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Constructing elliptic curves with dice

1. Write down a random curve y2 = x3 + ax + b over Fq.
2. Compute N = #E(Fq).
3. Repeat steps 1 and 2 until you get an answer you like.

If you are picky, this might take a while...
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Constructing elliptic curves with the CM method

Pick the values of q and N, with t = q + 1− N 6≡ 0 (in Fq).
Let D < 0 be a discriminant satisfying 4q = t2 − v2D.

1. Compute the Hilbert class polynomial HD.
2. Find a root j of HD in Fq.

This yields the j-invariant of a curve E/Fq with N points.

Assuming j 6= 0, 1728, we set k = j/(1728− j) and use either

y2 = x3 + 3kx + 2k

or its quadratic twist.
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Complex multiplication (CM) in its simplest setting

Let Λ be a 2-d lattice in C.
The torus C/Λ corresponds to an elliptic curve E/C.
If α ∈ C is nonzero, then C/Λ ∼= C/(αΛ).

End(E/C) ∼= {α ∈ C : αΛ ⊂ Λ}.

So Z ∈ End(E/C), and if Λ is an imaginary quadratic order O
(a 2-d subring of OK), or any ideal in O, then End(E/C) ∼= O.

Every ordinary elliptic curve E/Fp is the reduction of some E′/C
with CM by an imaginary quadratic order O [Deuring].
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Elliptic curves with CM by O.

Let O be an imaginary quadratic order with discriminant D.
Let Ell(O) = {j(E) : End(E) ∼= O}.

1. Ell(O) ∼= cl(O) is a finite set with h(D) elements.
2. These are precisely the roots of HD(X).

To obtain HD we enumerate Ell(O) and compute

HD(X) =
∏

j∈Ell(O)

(X − j).

We can do this in C, or in Fp, if HD splits completely in Fp[X].
Any prime p of the form 4p = t2 − v2D will suffice.
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The Hilbert class polynomial HD

Good news: The coefficients of HD are integers!

Bad news: They are really big integers!

The total size of HD is O(|D| log1+ε |D|) bits.
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Computing HD with the CRT

Compute HD mod p for many “small” primes p, use the CRT to
obtain HD [CNST ’98], or HD mod q via the explicit CRT [ALV ’06].

Compute HD in O(|D| log7+ε |D|) time (GRH) [BBEL ’08].

Compute HD mod q in O(|D|1/2+ε log q) space and
O(|D| log5+ε |D|) time (GRH), (up to 100x speedup) [S ’09].

Alternative class invariants (up to 200x speedup) [ES ’10].

State of the art (as of Jan 2010): |D| ≈ 1015 and h(D) ≈ 107.

But stay tuned for more...
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Decomposing class polynomials [HM 2001, EM 2003]

Let O have fraction field K and ring class field M. Let
G = cl(O) ∼= Gal(M/K) have subgroup H = Gal(M/L).

Q ⊂ K ⊂ L ⊂ M

Let β1, . . . , βm be the elements of H.
Let α1H . . . , αnH be the cosets of H in G.
For i from 1 to n define the values θij ∈ L via

m∑
j=0

θijXj =
m∏

j=1

(X − [αiβj]j0),

where j0 is a root of HD with Galois conjugates [αiβj]j0.
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Decomposing class polynomials (continued)

Let ti = θi,m− 1 and define

V(Y) =
n∏

i=1

(Y − ti)

and

Wj(Y) =
n∑

i=1

θij
V(Y)
Y − ti

so that Wj(ti) = θijV ′(ti). Finally, let

U(X,Y) =
1

V ′(Y)

m∑
j=0

Wj(Y)Xj.

The coefficients of V and Wj are integers in Q (not just K).
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Modified CM method (version 1)

If r is a root of V then the roots of U(X, r) are roots of HD.
Modified CM method:

1. Compute V and the Wj mod q (using explicit CRT).
2. Find a root r of V and j of U(X, r) in Fq.

Suppose m ≈ n. Step 2 is much improved. What about Step 1?
The cost of computing V and the Wj modulo each CRT prime p
is reduced by a factor of up to 4 (typically about 2).
The number of CRT primes is reduced by a factor of about 2.
The space required is unchanged.

We can do better, assuming q is prime.
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Modified CM method (version 2, q prime)

Recall that Wj(Y) =
∑n

i=1 θij
V(Y)
Y−ti

.
We don’t need to compute Wj in order to evaluate it!

1. Compute V (using explicit CRT mod q).
2. Find a root r of V mod q and “lift” it to Z.
3. Evaluate Wj(r) (using explicit CRT mod q).
4. Construct U(X, r) mod q and find a root j in Fq.

The number of Fp-operations to compute the θij is

O
(
(h/m)M(m) log m

)
When m ≈ log2 h this is O

(
h(log log h)2+ε

)
, versus O(h log2+ε h).

Evaluating all the Wj(r) costs O(h) versus O(h log2+ε h).
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Asmptotic results

Assume q is prime.

Theorem (Heuristic)
For any δ < 1 there is a set of discriminants D with density δ for
which version 2 of the modified CM method runs in time
O(|D| log5/2+o(1) |D|), provided log q = O(log5/2 |D|).

Theorem (GRH)
The space required by version 2 of the modified CM method is
O((m + n) log q + h log h) bits, where h(D) = h = mn.

Using the CM method is easier than computing HD mod q!
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Practical results

Tests were run on a cluster of 8 quad-core AMD Phenom IIs.
Timings for 256-bit prime fields (1024-bit essentially the same).

Previous record |D| ≈ 1015 and h ≈ 107 used 200 cpu-days
(about a week). Now under 50 cpu-days (about 36 hours).

New record |D| ≈ 1015 and h ≈ 2 · 107 used 170 cpu-days.

New record |D| ≈ 5 · 1014 and h ≈ 5 · 107 used 200 cpu-days.
Space: HD ≈ 30PB, HD mod q ≈ 1.6GB, U,V mod q ≈ 3MB

|D| > 1016 and h > 108 are certainly within reach.
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ECC Brainpool Standard

Taken from page 5 of www.ecc-brainpool.org/
download/Domain-parameters.pdf.

3.2 Security Requirements.
. . .

3. The class number of the maximal order of the
endomorphism ring of E is larger than 10000000.
. . .
This condition excludes curves that are generated
by the well-known CM-method.

Not anymore.

Andrew V. Sutherland Decomposing class polynomials with the CRT method 18 of 20

www.ecc-brainpool.org/download/Domain-parameters.pdf
www.ecc-brainpool.org/download/Domain-parameters.pdf


Challenges

Challenge to number-theorists: Barreto and Naehrig have
proposed pairing-friendly curve parameterizations that require
80-bit or 100-bit CM discriminants. Can we get there?

Challenge to cryptographers: Assume you can use 50-bit CM
discriminants. What can you do with this?

A parameterization with q ≈ |D|4 would be interesting.
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