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Elliptic curves

Let E be an elliptic curve over a number field K:

E : y2 = x3 + Ax + B.

For any field extension L/K, the set E(L) forms an abelian group.

Theorem (Mordell-Weil 1920s)
The group E(K) is a finitely generated. Thus E(K) ' E(K)tors ⊕ Zr,
where E(K)tors is a finite abelian group.

Theorem (Merel 1996)
For every d > 1 there is a bound Bd such that #E(K)tors 6 Bd for all
elliptic curves E over any number field K of degree d.

Remark
The groups E(K) and E(K)tors are not finitely generated.
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Torsion subgroups of elliptic curves over number fields

Theorem (Mazur 1977)
Let E be an elliptic curve over Q.

E(Q)tors '

{
Z/MZ 1 6 M 6 10, M = 12;
Z/2Z⊕ Z/2MZ 1 6 M 6 4.

Theorem (Kenku,Momose 1988, Kamienny 1992)
Let E be an elliptic curve over a quadratic number field K.

E(K)tors '


Z/MZ 1 6 M 6 16, M = 18;
Z/2Z⊕ Z/2MZ 1 6 M 6 6;
Z/3Z⊕ Z/3MZ M = 1, 2 (K = Q(ζ3) only);
Z/4Z⊕ Z/4Z (K = Q(i) only).



Torsion subgroups of elliptic curves over cubic fields

Theorem (Jeon,Kim,Schweizer 2004)
For cubic K/Q, the groups T ' E(K)tors arising infinitely often are:

T '

{
Z/MZ 1 6 M 6 16, M = 18, 20;
Z/2Z⊕ Z/2MZ 1 6 M 6 7.

Theorem (Najman 2012)
There is an elliptic curve E/Q for which E(Q(ζ9)

+)tors ' Z/21Z.

Theorem (Derickx,Etropolski,Morrow,Zureick-Brown, 2016)
Let E be an elliptic curve over a cubic number field K.

E(K)tors '

{
Z/MZ 1 6 M 6 16, M = 18, 20, 21;
Z/2Z⊕ Z/2MZ 1 6 M 6 7.
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Elliptic curves over Q(2∞)
Definition
Let Q(d∞) be the compositum of all degree-d extensions K/Q in Q.

Example: Q(2∞) is the maximal elementary 2-abelian extension of Q.

Theorem (Frey,Jarden 1974)
For E/Q the group E(Q(2∞)) is not finitely generated.

Theorem (Laska,Lorenz 1985, Fujita 2004,2005)
For E/Q the group E(Q(2∞))tors is finite and

E(Q(2∞))tors '



Z/MZ M = 1, 3, 5, 7, 9, 15;
Z/2Z⊕ Z/2MZ 1 6 M 6 6, M = 8;
Z/3Z⊕ Z/3Z
Z/4Z⊕ Z/4MZ 1 6 M 6 4;
Z/2MZ⊕ Z/2MZ 3 6 M 6 4.
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Elliptic curves over Q(3∞)
Theorem (Daniels,Lozano-Robledo,Najman,S 2015)
For E/Q the group E(Q(3∞))tors is finite and

E(Q(3∞))tors '


Z/2Z⊕ Z/2MZ M = 1, 2, 4, 5, 7, 8, 13;
Z/4Z⊕ Z/4MZ M = 1, 2, 4, 7;
Z/6Z⊕ Z/6MZ M = 1, 2, 3, 5, 7;
Z/2MZ⊕ Z/2MZ M = 4, 6, 7, 9.

Of these 20 groups, 16 arise for infinitely many j(E). We give
complete lists/parametrizations of the j(E) that arise in each case.

E/Q E(Q(3∞))tors E/Q E(Q(3∞))tors
11a2 Z/2Z⊕ Z/2Z 338a1 Z/4Z⊕ Z/28Z
17a3 Z/2Z⊕ Z/4Z 20a1 Z/6Z⊕ Z/6Z
15a5 Z/2Z⊕ Z/8Z 30a1 Z/6Z⊕ Z/12Z
11a1 Z/2Z⊕ Z/10Z 14a3 Z/6Z⊕ Z/18Z
26b1 Z/2Z⊕ Z/14Z 50a3 Z/6Z⊕ Z/30Z
210e1 Z/2Z⊕ Z/16Z 162b1 Z/6Z⊕ Z/42Z
147b1 Z/2Z⊕ Z/26Z 15a1 Z/8Z⊕ Z/8Z
17a1 Z/4Z⊕ Z/4Z 30a2 Z/12Z⊕ Z/12Z
15a2 Z/4Z⊕ Z/8Z 2450a1 Z/14Z⊕ Z/14Z
210e2 Z/4Z⊕ Z/16Z 14a1 Z/18Z⊕ Z/18Z

http://www.lmfdb.org/EllipticCurve/Q/11a2
http://www.lmfdb.org/EllipticCurve/Q/338a1
http://www.lmfdb.org/EllipticCurve/Q/17a3
http://www.lmfdb.org/EllipticCurve/Q/20a1
http://www.lmfdb.org/EllipticCurve/Q/15a5
http://www.lmfdb.org/EllipticCurve/Q/30a1
http://www.lmfdb.org/EllipticCurve/Q/11a1
http://www.lmfdb.org/EllipticCurve/Q/14a3
http://www.lmfdb.org/EllipticCurve/Q/26b1
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/210e1
http://www.lmfdb.org/EllipticCurve/Q/162b1
http://www.lmfdb.org/EllipticCurve/Q/147b1
http://www.lmfdb.org/EllipticCurve/Q/15a1
http://www.lmfdb.org/EllipticCurve/Q/17a1
http://www.lmfdb.org/EllipticCurve/Q/30a2
http://www.lmfdb.org/EllipticCurve/Q/15a2
http://www.lmfdb.org/EllipticCurve/Q/2450a1
http://www.lmfdb.org/EllipticCurve/Q/210e2
http://www.lmfdb.org/EllipticCurve/Q/14a1


T j(t)

Z/2Z⊕ Z/2Z t

Z/2Z⊕ Z/4Z (t2+16t+16)3
t(t+16)

Z/2Z⊕ Z/8Z (t4−16t2+16)3

t2(t2−16)

Z/2Z⊕ Z/10Z (t4−12t3+14t2+12t+1)3

t5(t2−11t−1)

Z/2Z⊕ Z/14Z (t2+13t+49)(t2+5t+1)3
t

Z/2Z⊕ Z/16Z (t16−8t14+12t12+8t10−10t8+8t6+12t4−8t2+1)3

t16(t4−6t2+1)(t2+1)2(t2−1)4

Z/2Z⊕ Z/26Z (t4−t3+5t2+t+1)(t8−5t7+7t6−5t5+5t3+7t2+5t+1)3

t13(t2−3t−1)

Z/4Z⊕ Z/4Z (t2+192)3

(t2−64)2 , −16(t4−14t2+1)3

t2(t2+1)4 , −4(t2+2t−2)3(t2+10t−2)
t4

Z/4Z⊕ Z/8Z 16(t4+4t3+20t2+32t+16)3

t4(t+1)2(t+2)4 , −4(t8−60t6+134t4−60t2+1)3

t2(t2−1)2(t2+1)8

Z/4Z⊕ Z/16Z (t16−8t14+12t12+8t10+230t8+8t6+12t4−8t2+1)3

t8(t2−1)8(t2+1)4(t4−6t2+1)2

Z/4Z⊕ Z/28Z
{

351
4 , −38575685889

16384

}
Z/6Z⊕ Z/6Z (t+27)(t+3)3

t

Z/6Z⊕ Z/12Z (t2−3)3(t6−9t4+3t2−3)3

t4(t2−9)(t2−1)3

Z/6Z⊕ Z/18Z (t+3)3(t3+9t2+27t+3)3

t(t2+9t+27)
, (t+3)(t2−3t+9)(t3+3)3

t3

Z/6Z⊕ Z/30Z
{
−121945

32 , 46969655
32768

}
Z/6Z⊕ Z/42Z

{
3375

2 , −140625
8 , −1159088625

2097152 , −189613868625
128

}
Z/8Z⊕ Z/8Z (t8+224t4+256)3

t4(t4−16)4

Z/12Z⊕ Z/12Z (t2+3)3(t6−15t4+75t2+3)3

t2(t2−9)2(t2−1)6 ,
{
−35937

4 , 109503
64

}
Z/14Z⊕ Z/14Z

{
2268945

128

}
Z/18Z⊕ Z/18Z 27t3(8−t3)3

(t3+1)3 , 432t(t2−9)(t2+3)3(t3−9t+12)3(t3+9t2+27t+3)3(5t3−9t2−9t−3)3

(t3−3t2−9t+3)9(t3+3t2−9t−3)3



Characterizing Q(3∞)
Definition
A finite group G is of generalized S3-type if it is isomorphic to a
subgroup of S3 × · · · × S3. Example: D6. Nonexamples: A4, C4, B(2, 3).

Lemma
G is of generalized S3-type if and only if (a) G is supersolvable,
(b) λ(G) divides 6, and (c) every Sylow subgroup of G is abelian.

Corollary
The class of generalized S3-type groups is closed under products,
subgroups, and quotients.

Proposition
A number field K lies in Q(3∞) if and only the Galois group Gal(K/Q)
is of generalized S3-type.
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Uniform boundedness for base extensions of E/Q

Theorem
Let F/Q be a Galois extension with finitely many roots of unity.
There is a uniform bound B such that #E(F)tors 6 B for all E/Q.

Proof sketch.
1. E[n] 6⊆ E(F) for all sufficiently large n.
2. If E[pk] ⊆ E(F) with k 6 j maximal and pj|λ(E(F)[p∞]),

then E admits a Q-rational cyclic pj−k-isogeny.
3. E/Q cannot admit a Q-rational cyclic pn-isogeny for pn > 163

(Mazur+Kenku).

Corollary
E(Q(3∞))tors is finite. Indeed, #E(Q(3∞))tors must divide 21037527313.
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Galois representations

Let E be an elliptic curve over Q and let N > 1 be an integer.

The Galois group Gal(Q/Q) acts on the N-torsion subgroup of E(Q),

E[N] ' Z/NZ⊕ Z/NZ,

via its action on points (coordinate-wise). This yields a representation

ρE,N : Gal(Q/Q)→ Aut(E[N]) ' GL2(Z/NZ),

whose image we denote GE(N). Choosing bases compatibly, we can
take the inverse limit and obtain a single representation

ρE : Gal(Q/Q)→ lim←−
N

GL2(Z/NZ) ' GL2(Ẑ),

whose image we denote GE, with projections GE → GE(N) for each N.



Modular curves

Let FN := Q(ζn)(X(N)). Then F1 = Q(j) and FN/Q(j) is Galois with

Gal(FN/Q(j)) ' GL2(Z/NZ)/{±I}

Let G ⊆ GL2(Z/NZ) be a group containing −I with det(G) = (Z/NZ)×.
Define XG/Q to be the smooth projective curve with function field FG

N .
Let JG : XG → X(1) = Q(j) be the map corresponding to Q(j) ⊆ FG

N .

If M|N and G is the full inverse image of H ⊆ GL2(Z/MZ), then
XG = XH. We call the least such M the level of G and XG.

Better: identify G with π−1
N (G), where πN : GL2(Ẑ)→ GL2(Z/NZ);

G as an open subgroup of GL2(Ẑ) containing −I with det(G) = Ẑ×.

For any E/Q with j(E) 6∈ {0, 1728}, up to GL2(Ẑ)-conjugacy,

GE ⊆ G⇐⇒ j(E) ∈ JG(XG(Q)).



Congruence subgroups

For G ⊆ GL2(Ẑ) of level N as above, let Γ ⊆ SL2(Z) be the preimage
of πN(G) ∩ SL2(Z/NZ).

Then Γ is a congruence subgroup containing Γ(N), and the modular
curve XΓ := Γ\h∗ is isomorphic to the base change of XG to Q(ζn).

The genus g of XG and XΓ must coincide, but their levels need not (!);
the level M of XΓ may strictly divide the level N of XG.

For each g > 0 we have g(XΓ ) = g for only finitely many XΓ ;
for g 6 24 these Γ can be found in the tables of Cummins and Pauli.

But we may have g(XG) = g for infinitely many XG (!)

Call g(XG) the genus of G.

http://www.uncg.edu/mat/faculty/pauli/congruence/


Modular curves with infinitely many rational points

Theorem (S.,Zywina)
There are 248 modular curves XG of prime power level with XG(Q)
infinite. Of these, 220 have genus 0 and 28 have genus 1.

For each of these 248 groups G we have an explicit JG : XG → X(1).

2-adic cases independently addressed by Rouse and Zureick-Brown.

Corollary
For each of these G we can completely describe the set of j-invariants
of elliptic curves E/Q for which GE ⊆ G.

Corollary
There are 1294 non-conjugate open subgroups of GL2(Ẑ) of prime
power level that occur as GE for infinitely many E/Q with distinct j(E).



Determining E(Q(3∞))[p∞] for p ∈ {2, 3, 5, 7, 13}
Lemma
For j(E) 6= 1728 the structure of E(Q(3∞))tors is determined by j(E).
For j(E) = 1728 we have E(Q(3∞))tors ' Z/2Z⊕Z/2Z or Z/4Z⊕Z/4Z.

Now we start computing possible Galois images G in GL2(Z/pnZ)
and corresponding modular curves XG, leaning heavily on results of
Rouse–Zureick-Brown and S.-Zywina.

The most annoying case is 27-torsion. We get the genus 4 curve

X : x3y2 − x3y − y3 + 6y2 − 3y = 1.

As shown by Morrow, Aut(XQ(ζ3)) ' Z/3Z⊕ Z/3Z, and the two cyclic
quotients are hyperelliptic curves over Q(ζ3) with only three rational
points; none of these give a non-cuspidal Q-rational point on X.

We eventually find E(Q(3∞))tors must be isomorphic to a subgroup of

Z/8Z⊕ Z/16Z⊕ Z/9Z⊕ Z/9Z⊕ Z/5Z⊕ Z/7Z⊕ Z/7Z⊕ Z/13Z.
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An algorithm to compute E(Q(3∞))tors

Naive approach is not practical, need to be clever.

I Compute each E(Q(3∞))[p∞] separately.

I Q(E[pn]) ⊆ Q(3∞) iff Q(E[pn]) is of generalized S3-type.

I Q(P) ⊆ Q(3∞) iff Q(P) is of generalized S3-type.

I Use fields defined by division polynomials (+ quadratic ext).

I If the exponent does not divide 6 we can detect this locally.

I Use isogeny kernel polynomials to speed things up.

I Prove theorems to rule out annoying cases.

theorem⇒ algorithm⇒ theorem⇒ algorithm⇒ theorem⇒ · · ·

Eventually you don’t need much of an algorithm.
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Ruling out combinations of p-primary parts

Having determined all the minimal and maximal p-primary
possibilities leaves 648 possible torsion structures.

I Work top down (divisible by 13, divisible by 7 but not 13, . . . ).

I Use known isogeny results to narrow the possibilities
(rational points on X0(15) and X0(21) for example).

I Search for rational points on fiber products built from Z-S curves.
(side benefit: gives parameterizations for genus 0 cases).

I Hardest case: ruling out a point of order 36.

Eventually we whittle our way down to 20 torsion structures,
all of which we know occur because we have examples.



Constructing a complete set of parameterizations

For each torsion structure T with λ(T) = n we enumerate
subgroups G of GL2(Z/nZ) that are maximal subject to:

1. det : G→ (Z/nZ)× is surjective.
2. G contains an element γ corresponding to complex conjugation

(trγ = 0, detγ = −1, γ-action trivial on Z/nZ submodule).
3. The submodule of Z/nZ⊕ Z/nZ fixed by the minimal N / G for

which G/N is of generalized S3-type is isomorphic to T.

Each such G will contain −I and the modular curve XG will be defined
over Q. For j(E) 6= 0, 1728 the non-cuspidal points in XG(Q) give j(E)
for which E(Q(3∞))tors contains a subgroup isomorphic to T.

There are 33 such G for the 20 possible T. In each case either:
(a) XG has genus 0 and a rational point, (b) XG has genus 1 and no
rational points, (c) XG is an elliptic curve of rank 0, or (d) g(XG) > 1.



T j(t)

Z/2Z⊕ Z/2Z t

Z/2Z⊕ Z/4Z (t2+16t+16)3
t(t+16)
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Z/2Z⊕ Z/10Z (t4−12t3+14t2+12t+1)3
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t
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t16(t4−6t2+1)(t2+1)2(t2−1)4
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t8(t2−1)8(t2+1)4(t4−6t2+1)2
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t

Z/6Z⊕ Z/12Z (t2−3)3(t6−9t4+3t2−3)3

t4(t2−9)(t2−1)3

Z/6Z⊕ Z/18Z (t+3)3(t3+9t2+27t+3)3

t(t2+9t+27)
, (t+3)(t2−3t+9)(t3+3)3

t3

Z/6Z⊕ Z/30Z
{
−121945
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32768
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8 , −1159088625

2097152 , −189613868625
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Z/8Z⊕ Z/8Z (t8+224t4+256)3

t4(t4−16)4

Z/12Z⊕ Z/12Z (t2+3)3(t6−15t4+75t2+3)3

t2(t2−9)2(t2−1)6 ,
{
−35937

4 , 109503
64

}
Z/14Z⊕ Z/14Z

{
2268945

128

}
Z/18Z⊕ Z/18Z 27t3(8−t3)3

(t3+1)3 , 432t(t2−9)(t2+3)3(t3−9t+12)3(t3+9t2+27t+3)3(5t3−9t2−9t−3)3

(t3−3t2−9t+3)9(t3+3t2−9t−3)3
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