelliptic highlights

Smallest conductor is 2940, for the Jacobian of the curve

−x3y+x2y2+5x2yz−x2z2+4xy3+5xy2z+xyz2+4xz3+2y4+y2z2+3z4 = 0

7056 prime conductors, smallest of which, 8233, arising for the curve

x3z − x2y2 + 2x2yz − x2z2 − xy3 + 2xy2z − yz3.

This is also the conductor of the Jacobian of the hyperelliptic curve

y2 + (x4 + x3 + x2 + 1)y = x7 − 8x5 − 4x4 + 18x3 − 3x2 − 16x + 8.

In fact, the two Jacobians are isogenous.

Conductor computations and isomorphism testing still in progress,
rank computations to follow.



The L-function of a curve

Let X be a nice (smooth, projective, geometrically integral) curve of genus
g over Q. The L-series of X is the Dirichlet series

L(X , s) = L(Jac(X ), s) :=
∑
n≥1

ann−s :=
∏
p
Lp(p−s)−1.

For primes p of good reduction for X we have the zeta function

Z (Xp; s) := exp

∑
r≥1

#X (Fpr )T
r

r

 = Lp(T )
(1− T )(1− pT ) ,

and the L-polynomial Lp ∈ Z[T ] in the numerator satisfies

Lp(T ) = T 2gχp(1/T ) = 1− apT + · · ·+ pgT 2g

where χp(T ) is the charpoly of the Frobenius endomorphism of Jac(Xp).



The Selberg class with polynomial Euler factors

The Selberg class Spoly consists of Dirichlet series L(s) =
∑

n≥1 ann−s :

1 L(s) has an analytic continuation that is holomorphic at s 6= 1;
2 For some γ(s) = Qs ∏r

i=1 Γ(λis + µi ) and ε, the completed
L-function Λ(s) := γ(s)L(s) satisfies the functional equation

Λ(s) = εΛ(1− s̄),

where Q > 0, λi > 0, Re(µi ) ≥ 0, |ε| = 1. Define deg L := 2
∑r

i λi .
3 a1 = 1 and an = O(nε) for all ε > 0 (Ramanujan conjecture).
4 L(s) =

∏
p Lp(p−s)−1 for some Lp ∈ Z[T ] with deg Lp ≤ deg L

(has an Euler product).

The Dirichlet series Lan(s,X ) := L(X , s + 1
2) satisfies (3) and (4),

and conjecturally lies in Spoly; for g = 1 this is known (via modularity).



Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)
If A(s) =

∑
n≥1 ann−s and B(s) =

∑
n≥1 bnn−s lie in Spoly and ap = bp

for all but finitely many primes p, then A(s) = B(s).

Corollary
If Lan(s,X ) lies in Spoly then it is completely determined by (any choice
of) all but finitely many coefficients ap.

Henceforth we assume that Lan(s,X ) ∈ Spoly.

Let ΓC(s) = 2(2π)sΓ(s) and define Λ(X , s) := ΓC(s)gL(X , s). Then

Λ(X , s) = εN1−sΛ(X , 2− s).

where the analytic root number ε = ±1 and the analytic conductor
N ∈ Z≥1 are determined by the ap values (take these as definitions).
This theorem can be made completely effective with p = O(N1/2+ε).



Algorithms to compute zeta functions

Given X/Q of genus g , we want to compute Lp(T ) for all good p ≤ B.

complexity per prime
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3(log p)2

group computation p1/4 log p p3/4 log p p(log p)2

p-adic cohomology p1/2(log p)2 p1/2(log p)2 p1/2(log p)2

CRT (Schoof-Pila) (log p)5 (log p)8 (log p)12?

average poly-time (log p)4 (log p)4 (log p)4

For L(X , s) =
∑

ann−s , we only need ap2 for p2 ≤ B, and ap3 for p3 ≤ B.
For 1 < r ≤ g we can compute all apr with pr ≤ B in time O(B logB).

The bottom line: it boils down to efficiently computing lots of ap’s.



Genus 3 curves
The canonical embedding of a genus 3 curve into P2 is either

1 a degree-2 cover of a smooth conic (hyperelliptic case)
I conic has a rational point (rationally hyperelliptic);
I conic has no rational points (only geometrically hyperelliptic).

2 a smooth plane quartic (generic case).

Average polynomial-time implementations are available for the first case:
rational hyperelliptic model [Harvey-S 2014];
no rational hyperelliptic model [Harvey-Massierer-S 2016].

And now for the second case as well:
smooth plane quartics [Harvey-S 2017].

Prior work has all been based on p-adic cohomology:

[Lauder 2004], [Castryck-Denef-Vercauteren 2006],
[Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013],

[Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]



Cumulative timings for genus 3 curves
Time to compute Lp(T ) mod p for all good p ≤ B.

B spq-Costa-AKR spq-HS ghyp-MHS hyp-HS hyp-Harvey

212 18 1.4 0.3 0.1 1.3
213 49 2.4 0.7 0.2 2.6
214 142 4.6 1.7 0.5 5.4
215 475 9.4 4.6 1.0 12
216 1,670 21 11 2.1 29
217 5,880 47 27 5.3 74
218 22,300 112 62 14 192
219 78,100 241 153 37 532
220 297,000 551 370 97 1,480
221 1,130,000 1,240 891 244 4,170
222 4,280,000 2,980 2,190 617 12,200
223 16,800,000 6,330 5,110 1,500 36,800
224 66,800,000 14,200 11,750 3,520 113,000
225 244,000,000 31,900 28,200 8,220 395,000
226 972,000,000 83,300 62,700 19,700 1,060,000

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).



Computing endomorphism rings and algebras

Given a curve X/Q one can explicitly compute End(Jac(X )Q)⊗ R,
End(Jac(X )Q)⊗Q, and even the endomorphism ring End(Jac(X )):

Choose a symplectic basis γ1, . . . , γ2g of H1(X ,Z) and a basis
ω1, . . . , ωg of H0(X , ωX ) over Q;
Realize Jac(X )(C) as a complex torus Cg/Λ by computing the period
matrix Π = (

∫
γj
ωi )i ,j ;

Use LLL to determine a basis of the Z-module of matrices
R ∈ M2g (Z) such that ΛR = R;
Determine the matrices M ∈ M2(Q) in the equality MΠ = ΠR to
obtain the representation of End(Jac(X )Q) on the tangent space
at 0 of Jac(X )Q.

This can be made entirely rigorous (Costa-Mascot-Sijsling-Voight 2017).



Real endomorphism algebras of abelian threefolds

abelian threefold End(AK )R ST(A)0

cube of a CM elliptic curve M3(C) U(1)3
cube of a non-CM elliptic curve M3(R) SU(2)3
product of CM elliptic curve and square of CM elliptic curve C × M2(C) U(1) × U(1)2
• product of CM elliptic curve and QM abelian surface C × M2(R) U(1) × SU(2)2
• product of CM elliptic curve and square of non-CM elliptic curve
product of non-CM elliptic curve and square of CM elliptic curve R × M2(C) SU(2) × U(1)2
• product of non-CM elliptic curve and QM abelian surface R × M2(R) SU(2) × SU(2)2
• product of non-CM elliptic curve and square of non-CM elliptic curve
• CM abelian threefold C × C × C U(1) × U(1) × U(1)
• product of CM elliptic curve and CM abelian surface
• product of three CM elliptic curves
• product of non-CM elliptic curve and CM abelian surface C × C × R U(1) × U(1) × SU(2)
• product of non-CM elliptic curve and two CM elliptic curves
• product of CM elliptic curve and RM abelian surface C × R × R U(1) × SU(2) × SU(2)
• product of CM elliptic curve and two non-CM elliptic curves
• RM abelian threefold R × R × R SU(2) × SU(2) × SU(2)
• product of non-CM elliptic curve and RM abelian surface
• product of 3 non-CM elliptic curves
product of CM elliptic curve and abelian surface C × R U(1) × USp(4)
product of non-CM elliptic curve and abelian surface R × R SU(2) × USp(4)
quadratic CM abelian threefold C U(3)
generic abelian threefold R USp(6)



An invitation

http://math.mit.edu/~drew/2018Conference.html

http://math.mit.edu/~drew/2018Conference.html

