Sato-Tate distributions

Andrew V. Sutherland

Massachusetts Institute of Technology

February 4, 2016

Joint work with F. Fité, K.S. Kedlaya, and V. Rotger (part 1), and D. Harvey (part 2).
Let E/\mathbb{Q} be an elliptic curve, which we can write in the form

$$y^2 = x^3 + ax + b,$$

and let p be a prime of good reduction ($4a^3 + 27b^2 \not\equiv 0 \pmod{p}$).

The number of \mathbb{F}_p-points on the reduction E_p of E modulo p is

$$\#E_p(\mathbb{F}_p) = p + 1 - t_p,$$

where the trace of Frobenius $t_p \in \mathbb{Z}$ lies in the interval $[-2\sqrt{p}, 2\sqrt{p}]$.

We are interested in the limiting distribution of $x_p = -t_p/\sqrt{p} \in [-2, 2]$, as p varies over primes of good reduction up to N, as $N \to \infty$.
Example: \(y^2 = x^3 + x + 1 \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(t_p)</th>
<th>(x_p)</th>
<th>(p)</th>
<th>(t_p)</th>
<th>(x_p)</th>
<th>(p)</th>
<th>(t_p)</th>
<th>(x_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0.000000</td>
<td>71</td>
<td>13</td>
<td>-1.542816</td>
<td>157</td>
<td>-13</td>
<td>1.037513</td>
</tr>
<tr>
<td>5</td>
<td>-3</td>
<td>1.341641</td>
<td>73</td>
<td>2</td>
<td>-0.234082</td>
<td>163</td>
<td>-25</td>
<td>1.958151</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>-1.133893</td>
<td>79</td>
<td>-6</td>
<td>0.675053</td>
<td>167</td>
<td>24</td>
<td>-1.857176</td>
</tr>
<tr>
<td>11</td>
<td>-2</td>
<td>0.603023</td>
<td>83</td>
<td>-6</td>
<td>0.658586</td>
<td>173</td>
<td>2</td>
<td>-0.152057</td>
</tr>
<tr>
<td>13</td>
<td>-4</td>
<td>1.109400</td>
<td>89</td>
<td>-10</td>
<td>1.059998</td>
<td>179</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0.000000</td>
<td>97</td>
<td>1</td>
<td>-0.101535</td>
<td>181</td>
<td>-8</td>
<td>0.594635</td>
</tr>
<tr>
<td>19</td>
<td>-1</td>
<td>0.229416</td>
<td>101</td>
<td>-3</td>
<td>0.298511</td>
<td>191</td>
<td>-25</td>
<td>1.808937</td>
</tr>
<tr>
<td>23</td>
<td>-4</td>
<td>0.834058</td>
<td>103</td>
<td>17</td>
<td>-1.675060</td>
<td>193</td>
<td>-7</td>
<td>0.503871</td>
</tr>
<tr>
<td>29</td>
<td>-6</td>
<td>1.114172</td>
<td>107</td>
<td>3</td>
<td>-0.290021</td>
<td>197</td>
<td>-24</td>
<td>1.709929</td>
</tr>
<tr>
<td>37</td>
<td>-10</td>
<td>1.643990</td>
<td>109</td>
<td>-13</td>
<td>1.245174</td>
<td>199</td>
<td>-18</td>
<td>1.275986</td>
</tr>
<tr>
<td>41</td>
<td>7</td>
<td>-1.093216</td>
<td>113</td>
<td>-11</td>
<td>1.034793</td>
<td>211</td>
<td>-11</td>
<td>0.757271</td>
</tr>
<tr>
<td>43</td>
<td>10</td>
<td>-1.524986</td>
<td>127</td>
<td>2</td>
<td>-0.177471</td>
<td>223</td>
<td>-20</td>
<td>1.339299</td>
</tr>
<tr>
<td>47</td>
<td>-12</td>
<td>1.750380</td>
<td>131</td>
<td>4</td>
<td>-0.349482</td>
<td>227</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>53</td>
<td>-4</td>
<td>0.549442</td>
<td>137</td>
<td>12</td>
<td>-1.025229</td>
<td>229</td>
<td>-2</td>
<td>0.132164</td>
</tr>
<tr>
<td>59</td>
<td>-3</td>
<td>0.390567</td>
<td>139</td>
<td>14</td>
<td>-1.187465</td>
<td>233</td>
<td>-3</td>
<td>0.196537</td>
</tr>
<tr>
<td>61</td>
<td>12</td>
<td>-1.536443</td>
<td>149</td>
<td>14</td>
<td>-1.146925</td>
<td>239</td>
<td>-22</td>
<td>1.423062</td>
</tr>
<tr>
<td>67</td>
<td>12</td>
<td>-1.466033</td>
<td>151</td>
<td>-2</td>
<td>0.162758</td>
<td>241</td>
<td>22</td>
<td>-1.417145</td>
</tr>
</tbody>
</table>

http://math.mit.edu/~drew/g1SatoTateDistributions.html
click histogram to animate (requires adobe reader)
1. Typical case (no CM)

Elliptic curves E/\mathbb{Q} without CM have the semicircular trace distribution. (This is also known for E/k, where k is a totally real number field).

[Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron, Taylor]

2. Exceptional cases (CM)

Elliptic curves E/k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.

[classical (Hecke, Deuring)]
Sato-Tate groups in dimension 1

The **Sato-Tate group** of E is a closed subgroup G of $SU(2) = USp(2)$ derived from the ℓ-adic Galois representation attached to E.

The refined Sato-Tate conjecture implies that the distribution of normalized traces of E_p converges to the distribution of traces in the Sato-Tate group of G, under the Haar measure.

<table>
<thead>
<tr>
<th>G</th>
<th>G/G^0</th>
<th>E</th>
<th>k</th>
<th>$E[a_1^0], E[a_1^2], E[a_1^4], \ldots$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)$</td>
<td>C_1</td>
<td>$y^2 = x^3 + 1$</td>
<td>$\mathbb{Q}(\sqrt{-3})$</td>
<td>1, 2, 6, 20, 70, 252, \ldots</td>
</tr>
<tr>
<td>$N(U(1))$</td>
<td>C_2</td>
<td>$y^2 = x^3 + 1$</td>
<td>\mathbb{Q}</td>
<td>1, 1, 3, 10, 35, 126, \ldots</td>
</tr>
<tr>
<td>$SU(2)$</td>
<td>C_1</td>
<td>$y^2 = x^3 + x + 1$</td>
<td>\mathbb{Q}</td>
<td>1, 1, 2, 5, 14, 42, \ldots</td>
</tr>
</tbody>
</table>

In dimension 1 there are three possible Sato-Tate groups, two of which arise for elliptic curves defined over \mathbb{Q}.
Zeta functions and L-polynomials

Let C/\mathbb{Q} be a nice curve of genus g and p a prime of good reduction. Define the zeta function

$$Z_p(T) := \exp \left(\sum_{r=1}^{\infty} \frac{N_r T^r}{r} \right),$$

where $N_r = \# C_p(\mathbb{F}_p^r)$. This is a rational function of the form

$$Z_p(T) = \frac{L_p(T)}{(1-T)(1-pT)},$$

where $L_p(T)$ is an integer polynomial of degree $2g$.

For $g = 1$ we have $L_p(t) = pT^2 + c_1 T + 1$, and for $g = 2$,

$$L_p(T) = p^2 T^4 + c_1 pT^3 + c_2 T^2 + c_1 T + 1.$$
The normalized L-polynomial

$$\bar{L}_p(T) := L_p(T/\sqrt{p}) = \sum_{i=0}^{2g} a_i T^i \in \mathbb{R}[T]$$

is monic, reciprocal ($a_i = a_{2g-i}$), and unitary (roots on the unit circle). The coefficients a_i satisfy the Weil bounds $|a_i| \leq \binom{2g}{i}$.

We now consider the limiting distribution of a_1, a_2, \ldots, a_g over all primes $p \leq N$ of good reduction, as $N \to \infty$.

http://math.mit.edu/~drew/g2SatoTateDistributions.html
click histogram to animate (requires adobe reader)
click histogram to animate (requires adobe reader)
click histogram to animate (requires adobe reader)
Exceptional distributions for abelian surfaces over \mathbb{Q}:
Let A be an abelian variety of dimension $g \geq 1$ over a number field k, and let us fix a prime ℓ.

Let $\rho_\ell : G_k \to \text{Aut}_{\mathbb{Q}_\ell}(V_\ell(A)) \simeq \text{GSp}_{2g}(\mathbb{Q}_\ell)$ be the Galois representation arising from the action of $G_k := \text{Gal}(\overline{k}/k)$ on the ℓ-adic Tate module

$$V_\ell(A) := \lim_{\leftarrow} A[\ell^n] \otimes \mathbb{Q}. $$

For each prime p of good reduction for A we have the L-polynomial

$$L_p(T) := \det(1 - \rho_\ell(\text{Frob}_p)T),$$

$$\bar{L}_p(T) := L_p(T/\sqrt{||p||}) = \sum a_i T^i.$$

When A is the Jacobian of a genus g curve C, this agrees with our earlier definition of $L_p(T)$ as the numerator of the zeta function $Z_p(T)$.

Andrew V. Sutherland (MIT)
Sato-Tate distributions
February 4, 2016 10 / 33
The Sato-Tate problem for an abelian variety

The $\bar{L}_p \in \mathbb{R}[T]$ are monic, symmetric, unitary polynomials of degree $2g$.

Every such polynomial arises as the characteristic polynomial of a conjugacy class in the unitary symplectic group $\text{USp}(2g)$.

Each probability measure on $\text{USp}(2g)$ determines a distribution of conjugacy classes (hence a distribution of characteristic polynomials).

The Sato-Tate problem, in its simplest form, is to find a measure for which these classes are equidistributed.

Conjecturally, such a measure arises as the Haar measure of a compact subgroup ST_A of $\text{USp}(2g)$.
The Sato-Tate group

Recall that the action of G_k on $V_{\ell}(A)$ induces the representation

$$\rho_{\ell}: G_k \to \text{Aut}_{\mathbb{Q}_\ell}(V_{\ell}(A)) \simeq \text{GSp}_{2g}(\mathbb{Q}_\ell).$$

Let $G_{\ell}^{1,\text{zar}}$ denote the kernel of the similitude character of $\text{GSp}_{2g}(\mathbb{Q}_\ell)$ on the Zariski closure of $\rho_{\ell}(G_k)$. Now fix $\iota: \mathbb{Q}_\ell \hookrightarrow \mathbb{C}$, and define ST_A to be a maximal compact subgroup of the image $G_{\ell}^{1,\text{zar}}$ under

$$\text{Sp}_{2g}(\mathbb{Q}_\ell) \otimes_{\iota} \mathbb{C} \to \text{Sp}_{2g}(\mathbb{C}).$$

Conjecturally, ST_A does not depend on ℓ or ι; this is known for $g \leq 3$.

Definition [Serre]

$\text{ST}_A \subseteq \text{USp}(2g)$ is the Sato-Tate group of A.
The refined Sato-Tate conjecture

Let \(s(p) \) denote the conjugacy class of the image of \(\text{Frob}_p \) in \(\text{ST}_A \).
Let \(\mu_{\text{ST}_A} \) denote the image of the Haar measure on \(\text{Conj}(\text{ST}_A) \),
which does not depend on the choice of \(\ell \) or \(\iota \).

Conjecture

The conjugacy classes \(s(p) \) are equidistributed with respect to \(\mu_{\text{ST}_A} \).

In particular, the distribution of \(\bar{L}_p(T) \) matches the distribution of
characteristic polynomials of random matrices in \(\text{ST}_A \).

We can test this numerically by comparing statistics of the coefficients
\(a_1, \ldots, a_g \) of \(\bar{L}_p(T) \) over \(\|p\| \leq N \) to the predictions given by \(\mu_{\text{ST}_A} \).

https://hensel.mit.edu:8000/home/pub/6
The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):

1. \(G \) is closed subgroup of \(\text{USp}(2g) \).
2. **Hodge condition**: \(G \) contains a Hodge circle\(^1\) whose conjugates generate a dense subset of \(G \).
3. **Rationality condition**: for each component \(H \) of \(G \) and each irreducible character \(\chi \) of \(\text{GL}_{2g}(\mathbb{C}) \) we have \(E[\chi(\gamma) : \gamma \in H] \in \mathbb{Z} \).

For any fixed \(g \), the set of subgroups \(G \subseteq \text{USp}(2g) \) that satisfy the Sato-Tate axioms is **finite** up to conjugacy (3 for \(g = 1 \), 55 for \(g = 2 \)).

Theorem

For \(g \leq 3 \), the group \(\text{ST}_A \) satisfies the Sato-Tate axioms.

This is expected to hold for all \(g \).

\(^1\)An embedding \(\theta : U(1) \to G^0 \) where \(\theta(u) \) has eigenvalues \(u, u^{-1} \) with multiplicity \(g \).
Galois endomorphism modules

Let A be an abelian variety defined over a number field k. Let K be the minimal extension of k in \bar{k} for which $\text{End}(A_K) = \text{End}(A_{\bar{k}})$. $\text{Gal}(K/k)$ acts on the \mathbb{R}-algebra $\text{End}(A_K)_\mathbb{R} := \text{End}(A_K) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The *Galois (endomorphism module) type* of A is the isomorphism class of $[\text{Gal}(K/k), \text{End}(A_K)_\mathbb{R}]$, where $[G, E] \simeq [G', E']$ iff there are isomorphisms $G \simeq G'$ and $E \simeq E'$ that are compatible with the Galois action.

Theorem [FKRS 2012]

For abelian varieties A/k of dimension $g \leq 3$ there is a one-to-one correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component ST^0_A is determined by $\text{End}(A_K)_\mathbb{R}$, and there is a natural isomorphism $\text{ST}_A / \text{ST}^0_A \simeq \text{Gal}(K/k)$.
Real endomorphism algebras of abelian surfaces

<table>
<thead>
<tr>
<th>abelian surface</th>
<th>$\text{End}(A_K)_\mathbb{R}$</th>
<th>ST_A^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>square of CM elliptic curve</td>
<td>$M_2(\mathbb{C})$</td>
<td>$U(1)^2$</td>
</tr>
<tr>
<td>• QM abelian surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• square of non-CM elliptic curve</td>
<td>$M_2(\mathbb{R})$</td>
<td>$SU(2)^2$</td>
</tr>
<tr>
<td>• CM abelian surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• product of CM elliptic curves</td>
<td>$\mathbb{C} \times \mathbb{C}$</td>
<td>$U(1) \times U(1)$</td>
</tr>
<tr>
<td>product of CM and non-CM elliptic curves</td>
<td>$\mathbb{C} \times \mathbb{R}$</td>
<td>$U(1) \times SU(2)$</td>
</tr>
<tr>
<td>• RM abelian surface</td>
<td>$\mathbb{R} \times \mathbb{R}$</td>
<td>$SU(2) \times SU(2)$</td>
</tr>
<tr>
<td>• product of non-CM elliptic curves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>generic abelian surface</td>
<td>\mathbb{R}</td>
<td>$USp(4)$</td>
</tr>
</tbody>
</table>

(factors in products are assumed to be non-isogenous)
Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]

Up to conjugacy, 55 subgroups of $\text{USp}(4)$ satisfy the Sato-Tate axioms:

- $\text{U}(1)_{2}$: $C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, T, O,$
 $J(C_1), J(C_2), J(C_3), J(C_4), J(C_6),$
 $J(D_2), J(D_3), J(D_4), J(D_6), J(T), J(O),$
 $C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_1$

- $\text{SU}(2)_{2}$: $E_1, E_2, E_3, E_4, E_6, J(E_1), J(E_2), J(E_3), J(E_4), J(E_6)$

- $\text{U}(1) \times \text{U}(1)$: $F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{ab,c}, F_{a,b,c}$

- $\text{U}(1) \times \text{SU}(2)$: $\text{U}(1) \times \text{SU}(2), N(\text{U}(1) \times \text{SU}(2))$

- $\text{SU}(2) \times \text{SU}(2)$: $\text{SU}(2) \times \text{SU}(2), N(\text{SU}(2) \times \text{SU}(2))$

- $\text{USp}(4)$: $\text{USp}(4)$

Of these, exactly 52 arise as STA for an abelian surface A (34 over \mathbb{Q}).

This theorem says nothing about equidistribution, however this is now known in many special cases [FS 2012, Johansson 2013].
Theorem [Fité-Kedlaya-Rotger-S 2012]

Up to conjugacy, 55 subgroups of $\text{USp}(4)$ satisfy the Sato-Tate axioms:

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Complementary Subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)_2$</td>
<td>$C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, T, O, J(C_1), J(C_2), J(C_3), J(C_4), J(C_6), J(D_2), J(D_3), J(D_4), J(D_6), J(T), J(O)$, $C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_1$</td>
</tr>
<tr>
<td>$SU(2)_2$</td>
<td>$E_1, E_2, E_3, E_4, E_6, J(E_1), J(E_2), J(E_3), J(E_4), J(E_6)$</td>
</tr>
<tr>
<td>$U(1) \times U(1)$</td>
<td>$F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{ab,c}, F_{a,b,c}$</td>
</tr>
<tr>
<td>$U(1) \times SU(2)$</td>
<td>$U(1) \times SU(2), N(U(1) \times SU(2))$</td>
</tr>
<tr>
<td>$SU(2) \times SU(2)$</td>
<td>$SU(2) \times SU(2), N(SU(2) \times SU(2))$</td>
</tr>
<tr>
<td>$USp(4)$</td>
<td>$USp(4)$</td>
</tr>
</tbody>
</table>

Of these, exactly 52 arise as ST_A for an abelian surface A (34 over \mathbb{Q}).

This theorem says nothing about equidistribution, however this is now known in many special cases [FS 2012, Johansson 2013].
Sato-Tate groups in dimension 2 with $G^0 = U(1)_2$.

<table>
<thead>
<tr>
<th>d</th>
<th>c</th>
<th>G</th>
<th>G/G^0</th>
<th>z_1</th>
<th>z_2</th>
<th>$M[a^2_1]$</th>
<th>$M[a^2_2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>C_1</td>
<td>C_1</td>
<td>0</td>
<td>0</td>
<td>8, 96, 1280, 17920</td>
<td>4, 18, 88, 454</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>C_2</td>
<td>C_2</td>
<td>1</td>
<td>0</td>
<td>4, 48, 640, 8960</td>
<td>2, 10, 44, 230</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>C_3</td>
<td>C_3</td>
<td>0</td>
<td>0</td>
<td>4, 36, 440, 6020</td>
<td>2, 8, 34, 164</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>C_4</td>
<td>C_4</td>
<td>1</td>
<td>0</td>
<td>4, 36, 400, 5040</td>
<td>2, 8, 32, 150</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>C_6</td>
<td>C_6</td>
<td>1</td>
<td>0</td>
<td>4, 36, 400, 4900</td>
<td>2, 8, 32, 148</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>D_2</td>
<td>D_2</td>
<td>3</td>
<td>0</td>
<td>2, 24, 320, 4480</td>
<td>1, 6, 22, 118</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>D_3</td>
<td>D_3</td>
<td>3</td>
<td>0</td>
<td>2, 18, 220, 3010</td>
<td>1, 5, 17, 85</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>D_4</td>
<td>D_4</td>
<td>5</td>
<td>0</td>
<td>2, 18, 200, 2520</td>
<td>1, 5, 16, 78</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>D_6</td>
<td>D_6</td>
<td>7</td>
<td>0</td>
<td>2, 18, 200, 2450</td>
<td>1, 5, 16, 77</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$J(C_1)$</td>
<td>C_2</td>
<td>1</td>
<td>1</td>
<td>4, 48, 640, 8960</td>
<td>1, 11, 40, 235</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>$J(C_2)$</td>
<td>D_2</td>
<td>3</td>
<td>1</td>
<td>2, 24, 320, 4480</td>
<td>1, 7, 22, 123</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>$J(C_3)$</td>
<td>C_6</td>
<td>3</td>
<td>1</td>
<td>2, 18, 220, 3010</td>
<td>1, 5, 16, 85</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>$J(C_4)$</td>
<td>$C_4 \times C_2$</td>
<td>5</td>
<td>1</td>
<td>2, 18, 200, 2520</td>
<td>1, 5, 16, 79</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>$J(C_6)$</td>
<td>$C_6 \times C_2$</td>
<td>7</td>
<td>1</td>
<td>2, 18, 200, 2450</td>
<td>1, 5, 16, 77</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>$J(D_2)$</td>
<td>$D_2 \times C_2$</td>
<td>7</td>
<td>1</td>
<td>1, 12, 160, 2240</td>
<td>1, 5, 13, 67</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>$J(D_3)$</td>
<td>D_6</td>
<td>9</td>
<td>1</td>
<td>1, 9, 110, 1505</td>
<td>1, 4, 10, 48</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>$J(D_4)$</td>
<td>$D_4 \times C_2$</td>
<td>13</td>
<td>1</td>
<td>1, 9, 100, 1260</td>
<td>1, 4, 10, 45</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>$J(D_6)$</td>
<td>$D_6 \times C_2$</td>
<td>19</td>
<td>1</td>
<td>1, 9, 100, 1225</td>
<td>1, 4, 10, 44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$C_{2,1}$</td>
<td>C_2</td>
<td>1</td>
<td>0</td>
<td>4, 48, 640, 8960</td>
<td>3, 11, 48, 235</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>$C_{4,1}$</td>
<td>C_4</td>
<td>3</td>
<td>0</td>
<td>2, 24, 320, 4480</td>
<td>1, 5, 22, 115</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>$C_{6,1}$</td>
<td>C_6</td>
<td>3</td>
<td>0</td>
<td>2, 18, 220, 3010</td>
<td>1, 5, 18, 85</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>$D_{2,1}$</td>
<td>D_2</td>
<td>3</td>
<td>0</td>
<td>2, 18, 320, 4480</td>
<td>2, 7, 26, 123</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>$D_{4,1}$</td>
<td>D_4</td>
<td>7</td>
<td>0</td>
<td>1, 12, 160, 2240</td>
<td>1, 4, 13, 63</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>$D_{6,1}$</td>
<td>D_6</td>
<td>9</td>
<td>0</td>
<td>1, 9, 110, 1505</td>
<td>1, 4, 11, 48</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>$D_{3,2}$</td>
<td>D_3</td>
<td>3</td>
<td>0</td>
<td>2, 18, 220, 3010</td>
<td>2, 6, 21, 90</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>$D_{4,2}$</td>
<td>D_4</td>
<td>5</td>
<td>0</td>
<td>2, 18, 200, 2520</td>
<td>2, 6, 20, 83</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>$D_{6,2}$</td>
<td>D_6</td>
<td>7</td>
<td>0</td>
<td>2, 18, 200, 2450</td>
<td>2, 6, 20, 82</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>T</td>
<td>A_4</td>
<td>3</td>
<td>0</td>
<td>2, 12, 120, 1540</td>
<td>1, 4, 12, 52</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>O</td>
<td>S_4</td>
<td>9</td>
<td>0</td>
<td>2, 12, 100, 1050</td>
<td>1, 4, 11, 45</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>O_1</td>
<td>S_4</td>
<td>15</td>
<td>0</td>
<td>1, 6, 60, 770</td>
<td>1, 3, 8, 30</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>$J(T)$</td>
<td>$A_4 \times C_2$</td>
<td>15</td>
<td>1</td>
<td>1, 6, 60, 770</td>
<td>1, 3, 7, 29</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td>$J(O)$</td>
<td>$S_4 \times C_2$</td>
<td>33</td>
<td>1</td>
<td>1, 6, 50, 525</td>
<td>1, 3, 7, 26</td>
</tr>
</tbody>
</table>
Sato-Tate groups in dimension 2 with $G^0 \neq U(1)_2$.

<table>
<thead>
<tr>
<th>d</th>
<th>c</th>
<th>G</th>
<th>G/G^0</th>
<th>z_1</th>
<th>z_2</th>
<th>$M[a_1^2]$</th>
<th>$M[a_2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>E_1</td>
<td>C_1</td>
<td>0</td>
<td>0, 0, 0, 0, 0</td>
<td>4, 32, 320, 3584</td>
<td>3, 10, 37, 150</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>E_2</td>
<td>C_2</td>
<td>1</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 16, 160, 1792</td>
<td>1, 6, 17, 78</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>E_3</td>
<td>C_3</td>
<td>0</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 12, 110, 1204</td>
<td>1, 4, 13, 52</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>E_4</td>
<td>C_4</td>
<td>1</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 12, 100, 1008</td>
<td>1, 4, 11, 46</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>E_6</td>
<td>C_6</td>
<td>1</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 12, 100, 980</td>
<td>1, 4, 11, 44</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$J(E_1)$</td>
<td>C_2</td>
<td>1</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 16, 160, 1792</td>
<td>2, 6, 20, 78</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>$J(E_2)$</td>
<td>D_2</td>
<td>3</td>
<td>0, 0, 0, 0, 0</td>
<td>1, 8, 80, 896</td>
<td>1, 4, 10, 42</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>$J(E_3)$</td>
<td>D_3</td>
<td>3</td>
<td>0, 0, 0, 0, 0</td>
<td>1, 6, 55, 602</td>
<td>1, 3, 8, 29</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>$J(E_4)$</td>
<td>D_4</td>
<td>5</td>
<td>0, 0, 0, 0, 0</td>
<td>1, 6, 50, 504</td>
<td>1, 3, 7, 26</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>$J(E_6)$</td>
<td>D_6</td>
<td>7</td>
<td>0, 0, 0, 0, 0</td>
<td>1, 6, 50, 490</td>
<td>1, 3, 7, 25</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>F</td>
<td>C_1</td>
<td>0</td>
<td>0, 0, 0, 0, 0</td>
<td>4, 36, 400, 4900</td>
<td>2, 8, 32, 148</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>F_a</td>
<td>C_2</td>
<td>0</td>
<td>0, 0, 0, 0, 1</td>
<td>3, 21, 210, 2485</td>
<td>2, 6, 20, 82</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>F_c</td>
<td>C_2</td>
<td>1</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 18, 200, 2450</td>
<td>1, 5, 16, 77</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>F_{ab}</td>
<td>C_2</td>
<td>1</td>
<td>0, 0, 0, 0, 1</td>
<td>2, 18, 200, 2450</td>
<td>2, 6, 20, 82</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>F_{ac}</td>
<td>C_4</td>
<td>3</td>
<td>0, 0, 2, 0, 1</td>
<td>1, 9, 100, 1225</td>
<td>1, 3, 10, 41</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>$F_{a,b}$</td>
<td>D_2</td>
<td>1</td>
<td>0, 0, 0, 0, 3</td>
<td>2, 12, 110, 1260</td>
<td>2, 5, 14, 49</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>$F_{ab,c}$</td>
<td>D_2</td>
<td>3</td>
<td>0, 0, 0, 0, 1</td>
<td>1, 9, 100, 1225</td>
<td>1, 4, 10, 44</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>$F_{a,b,c}$</td>
<td>D_4</td>
<td>5</td>
<td>0, 0, 2, 0, 3</td>
<td>1, 6, 55, 630</td>
<td>1, 3, 7, 26</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>G_4</td>
<td>C_1</td>
<td>0</td>
<td>0, 0, 0, 0, 0</td>
<td>3, 20, 175, 1764</td>
<td>2, 6, 20, 76</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>$N(G_4)$</td>
<td>C_2</td>
<td>0</td>
<td>0, 0, 0, 0, 1</td>
<td>2, 11, 90, 889</td>
<td>2, 5, 14, 46</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>G_6</td>
<td>C_1</td>
<td>0</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 10, 70, 588</td>
<td>2, 5, 14, 44</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>$N(G_6)$</td>
<td>C_2</td>
<td>1</td>
<td>0, 0, 0, 0, 0</td>
<td>1, 5, 35, 294</td>
<td>1, 3, 7, 23</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>USp(4)</td>
<td>C_1</td>
<td>0</td>
<td>0, 0, 0, 0, 0</td>
<td>1, 3, 14, 84</td>
<td>1, 2, 4, 10</td>
</tr>
</tbody>
</table>
Genus 2 curves realizing Sato-Tate groups with $G^0 = \text{U}(1)_2$

<table>
<thead>
<tr>
<th>Group</th>
<th>Curve $y^2 = f(x)$</th>
<th>k</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>$x^6 + 1$</td>
<td>$\mathbb{Q}(\sqrt{-3})$</td>
<td>$\mathbb{Q}(\sqrt{-3})$</td>
</tr>
<tr>
<td>C_2</td>
<td>$x^5 - x$</td>
<td>$\mathbb{Q}(\sqrt{-2})$</td>
<td>$\mathbb{Q}(i, \sqrt{2})$</td>
</tr>
<tr>
<td>C_3</td>
<td>$x^6 + 4$</td>
<td>$\mathbb{Q}(\sqrt{-3})$</td>
<td>$\mathbb{Q}(\sqrt{-3}, \sqrt{2})$</td>
</tr>
<tr>
<td>C_4</td>
<td>$x^6 + x^5 - 5x^4 - 5x^2 - x + 1$</td>
<td>$\mathbb{Q}(\sqrt{-2})$</td>
<td>$\mathbb{Q}(\sqrt{-2}, a); a^4 + 17a^2 + 68 = 0$</td>
</tr>
<tr>
<td>C_6</td>
<td>$x^6 + 2$</td>
<td>$\mathbb{Q}(\sqrt{-3})$</td>
<td>$\mathbb{Q}(\sqrt{-3}, \sqrt{2})$</td>
</tr>
<tr>
<td>D_2</td>
<td>$x^5 + 9x$</td>
<td>$\mathbb{Q}(\sqrt{-2})$</td>
<td>$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$</td>
</tr>
<tr>
<td>D_3</td>
<td>$x^6 + 10x^3 - 2$</td>
<td>$\mathbb{Q}(\sqrt{-2})$</td>
<td>$\mathbb{Q}(\sqrt{-3}, \sqrt{6}, -2)$</td>
</tr>
<tr>
<td>D_4</td>
<td>$x^6 + 3x^5 - 10x^3 - 15x^2 + 15x - 6$</td>
<td>$\mathbb{Q}(\sqrt{-3})$</td>
<td>$\mathbb{Q}(i, \sqrt{2}, \sqrt{3}, a); a^3 + 3a - 2 = 0$</td>
</tr>
<tr>
<td>D_6</td>
<td>$x^6 + 6x^5 - 20x^4 + 20x^3 - 20x^2 - 8x + 8$</td>
<td>$\mathbb{Q}(\sqrt{-2})$</td>
<td>$\mathbb{Q}(\sqrt{-2}, a, b); a^3 - 7a + 7 = b^4 + 4b^2 + 8b + 8 = 0$</td>
</tr>
<tr>
<td>O</td>
<td>$x^6 - 5x^4 + 10x^3 - 5x^2 + 2x - 1$</td>
<td>$\mathbb{Q}(\sqrt{-2})$</td>
<td>$\mathbb{Q}(\sqrt{-2}, \sqrt{-11}, a, b); a^3 - 4a + 4 = b^4 + 22b + 22 = 0$</td>
</tr>
</tbody>
</table>

- $J(C_1)$: $x^5 - x$ | $\mathbb{Q}(i)$ | $\mathbb{Q}(i, \sqrt{2})$
- $J(C_2)$: $x^5 - x$ | $\mathbb{Q}(\sqrt{-3})$ | $\mathbb{Q}(\sqrt{-3}, \sqrt{6}, -2)$
- $J(C_3)$: $x^6 + 10x^3 - 2$ | $\mathbb{Q}(\sqrt{-2})$ | $\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
- $J(C_4)$: $x^6 + x^5 - 5x^4 - 5x^2 - x + 1$ | $\mathbb{Q}(i, \sqrt{3}, a); a^3 + 3a^2 - 1 = 0$
- $J(C_6)$: $x^6 - 15x^4 - 20x^3 + 6x + 1$ | $\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
- $J(D_2)$: $x^5 + 9x$ | $\mathbb{Q}(\sqrt{-3}, \sqrt{6}, -2)$
- $J(D_3)$: $x^6 + 10x^3 - 2$ | $\mathbb{Q}(\sqrt{-3}, \sqrt{6}, -2)$
- $J(D_4)$: $x^5 + 3x$ | $\mathbb{Q}(\sqrt{-3}, \sqrt{6}, -2)$
- $J(D_6)$: $x^6 + 3x^5 + 10x^3 - 15x^2 + 15x - 6$ | $\mathbb{Q}(\sqrt{-2})$ | $\mathbb{Q}(\sqrt{-2}, a, b); a^3 - 7a + 7 = b^4 + 4b^2 + 8b + 8 = 0$
- $J(T)$: $x^6 + 6x^5 - 20x^4 + 20x^3 - 20x^2 - 8x + 8$ | $\mathbb{Q}(\sqrt{-2})$ | $\mathbb{Q}(\sqrt{-2}, \sqrt{-11}, a, b); a^3 - 4a + 4 = b^4 + 22b + 22 = 0$
- $J(O)$: $x^6 - 5x^4 + 10x^3 - 5x^2 + 2x - 1$ | $\mathbb{Q}(\sqrt{-2})$ | $\mathbb{Q}(\sqrt{-2}, \sqrt{-11}, a, b); a^3 - 4a + 4 = b^4 + 22b + 22 = 0$

- $C_{2,1}$: $x^6 + 1$ | $\mathbb{Q}(\sqrt{-3})$
- $C_{4,1}$: $x^5 + 2x$ | $\mathbb{Q}(i, \sqrt{3})$
- $C_{6,1}$: $x^6 + 6x^5 - 30x^4 + 20x^3 + 15x^2 - 12x + 1$ | $\mathbb{Q}(\sqrt{-3}, a); a^3 - 3a + 1 = 0$
- $D_{2,1}$: $x^5 + x$ | $\mathbb{Q}(i, \sqrt{2})$
- $D_{4,1}$: $x^5 + 2x$ | $\mathbb{Q}(\sqrt{-2})$
- $D_{6,1}$: $x^6 + 6x^5 - 30x^4 - 40x^3 + 60x^2 + 24x - 8$ | $\mathbb{Q}(\sqrt{-2}, \sqrt{-3}, a); a^3 - 9a + 6 = 0$
- $D_{3,2}$: $x^6 + 4$ | $\mathbb{Q}(\sqrt{-3}, \sqrt{3})$
- $D_{4,2}$: $x^6 + x^5 + 10x^3 + 5x^2 + x - 2$ | $\mathbb{Q}(\sqrt{-2}, a); a^4 - 14a^2 + 28a - 14 = 0$
- $D_{6,2}$: $x^6 + 2$ | $\mathbb{Q}(\sqrt{-3}, \sqrt{6})$
- O_1: $x^6 + 7x^5 + 10x^4 + 10x^3 + 15x^2 + 17x + 4$ | $\mathbb{Q}(\sqrt{-2}, a, b); a^3 + 5a + 10 = b^4 + 4b^2 + 8b + 2 = 0$
Genus 2 curves realizing Sato-Tate groups with $G^0 \neq U(1)_2$

<table>
<thead>
<tr>
<th>Group</th>
<th>Curve $y^2 = f(x)$</th>
<th>k</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>$x^6 + 3x^4 + x^2 - 1$</td>
<td>$\mathbb{Q}(i, \sqrt{2})$</td>
<td>$\mathbb{Q}(i, \sqrt{2})$</td>
</tr>
<tr>
<td>F_a</td>
<td>$x^6 + 3x^4 + x^2 - 1$</td>
<td>$\mathbb{Q}(i)$</td>
<td>$\mathbb{Q}(i, \sqrt{2})$</td>
</tr>
<tr>
<td>F_{ab}</td>
<td>$x^6 + 3x^4 + x^2 - 1$</td>
<td>$\mathbb{Q}(\sqrt{2})$</td>
<td>$\mathbb{Q}(i, \sqrt{2})$</td>
</tr>
<tr>
<td>F_{ac}</td>
<td>$x^5 + 1$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(a); a^4 + 5a^2 + 5 = 0$</td>
</tr>
<tr>
<td>$F_{a,b}$</td>
<td>$x^6 + 3x^4 + x^2 - 1$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(i, \sqrt{2})$</td>
</tr>
<tr>
<td>E_1</td>
<td>$x^6 + x^4 + x^2 + 1$</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
</tr>
<tr>
<td>E_2</td>
<td>$x^6 + 3x^4 + 3x^2 - x + 1$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(\sqrt{2})$</td>
</tr>
<tr>
<td>E_3</td>
<td>$x^5 + x^4 - 3x^3 - 4x^2 - x$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(a); a^3 - 3a + 1 = 0$</td>
</tr>
<tr>
<td>E_4</td>
<td>$x^5 + x^4 + x^2 - x$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(a); a^4 - 5a^2 + 5 = 0$</td>
</tr>
<tr>
<td>E_6</td>
<td>$x^5 + 2x^4 - 3x^2 - x$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(\sqrt{7}, a); a^3 - 7a - 7 = 0$</td>
</tr>
<tr>
<td>$J(E_1)$</td>
<td>$x^5 + x^3 + x$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(i)$</td>
</tr>
<tr>
<td>$J(E_2)$</td>
<td>$x^5 + x^3 - x$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(i, \sqrt{2})$</td>
</tr>
<tr>
<td>$J(E_3)$</td>
<td>$x^6 + x^3 + 4$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(\sqrt{-3}, \sqrt{2})$</td>
</tr>
<tr>
<td>$J(E_4)$</td>
<td>$x^5 + x^3 + 2x$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(i, 4\sqrt{2})$</td>
</tr>
<tr>
<td>$J(E_6)$</td>
<td>$x^6 + x^3 - 2$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(\sqrt{-3}, 6\sqrt{-2})$</td>
</tr>
<tr>
<td>$G_{1,3}$</td>
<td>$x^6 + 3x^4 - 2$</td>
<td>$\mathbb{Q}(i)$</td>
<td>$\mathbb{Q}(i)$</td>
</tr>
<tr>
<td>$N(G_{1,3})$</td>
<td>$x^6 + 3x^4 - 2$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(i)$</td>
</tr>
<tr>
<td>$G_{3,3}$</td>
<td>$x^6 + x^2 + 1$</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
</tr>
<tr>
<td>$N(G_{3,3})$</td>
<td>$x^6 + x^5 + x - 1$</td>
<td>\mathbb{Q}</td>
<td>$\mathbb{Q}(i)$</td>
</tr>
<tr>
<td>USp(4)</td>
<td>$x^5 - x + 1$</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
</tr>
</tbody>
</table>
Part Two
Searching for curves

We surveyed the \(\bar{L} \)-polynomial distributions of genus 2 curves

\[
y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0, \\
y^2 = x^6 + c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,
\]

with integer coefficients \(|c_i| \leq 128\). More than \(2^{48}\) curves.

We found over 10 million non-isomorphic curves with exceptional distributions, including at least 3 apparent matches for each of the 34 Sato-Tate groups that can occur over \(\mathbb{Q}\).

Representative examples were computed to high precision \(N = 2^{30}\).

For each example, the field \(K\) was then determined, allowing the Galois type, and hence the Sato-Tate group, to be provably identified.
Exhibiting Sato-Tate groups of abelian surfaces

The 34 Sato-Tate groups that can arise for an abelian surface over \mathbb{Q} are all realized by Jacobians of genus 2 curves.

By extending the base field from \mathbb{Q} to a suitable subfield k of K, we can restrict $G/G^0 \simeq \text{Gal}(K/k)$ to any normal subgroup of $\text{Gal}(K/k)$ (base extension does not change the identity component G^0).

This allows us to realize all 52 Sato-Tate groups using base extensions of 34 curves defined over \mathbb{Q} (in fact, 9 suffice).

Serre asks: can all 52 can be realized over a single base field k?

Theorem (Fité-Guitart 2015)

All 52 possible Sato-Tate groups arise for abelian surfaces defined over

$$k := \mathbb{Q}(\sqrt{-10}, \sqrt{-51}, \sqrt{-163}, \sqrt{-67}, \sqrt{817}, \sqrt{-57}).$$
Computing zeta functions
Algorithms to compute $L_p(T)$ for low genus hyperelliptic curves

<table>
<thead>
<tr>
<th>algorithm</th>
<th>$g = 1$</th>
<th>$g = 2$</th>
<th>$g = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>point enumeration</td>
<td>$p \log p$</td>
<td>$p^2 \log p$</td>
<td>$p^3 \log p$</td>
</tr>
<tr>
<td>group computation</td>
<td>$p^{1/4} \log p$</td>
<td>$p^{3/4} \log p$</td>
<td>$p^{5/4} \log p$</td>
</tr>
<tr>
<td>p-adic cohomology</td>
<td>$p^{1/2} \log^2 p$</td>
<td>$p^{1/2} \log^2 p$</td>
<td>$p^{1/2} \log^2 p$</td>
</tr>
<tr>
<td>CRT (Schoof-Pila)</td>
<td>$\log^5 p$</td>
<td>$\log^8 p$</td>
<td>$\log^{12} p$</td>
</tr>
</tbody>
</table>

Complexity (ignoring factors of $O(\log \log p)$)

<table>
<thead>
<tr>
<th>algorithm</th>
<th>$g = 1$</th>
<th>$g = 2$</th>
<th>$g = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>point enumeration</td>
<td>$p \log p$</td>
<td>$p^2 \log p$</td>
<td>$p^3 \log p$</td>
</tr>
<tr>
<td>group computation</td>
<td>$p^{1/4} \log p$</td>
<td>$p^{3/4} \log p$</td>
<td>$p^{5/4} \log p$</td>
</tr>
<tr>
<td>p-adic cohomology</td>
<td>$p^{1/2} \log^2 p$</td>
<td>$p^{1/2} \log^2 p$</td>
<td>$p^{1/2} \log^2 p$</td>
</tr>
<tr>
<td>CRT (Schoof-Pila)</td>
<td>$\log^5 p$</td>
<td>$\log^8 p$</td>
<td>$\log^{12} p$</td>
</tr>
</tbody>
</table>

(see [Kedlaya-S 2008])
An average polynomial-time algorithm

All of these methods perform separate computations for each p. But we want to compute $L_p(T)$ for all good $p \leq N$ using reductions of the same curve in each case. Can we take advantage of this?

Theorem (Harvey 2012)

There exists a deterministic algorithm that, given a hyperelliptic curve $y^2 = f(x)$ of genus g with a rational Weierstrass point and an integer N, computes $L_p(T)$ for all good primes $p \leq N$ in time

$$O\left(g^{8+\epsilon}N \log^{3+\epsilon} N\right),$$

assuming the coefficients of $f \in \mathbb{Z}[x]$ have size bounded by $O(\log N)$.

Average time is $O\left(g^{8+\epsilon} \log^{4+\epsilon} N\right)$ per prime, polynomial in g and $\log p$. Recently generalized to arithmetic schemes.
An average polynomial-time algorithm

<table>
<thead>
<tr>
<th>algorithm</th>
<th>complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g = 1)</td>
</tr>
<tr>
<td>point enumeration</td>
<td>(p \log p)</td>
</tr>
<tr>
<td>group computation</td>
<td>(p^{1/4} \log p)</td>
</tr>
<tr>
<td>(p)-adic cohomology</td>
<td>(p^{1/2} \log^2 p)</td>
</tr>
<tr>
<td>CRT (Schoof-Pila)</td>
<td>(\log^5 p)</td>
</tr>
<tr>
<td>Average polytime</td>
<td>(\log^4 p)</td>
</tr>
</tbody>
</table>

But is it practical?
The Hasse-Witt matrix of a hyperelliptic curve

The Hasse-Witt matrix of a hyperelliptic curve \(y^2 = f(x) \) over \(\mathbb{F}_p \) of genus \(g \) is the \(g \times g \) matrix \(W_p = [w_{ij}] \) with entries

\[
 w_{ij} = f_{pi-j}^{(p-1)/2} \mod p \quad (1 \leq i, j \leq g).
\]

The \(w_{ij} \) can each be computed using recurrence relations between the coefficients of \(f^n \) and those of \(f^{n-1} \).

The congruence

\[
 L_P(T) \equiv \det(I - TW_p) \mod p
\]

allows us to determine the coefficients \(a_1, \ldots, a_g \) of \(L_p(T) \) modulo \(p \). This is enough to compute \(\#C_p(\mathbb{F}_p) \) for \(p > 16g^2 \).

The algorithm can be extended to compute \(L_p(T) \) modulo higher powers of \(p \) (and thereby obtain \(L_p \in \mathbb{Z}[T] \)), but for \(g \leq 3 \) it’s easier to derive \(L_p(T) \) from \(L_p(T) \mod p \) using computations in \(\text{Jac}(C) \).
Complexity

Theorem (Harvey-S 2014)

Given a hyperelliptic curve $y^2 = f(x)$ of genus g, and an integer N, one can compute the Hasse-Witt matrices W_p for all good primes $p \leq N$ in

$$O(g^3 N \log^3 N \log \log N) \text{ time} \quad \text{and} \quad O(g^2 N) \text{ space},$$

assuming g and the bit-size of each coefficient of f are $O(\log N)$.

The complexity is close to optimal (nearly quasi-linear in output size).

Extends to computing $L_p \in \mathbb{Z}[T]$ in $O(g^{4+\epsilon} N \log^{3+\epsilon} N)$ time.

In progress: smooth plane quartics.
<table>
<thead>
<tr>
<th>N</th>
<th>genus 2</th>
<th>genus 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>smalljac</td>
<td>hwlpoly</td>
</tr>
<tr>
<td>2^{14}</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>2^{15}</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>2^{16}</td>
<td>1.7</td>
<td>0.9</td>
</tr>
<tr>
<td>2^{17}</td>
<td>5.5</td>
<td>2.2</td>
</tr>
<tr>
<td>2^{18}</td>
<td>19.2</td>
<td>5.3</td>
</tr>
<tr>
<td>2^{19}</td>
<td>78.4</td>
<td>12.5</td>
</tr>
<tr>
<td>2^{20}</td>
<td>271</td>
<td>27.8</td>
</tr>
<tr>
<td>2^{21}</td>
<td>1120</td>
<td>64.5</td>
</tr>
<tr>
<td>2^{22}</td>
<td>2820</td>
<td>155</td>
</tr>
<tr>
<td>2^{23}</td>
<td>9840</td>
<td>357</td>
</tr>
<tr>
<td>2^{24}</td>
<td>31900</td>
<td>823</td>
</tr>
<tr>
<td>2^{25}</td>
<td>105000</td>
<td>1890</td>
</tr>
<tr>
<td>2^{26}</td>
<td>349000</td>
<td>4250</td>
</tr>
<tr>
<td>2^{27}</td>
<td>1210000</td>
<td>9590</td>
</tr>
<tr>
<td>2^{28}</td>
<td>4010000</td>
<td>21200</td>
</tr>
<tr>
<td>2^{29}</td>
<td>13200000</td>
<td>48300</td>
</tr>
<tr>
<td>2^{30}</td>
<td>45500000</td>
<td>108000</td>
</tr>
</tbody>
</table>

(Intel Xeon E5-2697v2 2.7 GHz CPU seconds).
Naïve approach

For each good prime $p < N$ we want to compute the entries

$$w_{ij} = f_{p^{i-j}}^{(p-1)/2} \mod p \quad (1 \leq i, j \leq g).$$

of the Hasse-Witt matrix $W_p = [w_{ij}]$.

So we could iteratively compute $f, f^2, f^3, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$ and just reduce the x^{pi-j} coefficients of $f(x)^{(p-1)/2} \mod p$ for each prime $p \leq N$.

But the polynomials f^n are huge, each has $\Omega(n^2)$ bits.
It would take $\Omega(N^3)$ time to compute $f, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$.

So this is a terrible idea...

But we don’t need all the coefficients of f^n, we only need one, and we only need to know its value modulo $p = 2n + 1$.
A better approach

For any integer $n \geq 0$ the equations

\[f^{n+1} = f \cdot f^n \quad \text{and} \quad (f^{n+1})' = (n + 1)f' f^n \]

yield the relations

\[f_k^{n+1} = \sum_{j=0}^{d} f_j f_{k-j}^{n} \quad \text{and} \quad k f_k^{n+1} = (n + 1) \sum_{j=0}^{d} j f_j f_{k-j}^{n}, \]

where f_k^n denotes the coefficient of x^k in f^n. Subtracting k times the first from the second and solving for f_k^n yields the identity

\[f_k^n = \frac{1}{k f_0} \sum_{j=1}^{d} (nj + j - k) f_j f_{k-j}^{n}, \quad (1) \]

which is valid for all positive integers k and n (assuming $f_0 \neq 0$).
If we now define
\[v_k^n := [f_{k-d+1}, \ldots, f_k^n] \in \mathbb{Z}^d, \]
then the last \(g \) entries of \(v_{p-1}^{(p-1)/2} \mod p \) form the first row of \(W_p \), and
\[f_k^n \equiv \frac{1}{2k f_0} \sum_{j=1}^{d} (j - 2k) f_j f_k^{n-j} \mod p, \]
holds for \(k \leq p - 1 = 2n \). Starting from \(v_0^n = [0, \ldots, 0, f_0^n] \), we compute
\[v_{p-1}^n \equiv \frac{v_0^n}{2^{p-1}(p-1)! f_0^{p-1}} \prod_{k=1}^{p-1} M_k \equiv -v_0^n \prod_{i=1}^{p-1} M_k \mod p, \]
where the \(d \times d \) matrices
\[M_k := \begin{bmatrix} 0 & \cdots & 0 & (d - 2k) f_d \\ 2k f_0 & \cdots & 0 & (d - 1 - 2k) f_{d-1} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 2k f_0 & (1 - 2k) f_1 \end{bmatrix} \]
do not depend on \(p \)!
Computing a sequence of reduced partial products

Computing the first row of W_p for all $p < N$ reduces to compute the sequence of reduced partial products

$$M_1 M_2 \mod 3$$
$$M_1 M_2 M_3 M_4 \mod 5$$
$$M_1 M_2 M_3 M_4 M_5 M_6 \mod 7$$
$$\vdots$$
$$M_1 M_2 M_3 M_4 M_5 M_6 \cdots M_{N-2} \mod N - 1$$

Doing this naively would take time quasi-quadratic in N.

But quasi-linear time is achieved with an accumulating remainder tree.
Accumulating remainder trees

Input: integer matrices M_0, \ldots, M_{N-1} and moduli m_0, \ldots, m_{N-1}.

Output: $A_0, A_1, \ldots, A_{N-1}$, where $A_i := \prod_{j<i} M_j \mod m_i$.

Algorithm:

1. If $N = 1$ then output $A_0 := 1$ and terminate (base case).
2. Use $M'_i := M_{2i}M_{2i+1}$ and $m'_i := m_{2i}m_{2i+1}$ to recursively compute $A'_1, \ldots, A'_{N/2}$.
3. Output

$$A_i := \begin{cases} A'_{i/2} \mod m_i & i \text{ even;} \\ A'_{(i-1)/2}M_{i-1} \mod m_i & i \text{ odd.} \end{cases}$$

Using FFT-multiplication, this runs in quasi-linear time.

The space complexity can be improved using a *remainder forest*.
click histogram to animate (requires adobe reader)
Real endomorphism algebras of abelian threefolds

<table>
<thead>
<tr>
<th>abelian threefold</th>
<th>(\text{End}(A_K)_\mathbb{R})</th>
<th>(\text{ST}^0_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cube of a CM elliptic curve</td>
<td>(M_3(\mathbb{C}))</td>
<td>(U(1)_3)</td>
</tr>
<tr>
<td>cube of a non-CM elliptic curve</td>
<td>(M_3(\mathbb{R}))</td>
<td>(SU(2)_3)</td>
</tr>
<tr>
<td>product of CM elliptic curve and square of CM elliptic curve</td>
<td>(\mathbb{C} \times M_2(\mathbb{C}))</td>
<td>(U(1) \times U(1)_2)</td>
</tr>
<tr>
<td>• product of CM elliptic curve and QM abelian surface</td>
<td>(\mathbb{C} \times M_2(\mathbb{R}))</td>
<td>(U(1) \times SU(2)_2)</td>
</tr>
<tr>
<td>• product of CM elliptic curve and square of non-CM elliptic curve</td>
<td>(\mathbb{R} \times M_2(\mathbb{C}))</td>
<td>(SU(2) \times U(1)_2)</td>
</tr>
<tr>
<td>product of non-CM elliptic curve and square of CM elliptic curve</td>
<td>(\mathbb{R} \times M_2(\mathbb{R}))</td>
<td>(SU(2) \times SU(2)_2)</td>
</tr>
<tr>
<td>• CM abelian threefold</td>
<td>(\mathbb{C} \times \mathbb{C} \times \mathbb{C})</td>
<td>(U(1) \times U(1) \times U(1))</td>
</tr>
<tr>
<td>• product of CM elliptic curve and CM abelian surface</td>
<td>(\mathbb{C} \times \mathbb{C} \times \mathbb{R})</td>
<td>(U(1) \times U(1) \times SU(2))</td>
</tr>
<tr>
<td>• product of non-CM elliptic curve and two CM elliptic curves</td>
<td>(\mathbb{C} \times \mathbb{R} \times \mathbb{R})</td>
<td>(U(1) \times SU(2) \times SU(2))</td>
</tr>
<tr>
<td>• product of CM elliptic curve and RM abelian surface</td>
<td>(\mathbb{R} \times \mathbb{R} \times \mathbb{R})</td>
<td>(SU(2) \times SU(2) \times SU(2))</td>
</tr>
<tr>
<td>• RM abelian threefold</td>
<td>(\mathbb{R} \times \mathbb{R} \times \mathbb{R})</td>
<td>(SU(2) \times SU(2) \times SU(2))</td>
</tr>
<tr>
<td>• product of non-CM elliptic curve and RM abelian surface</td>
<td>(\mathbb{C} \times \mathbb{R})</td>
<td>(U(1) \times USp(4))</td>
</tr>
<tr>
<td>• product of CM elliptic curve and abelian surface</td>
<td>(\mathbb{R} \times \mathbb{R})</td>
<td>(SU(2) \times USp(4))</td>
</tr>
<tr>
<td>quadratic CM abelian threefold</td>
<td>(\mathbb{C})</td>
<td>(U(3))</td>
</tr>
<tr>
<td>generic abelian threefold</td>
<td>(\mathbb{R})</td>
<td>(USp(6))</td>
</tr>
</tbody>
</table>
Connected Sato-Tate groups of abelian threefolds:

- $U(1)_3$
- $SU(2)_3$
- $U(1) \times U(1)_2$
- $U(1) \times SU(2)_2$
- $SU(2) \times U(1)_2$
- $SU(2) \times SU(2)_2$
- $U(1) \times U(1) \times U(1)$
- $U(1) \times U(1) \times SU(2)$
- $U(1) \times SU(2) \times U(1)$
- $SU(2) \times SU(2) \times SU(2)$
- $U(1) \times USp(4)$
- $SU(2) \times USp(4)$
- $U(3)$
- $USp(6)$
Partial classification of component groups

| G_0 | $G/G_0 \hookrightarrow$ | $|G/G_0|$ divides |
|----------------------------|--------------------------|-----------------|
| USp(6) | C_1 | 1 |
| U(3) | C_2 | 2 |
| SU(2) × USp(4) | C_1 | 1 |
| U(1) × USp(4) | C_2 | 2 |
| SU(2) × SU(2) × SU(2) | S_3 | 6 |
| U(1) × SU(2) × SU(2) | D_2 | 4 |
| U(1) × U(1) × SU(2) | D_4 | 8 |
| U(1) × U(1) × U(1) | $C_2 \wr S_3$ | 48 |
| SU(2) × SU(2)_2 | D_4, D_6 | 8, 12 |
| SU(2) × U(1)_2 | $D_6 \times C_2$, $S_4 \times C_2$ | 48 |
| U(1) × SU(2)_2 | $D_4 \times C_2$, $D_6 \times C_2$ | 16, 24 |
| U(1) × U(1)_2 | $D_6 \times C_2 \times C_2$, $S_4 \times C_2 \times C_2$ | 96 |
| SU(2)_3 | D_6, S_4 | 24 |
| U(1)_3 | ... | 336, 432 |

(disclaimer: this is work in progress subject to verification)