
Genus 1 point counting in quadratic space
and essentially quartic time

Andrew V. Sutherland

Massachusetts Institute of Technology

April 21, 2010

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 1 of 21



Introduction

A quote from the current world-record holder for genus 1 point
counting in large characteristic (8302-bit prime field).

“Despite this progress, computing modular polynomial
remains the stumbling block for new point counting
records. Clearly, to circumvent the memory problems,
one would need an algorithm that directly obtains the
polynomial specialised in one variable.”

INRIA Project TANC

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 2 of 21



Genus 1 point counting in large characteristic

Given an elliptic curve E/Fq, we wish to compute #E(Fq).
We assume q is prime and set n = log q.

Algorithm Time Space

Schoof’s algorithm O(n5 llog n) O(n3)

SEA† O(n4 log3 n llog n) O(n3 log n)

SEA (precomputed Φ`) O(n4 llog n) O(n4)

Today’s talk (GRH) O(n4 log2 n llog n) O(n2)

Amortized O(n4 llog n) O(n2 log2 n)

†Assumes Φ` is computed in time O(`3 log4 ` llog `) [Enge ’09].
Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 3 of 21



Space and time

In a universe with d dimensions, the amount of data that can be
stored within a distance r of the CPU is O(rd).

An algorithm with space complexity S is at a distance Ω(S1/d)

from its data. Access times increase exponentially with log S.

Conversely, reducing space reduces time.

And increases parallelism.

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 4 of 21



Schoof’s algorithm

1. For sufficiently many primes ` (up to ≈ n/2):
Determine which t` = 0, 1, . . . , `− 1 satisfies

π2 − [t`]π+ [q`] ≡ 0 mod f`, E

where t` = t mod ` and q` = q mod `.

2. Use the CRT to uniquely determine t ∈ [−2
√

q, 2
√

q].

The computation of π(x, y) = (xq, yq) mod f`, E dominates.

T =
∑

`

O(nM(`2n)) = O(n5 llog n)

S = max
`

O(`2n) = O(n3)

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 5 of 21



SEA algorithm (Elkies version)

1. For sufficiently many primes ` (up to ≈ n):
Compute Φ`(X, Y).
Evaluate φ(Y) = Φ`

(
̇, Y

)
, where ̇ = ̇(E).

If φ has a root ̃ in Fq then
Compute a normalized isogeny to Ẽ/Fq.
Compute a factor g` of f`.
Determine which λ` = 0, 1, . . . , `− 1 satisfies

π− [λ`] ≡ 0 mod g`, E,

and set t` = λ` + q`/λ` mod `.

2. Use the CRT to uniquely determine t ∈ [−2
√

q, 2
√

q].

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 6 of 21



SEA complexity (Elkies version)

Task (for each `) Time Space

Compute Φ` O(`3 log3 `M(`)) O(`3 log `)
Compute φ O(`2M(`+ n)) O(`3 log `)
Find a root ̃ O(nM(`n)) O(`n)

Construct Ẽ O(`2M(n)) O(`2n)

Compute g` O(`2M(n))† O(`n)

Compute π O(nM(`n)) O(`n)

Find λ` (linear) O(`M(`n)) O(`n)

Find λ` (BSGS) O(
√
`M(`n)) O(`3/2n)

Applying the CRT takes O(M(n) log n) time and O(n) space.

†Can be made O(M(`)M(n)) using [BGMS 2007].
Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 7 of 21



Computing Φ` with the CRT

Strategy: compute Φ` mod p for sufficiently many primes p and
use the CRT to compute Φ` (or Φ` mod q).

I For “special” primes p we can compute Φ` mod p in time
O(`2 log3 p llog p) using isogeny volcanoes [BLS 2010].

I Assuming the GRH, we can efficiently find many special p
with log p = O(log `).

Computing Φ` takes O(`3 log3 ` llog `) time and O(`3 log `) space.

We can directly compute Φ` mod q using O(`2(n + log `)) space.
But this is still bigger than we want (or need)...

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 8 of 21



Computing φ with the CRT (version 1)

Strategy: “lift” ̇ = ̇(E) from Fq to Z and then compute

φ(Y) = Φ`(̇, Y) mod p

for sufficiently many (special) primes p and use the explicit CRT
to obtain φ mod q.

This uses O(`2 log p llog p) time for each p, in O(` log p) space.

However, “sufficiently many” is O(`n).
Total time is O(`3n log ` llog `), using O(`n + ` log `)) space.

In situations where n� ` this may be useful, but not in SEA.

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 9 of 21



Computing φ with the CRT (version 2)

Strategy: “lift” ̇, ̇2, . . . , ̇`+1 from Fq to Z, then compute

φ(Y) = Φ`(̇, Y) mod p

for sufficiently many (special) primes p and use the explicit CRT
to obtain φ mod q.

This uses O(`2 log3 p llog p) time per prime p, in O(`2) space.

Now “sufficiently many” is O(`+ n).
Total time is O(`3 log3 ` llog `), using O(`n + `2) space.

This is perfect for SEA, but it isn’t enough...

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 10 of 21



Modified SEA complexity (in progress)

Task (for each `) Time Space

Compute φ O(`3 log3 ` llog `) O(`n + `2)

Find a root ̃ O(nM(`n)) O(`n)

Construct Ẽ O(`2M(n)) O(`2n)

Compute g` O(`2M(n)) O(`n)

Compute π O(nM(`n)) O(`n)

Find λ` (linear) O(`M(`n)) O(`n)

Find λ` (BSGS) O(
√
`M(`n)) O(`3/2n)

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 11 of 21



Computing Ẽ (and p1)

To compute g` we need to correctly normalize the equation

y2 = x3 + ãx + b̃

for the isogenous curve Ẽ. We also want p1 (the kernel sum).
To obtain Ẽ and p1 we need to compute:

̃ ′

̇ ′
= −

ΦX(̇, ̃)

`ΦY(̇, ̃)

̇ ′′

̇ ′
− `
̃ ′′

̃ ′
= −

̇ ′2ΦXX(̇, ̃) + 2`̇ ′̃ ′ΦXY(̇, ̃) + `2̃ ′2ΦYY(̇, ̃)

̇ ′ΦX(̇, ̃)

This requires us to evaluate various partial derivatives of Φ`.

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 12 of 21



Computing φx and φxx

Let φX(Y) = ΦX(j, Y) and let φXX(Y) = ΦXX(j, Y).
We can compute φX and φXX as we compute φ (low cost).
We then use:

ΦX(̇, ̃) = φX (̃)

ΦY(̇, ̃) = φ ′(̃)

ΦXX(̇, ̃) = φXX (̃)

ΦYY(̇, ̃) = φ ′′(̃)

ΦXY(̇, ̃) = φ ′X (̃)

which allows us to compute Ẽ, p1, and g`.

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 13 of 21



Modified SEA complexity (in progress)

Task (for each `) Time Space

Compute φ O(`3 log3 ` llog `) O(`n + `2 log `)
Find a root ̃ O(nM(`n)) O(`n)

Construct Ẽ O(`M(n)) O(`n)

Compute g` O(`2M(n)) O(`n)

Compute π O(nM(`n)) O(`n)

Find λ` (linear) O(`M(`n)) O(`n)

Find λ` (BSGS) O(
√
`M(`n)) O(`3/2n)

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 14 of 21



Space efficient BSGS

Using a baby-steps giant-steps search to find [λ`] = π typically
involves comparing rational functions of size O(`n) with
numerators and denominators in the ring R = Fq[x, y]/(g`, E).

This is a big ring, but we only care about functions that
correspond to one of the `− 1 possible values for λ`.
With a unique representation, we can use O(log `)-bit hashes.

This can be achieved by inverting denominators in R.
Equivalently, compute in E(R) using affine coordinates.

If an inversion fails (unlikely), we find a proper factor of g` and
can reduce the degree of g` by at least a factor of 2.

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 15 of 21



Modified SEA complexity (final?)

Task (for each `) Time Space

Compute φ O(`3 log3 ` llog `) O(`n + `2)

Find a root ̃ O(nM(`n)) O(`n)

Construct Ẽ O(`M(n)) O(`n)

Compute g` O(`2M(n)) O(`n)

Compute π O(nM(`n)) O(`n)

Find λ` (BSGS) O(
√
`M(`n)) O(`n)

Total time is O(n4 log2 n llog n) using O(n2) space.

We can simultaneously compute φ mod q for O(log2 n) curves
at essentially no additional cost.
Amortized complexity: O(n4 llog n) time using O(n2 log2 n) space.

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 16 of 21



Alternative modular polynomials

In practice, the modular polynomials Φ` are not used in SEA.
There are alternatives (due to Atkin, Müller, and others) that are
smaller by a large constant factor (100x to 1000x is typical).

The isogeny-volcano approach of [BLS 2010] can compute
many types of (symmetric) modular polynomials derived from
modular functions other than ̇(z), but these do not include the
(non-symmetric) polynomials commonly used with SEA.

They do include modular polynomials Φf
` derived from the

Weber function f(z). These are smaller than Φ` by a factor of
1728, but they have never(?) been used with SEA before.

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 17 of 21



The Weber modular polynomials Φf
`

The Weber f-function is related to the ̇-function via

̇ = Ψ(f) =
(f24 − 16)3

f24

Provided End(E) has discriminant D ≡ 1 mod 8 with 3 - D, the
polynomial φf = Φ

f
`(f(E), Y) parametrizes `-isogenies from E.

This condition is easily checked (without knowing D), and if it
fails, powers of f, or other modular functions may be used.

But we need to know how to compute normalized isogenies!

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 18 of 21



Using Φf
` to compute normalized isogenies

I Compute f = f(E) satisfying Ψ(f) = ̇.
I Compute φf, φf

X, and φf
XX and also

f̃ ′

f ′
= · · · and

f ′′

f ′
− `

f̃ ′′

f̃ ′
= · · ·

I Now apply
̃ ′

̇ ′
=

f̃ ′

f ′
Ψ ′(̃f)

Ψ ′(f)

̇ ′′

̇ ′
− `
̃ ′′

̃ ′
=

f ′′

f ′
− `

f̃ ′′

f̃ ′
+
Ψ ′′(f)

Ψ ′(f)
f ′ −

Ψ ′′(̃f)

Ψ ′(̃f)
`̃f ′

and use ̃ = Ψ(̃f) to construct Ẽ, p1, and g` as before.

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 19 of 21



Practical results: modular polynomial records

I ` = 10079 : 120 cpu-days (2.4 GHz AMD) to compute
a Müller polynomial of size 16GB [Enge 2007].

I ` = 10079 : 1 cpu-hour (3.0 GHz AMD) to compute
Φ

f
` of size 3GB [BLS 2010].

I ` = 60013 : 13 cpu-days (3.0 GHz AMD) to compute
Φ

f
` of size 748GB [BLS 2010].

I ` = 100019 : 100 cpu-days (3.0 GHz AMD) to compute
Φ

f
l (f(E), Y) mod (286243 − 1) of size 1GB [S 2010].

For ` = 100019, the size of Φf
l is over 1TB and Φ` is over 1PB.

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 20 of 21



Practical results: point-counting example

y2 = x3 + 31415926x + 27182818

q = 103000 + 1027

Task (` = 6599) Time

Compute φf,φf
X,φf

XX 1074s
Find a root f̃ 63983s
Construct Ẽ 0s
Compute g` 360s
Compute π† 61427s
Find λ` (119 BSGS steps) 5216s

Total time to compute t` 132064s

Memory used while computing φf: 60MB.
Memory used for root-finding (NTL): 200MB.

†Can be improved by ≈ 2x using [GM 2006].
Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 21 of 21



Genus 1 point counting in quadratic space
and essentially quartic time

Andrew V. Sutherland

Massachusetts Institute of Technology

April 21, 2010

Andrew V. Sutherland (MIT) Genus 1 point counting in quadratic space 1 of 21


