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Sato-Tate in dimension 1

Let E/Q be an elliptic curve, say,
¥ =%+ Ax + B,
and let p be a prime of good reduction (so p t A(E)).
The number of IF,-points on the reduction E, of E modulo p is
#E,(Fp) =p+1—1,
where the trace of Frobenius #, is an integer in [-2,/p,2,/p].

We are interested in the limiting distribution of x, = —,/,/p € [-2,2],
as p varies over primes of good reduction up to N — oc.
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al histogram of y"2 = x"3 + x + 1 for p <= 2710
170 data points in 13 buckets, z1 = 0.029, out of range data has area 0.018

Moments: 1 0.051 1.039 0.081 2.060 0.294 4.971 1134 13.278 4308 37.954

click histogram to animate (requires adobe reader)



al histogram of y™2 + xy + y = x™3 - x"2 - 20067762415575526585033208209338542750930230312178956502x
+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 forp <=2"10
172 data points in 13 budkets, z1 = 0.023, out of range data has area 0.250

Moments: 1 1.034 1716 2.532 4.446 7.203 13.024 22220 40854 72100 133961

click histogram to animate (requires adobe reader)



al histogram of y"2 = x*3+1 for p <= 2"10
170 data points in 13 buckets, z1 = 0.518, out of range data has area 0.418

Moments: 1 -0.044 0934 -0.160 2,754 -0.660 9.051 -2.655 31.232 -10.427 110.831

click histogram to animate (requires adobe reader)



al histogram of y*2 = x*3+1 over Q(sqri(-3)) for split p <= 2410
164 data points in 13 buckets, out of range data has area 0.122

Moments: 1 -0.092 1.935 -0.331 5.710 -1.368 18.765 -5.504 64.750 -21.616 229.771

click histogram to animate (requires adobe reader)



Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E/Q w/o CM have the semi-circular trace distribution.
(This is also known for E/k, where k is a totally real number field).

[Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron, Taylor]

2. Exceptional cases (CM)

Elliptic curves E/k with CM have one of two distinct trace distributions,
depending on whether k contains the CM field or not.

[classical (Hecke, Deuring)]
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Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
derived from the ¢-adic Galois representation attached to E.

A refinement of the Sato-Tate conjecture implies that the
distribution of normalized Frobenius traces of E converges to the
distribution of traces in its Sato-Tate group G (under its Haar measure).

G G/G° E k E[a], Ela], Elaj] . ..
sUR2) G V=x4+x+1 Q 1,1,2,5,14,42, . ..

N(U(1)) C, yV=x+1 Q 1,1,3,10,35,126,. ..
u(1) C yV=x+1 Q(v=3) 1,2,6,20,70,252,...

In dimension 1 there are three possible Sato-Tate groups, two of which
arise for elliptic curves defined over Q.
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Zeta functions and L-polynomials

For a smooth projective curve C/Q of genus g and each prime p of
good reduction for C we have the zeta function

. L,(T)
Z(Cp/Fp; T) = exp (Z #Cp(F Tk/k> (1 —T7)(1—pT)’

where L, € Z[T] has degree 2g. The normalized L-polynomial

L,(T) := Ly(T/\/p) = Za,T’ eR[T

is monic, reciprocal, and unitary, with |a;| < (zlg)

We now consider the limiting distribution of a;, az, .. ., a, over all
primes p < N of good reduction, as N — oc.
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al histogram of yA2 = %45 - x + 1 for p <= 2410
167 data points in 13 buckets, z1 = 0.030

Moments:1 0.098 1.031 -0.011 3.041 -0.725 13.944 -3.026 81644 4.428 547.633

click histogram to animate (requires adobe reader)



a2 histogram of yA2 = %45 - x + 1 for p <= 2210
167 data points in 13 buckets

Moments: 1 0,996 2,058 4129 10.085 26.401 75.879 231.863 746,430 2496195 8595192

click histogram to animate (requires adobe reader)



al histogram of y»2 = x5 + 2xM4 - xA3 - 3342 - x for p <= 2410
168 data points in 13 buckets, z1 = 0.196

Moments: 1 0.034 1.822 07225 9,597 4.081 71.210 68,243 658625 1080.045 7157897

click histogram to animate (requires adobe reader)




a2 histogram of yA2 = x5 + 2xM4 - xA3 - 3342 - x for p <= 2410
168 data points in 13 buckets, z2 = [0.006 0.000 0.000 0.000 0.01Z]

Moments: 1 0.914 3.679 8.930 33.618 120.114 506.202 2236.335 10692.989 53523.391 278878.343

click histogram to animate (requires adobe reader)




Exceptional distributions for abelian surfaces over Q:
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L-polynomials of Abelian varieties

Let A be an abelian variety over a number field k. Fix a prime ¢.
The action of Gal(k/k) on the ¢-adic Tate module

Ve(A) :=1imA[l"] @7 Q
<‘
gives rise to a Galois representation

pe: Gal(k/k) — Autg, (Ve(A)) 22 GSp,,(Qy)

For each prime p of good reduction for A we have the L-polynomial

Ly(T) := det(1 — pg(Frob,)T),  Ly(T) := Ly(T/\/[Ip]]).

which appears as an Euler factor in the L-series

L(A,s) = [T Lo(llpl =)
p
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The Sato-Tate group of an abelian variety
The Zariski closure of the image of
pe: Gy — Aut@Z(Vg(A)) ~ Gszg(@g)

is a Q,-algebraic group Gi* C GSp,, that determines a C-algebraic
group G, C Sp,, after fixing .: Q, — C and intersecting with Sp,.

Definition [Serre]
ST(A) C USp(2g) is a maximal compact subgroup of G, (C).

Conjecture [Mumford-Tate, Algebraic Sato-Tate]

(G#7)° = MT(A) ®g Qu, equivalently, (G,”)° = Hg(A) ®q Q-
More generally, G, = AST(A) ®g Q.

This conjecture is known for g < 3 (see Banaszak-Kedlaya 2015).
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A refined Sato-Tate conjecture

Let s(p) denote the conjugacy class of ||p||~'/?M, in ST(A), where M, is
the image of Frob,, in GZ“((C) (semisimple, by a theorem of Tate), and
let pgr(a) denote the pushforward of the Haar measure to Conj(ST(A)).

Conjecture
The conjugacy classes s(p) are equidistributed with respect to yigr(4)- J

In particular, the distribution of normalized Euler factors L,(7) matches
the distribution of characteristic polynomials in ST(A).

We can test this numerically by comparing statistics of the coefficients
ai,...,ag of Ly(T) over |[p|| < N to the predictions given by pgr4).
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Galois endomorphism modules

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k for which End(Ax) = End(Ay).
Gal(K /k) acts on the R-algebra End(Ax)r = End(Akx) ®z R.

Definition

The Galois endomorphism type of A is the isomorphism class of
[Gal(K /k),End(Ak)r], Where [G, E] ~ [G', E'] iff there are isomorphisms
G ~ G’ and E ~ E' that are compatible with the Galois action.

Theorem [Fité, Kedlaya, Rotger, S 2012]

For abelian varieties A/k of dimension g < 3 there is a one-to-one
correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G is uniquely determined by
End(Ax)r and G/G° ~ Gal(K /k) (with corresponding actions).

v
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Real endomorphism algebras of abelian surfaces

abelian surface End(Ag)gr | ST(A)°
square of CM elliptic curve M, (C) U(1),

e QM abelian surface M, (R) SU(2),

e square of non-CM elliptic curve

e CM abelian surface CxC U(1) x U(1)

e product of CM elliptic curves

product of CM and non-CM elliptic curves | C x R U(1) x SU(2)
¢ RM abelian surface R xR SU(2) x SU(2)
e product of non-CM elliptic curves

generic abelian surface R USp(4)

(factors in products are assumed to be non-isogenous)
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Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]

Up to conjugacy in USp(4), there are 52 Sato-Tate groups ST(A) that
arise for abelian surfaces A /k over number fields; 34 occur for k = Q.

U(l)z:

C17 CZ) C37 C4) C67D27D3aD47D6) T7 O:
J(C1)7J(C2)7J(C3)7J(C4)7J(C6)a
J(Dz),J(D3),J(D4),J(D6),J(T),J(0),
C2,1,C4,1,C6,1,D2,1,D32,D4.1,D4,D¢ 1,Dg 2, O
E17E27E37E47E67J(E1)7‘](E2)7J(E3)7J(E4)7J(E6)
FaFayFa,byFabaFac

U(1) x SU(2), N(U(1) x SU(2))

SU(Z) X SU(Z), N(SU(Z) X SU(Z))

USp(4)

This theorem says nothing about equidistribution, however this is now
known in many special cases [Fité-S 2012, Johansson 2013].

Andrew V. Sutherland (MIT)
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Real endomorphism algebras of abelian threefolds

abelian threefold End(Ag)r sT(4)"

cube of a CM elliptic curve M;(C) U(l)s

cube of a non-CM elliptic curve M;(R) SU(2)3

product of CM elliptic curve and square of CM elliptic curve C X M (C) U(l) x U(1),

e product of CM elliptic curve and QM abelian surface C x M(R) U(1) x SU(2),

e product of CM elliptic curve and square of non-CM elliptic curve

product of non-CM elliptic curve and square of CM elliptic curve R X M,(C) SU(2) x U(1),
 product of non-CM elliptic curve and QM abelian surface R X M;(R) SU(2) x SU(2),

e product of non-CM elliptic curve and square of non-CM elliptic curve

e CM abelian threefold CxCxC U(1) x U(1) x U(l)

o product of CM elliptic curve and CM abelian surface
e product of three CM elliptic curves

e product of non-CM elliptic curve and CM abelian surface CxCxR U(1) x U(1) x SU(2)

e product of non-CM elliptic curve and two CM elliptic curves

e product of CM elliptic curve and RM abelian surface CxRXR U(1) x SU(2) x SU(2)
e product of CM elliptic curve and two non-CM elliptic curves

e RM abelian threefold RXRXR SU(2) x SU(2) x SU(2)

e product of non-CM elliptic curve and RM abelian surface
e product of 3 non-CM elliptic curves

product of CM elliptic curve and abelian surface CxR U(1) x USp(4)
product of non-CM elliptic curve and abelian surface R xR SU(2) x USp(4)
quadratic CM abelian threefold C u(3)

generic abelian threefold R USp(6)
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Connected Sato-Tate groups of abelian threefolds:

P T N

S SU() x U(1),

y -

U(1) x SU@) x U(1)
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SU(2)3

>

SUQ) x SUQ)

Yy -

SU(2) X SU(2) x SU(2)

uE)

et

u() x V()2

i,

U() x U(1) x U(1)

(1) x USp(4)

Cusp(6)
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Partial classification of component groups

Go G/Gy — IG/Gy| divides
USp(6) C, 1
U(3) C 2
SU(2) x USp(4) C 1
U(1) x USp(4) C, 2
SU(2) x SU(2) x SU(2) S 6
U(1) x SU(2) x SU(2) D, 4
U(1) x U(1) x SU(2) D, 8
U(1) x U(1) x U(1) C»18S; 48
SU(Z) X SU(2)2 D4, Dg 8, 12
SU(2) X U(1)2 D6 X Cz, S4 X C2 48
U(l) X SU(2)2 D4 X Cz, D6 X C2 16, 24
U(l) X U(1)2 D6 X Cz X Cz, S4 X C2 X C2 96
SU(2)s Ds, Si 24
U(1)3 (to be determined) 336, 1728

(disclaimer: work in progress, subject to verification)
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Algorithms to compute zeta functions

Given a curve C/Q of genus g, we want to compute the normalized
L-polynomials L,(T') at all good primes p < N.

complexity per prime
(ignoring factors of O(loglog p))

algorithm g=1 g=2 g=3

point enumeration plogp p*logp p’(logp)?
group computation ~ p'/*logp  p**logp  plogp
p-adic cohomology ~ p'/%(logp)* p'/*(logp)* p'/*(logp)?
CRT (Schoof-Pila) (logp)’ (logp)® (log p)'?*
average poly-time (logp)* (logp)* (logp)*
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Genus 3 curves

The canonical embedding of a genus 3 curve into P? is either
@ a degree-2 cover of a smooth conic (hyperelliptic case);
©@ a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:
@ rational hyperelliptic model [Harvey-S 2014];
@ no rational hyperelliptic model [Harvey-Massierer-S 2016].

Here we address the second case.

Prior work has all been based on p-adic cohomology:
[Lauder 2004], [Castryck-Denef-Vercauteren 2006],

[Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013],
[Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]
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New algorithm

Let C,/IF, be a smooth plane quartic defined by f(x,y,z) = 0.
For n > 0 let /7, , denote the coefficient of x'y/z" in f".

The Hasse—Witt matrix of C, is the 3 x 3 matrix
p—1 p—1 p—1
Jo—tp=1p-2 Dp—tp-tp2 Jp-t 20192
.

— P
Wp = p—2,p—12p—1 f2p—27p—1,p—1 p—2172p—17p—1

P— fp—l P—
p—1,p=22p—1 J2p—1p-2p—-1 Jp—12p—2,p—1

This is the matrix of the p-power Frobenius acting on #'(C,, O¢,) (and
the Cartier-Manin operator acting on the space of regular differentials).
As proved by Manin, we have

L,(T) = det(I — TW,) mod p,

Our strategy is to compute W, then lift L,(T') from (Z/pZ)[T] to Z[T).

Andrew V. Sutherland (MIT) Sato-Tate in dimension 3 December 7, 2016 18/25



Target coefficients of f7~! for p = 7:

0000000000 OOOOOOOOOOOOOOO

— 4p—4
x4p 4 yp
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Coefficient relations

Let 0, = x% (degree-preserving). The relations

fl=rrT and ot = ()

yield the relation

. . -2
Z (i + ll)ﬁ’a/'yk'ﬁ']ii’,j—j’,k—k’ =0.

ik =4
among nearby coefficients of f7=2 (a triangle of side length 5).

Replacing 9 by 9, yields a similar relation (replace i + i’ with j + ).

Andrew V. Sutherland (MIT) Sato-Tate in dimension 3 December 7, 2016 20/25



Coefficient triangle

For p = 7 with i = 12,j = 5,k = 7 the related coefficients of /7~ are:

x4p—8
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Moving the triangle

Now consider a bigger triangle with side length 7.
Our relations allow us to move the triangle around:

o
00 00
000 000
0000 0000
00
000000 000000
000 00
00000000 00000000
000000 0000000
0000000000 0000000000
00000000 _— 00000000
000000000000 000000000000
00000 00000000000
©0000000000000 000000000000 000
©0000000000000 00000 000
00000 000000 ceee000 000000
©0000000 0000 coee 00
00@@®0000000000000 000@@e000000000000
000@@00000000000000 0000@@0000000000000
0000@000000000000000 00000@00000000000000
000000000000000000000 000000000000000000000

An initial “triangle” at the edge can be efficiently computed using
coefficients of f(x,0, z)P 2.
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Computing one Hasse-Witt matrix

Nondegeneracy: we need f(1,0,0),f(0,1,0),£(0,0, 1) nonzero and
f(0,y,2),f(x,0,2),f(x,y,0) squarefree (easily achieved for large p).

The basic strategy to compute W, is as follows:

@ There is a 28 x 28 matrix M; that shifts our 7-triangle from
y-coordinate j to j + 1; its coefficients depend on j and f.

In fact a 16 x 16 matrix M; suffices (use smoothness of C).

@ Applying the product M, - - - M,,_, to an initial triangle on the edge
and applying a final adjustment to shift from f7=2 to f7~! gets us
one column of the Hasse-Witt matrix W,,.

@ By applying the same product (or its inverse) to different initial
triangles we can compute all three columns of W,.

We have thus reduced the problem to computing M - - - M,,_» mod p.
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An average polynomial-time algorithm

Now let C/Q be smooth plane quartic f(x,y,z) = 0 with f € Z[x, y, z].
We want to compute W, for all good p < N.

Key idea

The matrices M; do not depend on p; view them as integer matrices.
It suffices to compute M ---M,,_», mod p for all good p < N.

Using an accumulating remainder tree we can compute all of these
partial products in time O(N(log N)3+o(1),

This yields an average time of O((log p)**°(1)) per prime to compute
the W), for all good p < N.*

“We may need to skip O(1) primes p where C, is degenerate; these can be handled
separately using an 0@’/2) algorithm based on the same ideas.
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Accumulating remainder tree

Given matrices My, ..., M,_; and moduli m, ..., m,, to compute

My mod m,

M0M1 mod my

MOM1M2 mod ms

MOM1M2M3 mod ny

MQM1 < 'Mn—ZMn—l mod my

multiply adjacent pairs and recursively compute

(M()Ml) IIlOd nmyonis
(MoMl)(M2M3) mod mams

(MoM,) - - - (M, —2M,,_1) mod m,,_m,

and adjust the results as required.
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Timings for genus 3 curves

N costa—-AKR non-hyp-avgpoly hyp-avgpoly
212 18.2 1.1 0.1
28 49.1 2.6 0.2
214 142 5.8 0.5
2 475 13.6 15
210 1,670 30.6 4.6
217 5,880 70.9 12.6
218 22,300 158 25.9
21 78,100 344 62.1
220 297,000 760 147
22! 1,130,000 1,710 347
222 4,280,000 3,980 878
223 16,800,000 8,580 1,950
2% 66,800,000 18,600 4,500
2% 244,000,000 40,800 10,700
2?6 972,000,000 91,000 24,300

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).
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