Computing the endomorphism ring of an ordinary elliptic curve

Andrew V. Sutherland
Massachusetts Institute of Technology

April 3, 2009

joint work with Gaetan Bisson

http://arxiv.org/abs/0902.4670
Elliptic curves

An elliptic curve E/F is a smooth projective curve of genus 1 with a distinguished rational point 0.

The set $E(F)$ of rational points on E form an abelian group.

For $\text{char}(F) \neq 2, 3$ we define E with an affine equation

$$y^2 = x^3 + Ax + B,$$

where $4A^3 + 27B^2 \neq 0$. The j-invariant of E is

$$j(E) = 12^3 \frac{4A^3}{4A^3 + 27B^2}.$$

If $F = \overline{F}$ then $j(E)$ uniquely identifies E (but not in \mathbb{F}_q).
Elliptic curves over finite fields

Consider $F = \mathbb{F}_q$. The size of the group $E(\mathbb{F}_q)$ is

$$\#E(\mathbb{F}_q) = q + 1 - t,$$

for some integer t with $|t| \leq 2\sqrt{q}$. The SEA algorithm computes t in polynomial time (very fast in practice).

Typically t is nonzero in \mathbb{F}_q, in which case E is called ordinary.

Some useful facts about $t = t(E)$:

1. $t(E_1) = t(E_2) \iff E_1$ and E_2 are isogenous.
2. $j(E_1) = j(E_2)$ and $t(E_1) = t(E_2) \iff E_2 \cong E_2$.
3. $j(E_1) = j(E_2) \implies |t(E_1)| = |t(E_2)|$ for $j(E_1) \notin \{0, 12^3\}$.
Maps between elliptic curves

An *isogeny* \(\phi : E_1 \rightarrow E_2 \) is a rational map (defined over \(\overline{F} \)) with \(\phi(0) = 0 \). It induces a homomorphism from \(E_1(F) \) to \(E_2(F) \).

The *endomorphism ring* \(\text{End}(E) \) contains all \(\phi : E \rightarrow E \). We have \(\mathbb{Z} \subseteq \text{End} E \), but for \(F = \mathbb{F}_q \), equality never holds.

If \(E/\mathbb{F}_q \) is ordinary, then \(\text{End}(E) \cong \mathcal{O}(D) \) where

\[
\mathcal{O}(D) = \mathbb{Z} + \frac{D + \sqrt{D}}{2} \mathbb{Z}
\]

is the imaginary quadratic order of some discriminant \(D \).

We want to compute \(D \).
The Frobenius endomorphism

The endomorphism \(\pi : (x, y) \mapsto (x^q, y^q) \) on \(E(\overline{\mathbb{F}_q}) \) satisfies

\[\pi^2 - t\pi + q = 0. \]

If we set \(D_\pi = t^2 - 4q \) and fix an isomorphism \(\text{End} E \cong \mathcal{O}(D) \) we may regard \(\pi = \frac{t+\sqrt{D_\pi}}{2} \) as an element of \(\mathcal{O}(D) \).

Thus \(\mathcal{O}(D_\pi) \subseteq \mathcal{O}(D) \), which implies \(D|D_\pi \) and that \(D \) and \(D_\pi \) have the same fundamental discriminant \(D_K \).

By factoring \(D_\pi = \nu^2 D_K \) we may determine \(D_K \) and \(\nu \).

We then have \(D = u^2 D_K \) for some \(u|\nu \).

We want to compute \(u \).

This is easy if \(\nu \) is small (or smooth), but may be hard if not.
Computing isogenies

We call a (separable) isogeny \(\phi \) an \(\ell \)-isogeny if \(\# \ker \phi = \ell \). We restrict to prime \(\ell \), in which case \(\ker \phi \) is cyclic.

The classical modular polynomial \(\Phi_\ell \in \mathbb{Z}[X, Y] \) has the property

\[
\Phi_\ell(j(E_1), j(E_2)) = 0 \iff E_1 \text{ and } E_2 \text{ are } \ell\text{-isogenous}.
\]

The \(\ell \)-isogeny graph \(G_\ell(\mathbb{F}_q) \) has vertex set

\[
\mathcal{E}(\mathbb{F}_q) = \{ j(E/\mathbb{F}_q) \} = \mathbb{F}_q,
\]

and edges \((j_1, j_2)\) for \(\Phi_\ell(j_1, j_2) = 0 \) (note \(\Phi_\ell \) is symmetric).

\(\Phi_\ell \) is big: \(O(\ell^{3+\epsilon}) \) bits.
The structure of the ℓ-isogeny graph [Kohel]

The connected components of $G_\ell(\mathbb{F}_q)$ are ℓ-volcanoes. An ℓ-volcano of height h has vertices in level V_0, \ldots, V_h.

Vertices in V_0 have endomorphism ring $\mathcal{O}(D_0)$ with $\ell \nmid u_0$. Vertices in V_k have endomorphism ring $\mathcal{O}(\ell^{2k}D_0)$.

1. The subgraph on V_0 is a cycle (the surface).
 All other edges lie between V_k and V_{k+1} for some k.
2. For $k > 0$ each vertex in V_k has one neighbor in V_{k-1}.
3. For $k < h$ every vertex in V_k has degree $\ell + 1$.

See [Kohel 1996], [Fouquet-Morain 2002], or [S 2009] for more details.
A 3-volcano of height 2 with a 4-cycle
Algorithms to compute u

- **Isogeny climbing**: computes ℓ-isogenies for prime $\ell|\nu$ to determine the power of ℓ dividing u in. Probabilistic complexity $O(q^{3/2+\epsilon})$.

- **Kohel’s algorithm**: computes the kernel of n-isogenies, where $n = O(q^{1/6})$ need not be a divisor of ν. Deterministic complexity $O(q^{1/3+\epsilon})$ (GRH).

- **New algorithm**: computes the cardinality of smooth relations using isogenies of subexponential degree. Probabilistic complexity $L[1/2, \sqrt{3}/2](q)$ (GRH+).

\[
L[\alpha, c](x) = \exp \left((c + o(1)) (\log x)^\alpha (\log \log x)^{1-\alpha} \right).
\]

All algorithms have unconditionally correct output.
The action of the class group [CM theory]

For an invertible ideal \(a \subset \mathcal{O}_D \cong \text{End}(E) \), let \(E[a] \) be the subgroup of points annihilated by all \(a \in a \). The map

\[
j(E) \to j(E/E[a])
\]
corresponds to an isogeny of degree \(N(a) \).

This defines a group action by the ideal group on the set

\[
\{j(E/\mathbb{F}_q) : \text{End}(E) \cong \mathcal{O}(D)\}.
\]

This action factors through the class group \(\text{cl}(\mathcal{O}(D)) = \text{cl}(D) \). The action is faithful and transitive.

See the books of [Cox], [Lang], or [Silverman] for more on CM theory.
If $\ell \nmid v$ and $\left(\frac{D}{\ell} \right) = 1$, the ℓ-volcano containing $j(E)$ is a cycle of length $|\alpha|$, where $\alpha \in \text{cl}(D)$ contains an ideal of norm ℓ.

We can compute $|\alpha|$ (without knowing D) by walking a path j_0, j_1, \ldots in $G_\ell(\mathbb{F}_q)$ starting from $j_0 = j(E)$:

1. Let j_1 be one of the two roots of $\Phi_\ell(X, j_0)$ in \mathbb{F}_q.
2. Let j_{k+1} be the unique root of $\Phi_\ell(X, j_k) / (X - j_{k-1})$ in \mathbb{F}_q.

The choice of j_1 is arbitrary (we cannot distinguish α and α^{-1}). In either case, $|\alpha|$ (and $|\alpha^{-1}|$) is the least n for which $j_n = j_0$.

Step 2 finds the unique root of a degree ℓ polynomial $f(X)$ over \mathbb{F}_q. Complexity is $T(\ell) = O(\ell^2 + M(\ell) \log q)$ operations in \mathbb{F}_q.

Andrew V. Sutherland
Computing the endomorphism ring of an ordinary elliptic curve
Computing \(\text{End}(E) \) with class groups (naïvely)

Given \(E/\mathbb{F}_q \), let \(\#E = q + 1 - t \) and \(4q = t^2 - v^2 D_K \), so that \(\text{End}(E) \cong \mathcal{O}(D) \) where \(D = u^2 D_K \) for some \(u \mid v \).

If \(u_1, \ldots, u_m \) are the divisors of \(v \), then \(u = u_i \) for some \(i \).

Pick any \(\ell \nmid v \) satisfying \(\left(\frac{D_K}{\ell} \right) = 1 \).

For each \(D_i = u_i^2 D_K \) there is an element \(\alpha_i \in \text{cl}(D_i) \) containing an ideal of norm \(\ell \), but \(\vert \alpha_i \vert \) typically varies with \(i \).

We can compare \(\vert \alpha_i \vert \) to the length of the \(\ell \)-isogeny cycle containing \(j(E) \). These must be equal if \(u = u_i \).

This is too slow, but we can exploit this idea.
Relations

A relation R is a pair of vectors (ℓ_1, \ldots, ℓ_k) and (e_1, \ldots, e_k).

We say R holds in $\text{cl}(D)$ if for each i there is an $\alpha_i \in \text{cl}(D)$ containing an ideal of norm ℓ_i such that

$$\alpha_1^{e_1} \cdots \alpha_k^{e_k} = 1.$$

More generally, we define the cardinality of R in $\text{cl}(D)$ by

$$\# R / D = \# \left\{ \tau \in \{\pm 1\}^k : \prod \alpha_i^{\tau_i e_i} = 1 \text{ in } \text{cl}(D) \right\}.$$

$\# R / D$ does not depend on the choice of α_i.

Andrew V. Sutherland

Computing the endomorphism ring of an ordinary elliptic curve
Counting relations

Given a relation R with (ℓ_1, \ldots, ℓ_k) and (e_1, \ldots, e_k):

1. Set J_0 be a list containing the single element $j(E)$.
2. For each element in J_i walk e_i steps in both directions of the ℓ_i cycle and append the two end points to the list J_{i+1}.
3. $\#R/E$ is the number of times $j(E)$ appears in the list J_k.

The complexity is $\sum_{i=1}^k 2^i e_i T(\ell_i)$ operations in \mathbb{F}_q.
The key lemma

Lemma: If $\mathcal{O}(D_1) \subseteq \mathcal{O}(D_2)$ then $\#R/D_1 \leq \#R/D_2$.

Proof: There is a norm-preserving map from $\mathcal{O}(D_1)$ to $\mathcal{O}(D_2)$ that induces a group homomorphism from $\text{cl}(D_1)$ to $\text{cl}(D_2)$.

Corollary: Let $p \parallel v$ and set $D_1 = (v/p)^2 D_K$ and $D_2 = p^2 D_K$. Let R be a relation with $\#R/D_1 > \#R/D_2$. If u is the conductor of $\mathcal{O}(D) \cong \text{End}(E)$ then

$$p | u \iff \#R/E < \#R/D_1.$$

Theorem: Such an R exists.

Conjecture: Almost all R that hold in $\text{cl}(D_1)$ don’t hold in $\text{cl}(D_2)$.

Andrew V. Sutherland

Computing the endomorphism ring of an ordinary elliptic curve
Algorithm to compute $\text{End}(E)$

Given E/\mathbb{F}_q, the following algorithm computes $D = u^2 D_K$, the discriminant of the order isomorphic to $\text{End}(E)$.

1. Compute $t = q + 1 - \#E$, v, and D_k, with $4q = t^2 - v^2 D_K$.
2. For primes $p | v$, find a relation R satisfying the corollary. Count $\#R/E$ in the isogeny graph to test whether $p | u$.
3. Output $u^2 D_K$.

The algorithm above assumes v is square-free.
Finding smooth relations

The following algorithm is adapted from Hafner/McCurley.

We seek a smooth relation in $\text{cl}(D_1)$.

Pick a smoothness bound B and a small constant k_0 (say 3).

1. Let ℓ_1, \ldots, ℓ_n be the primes up to B with $\left(\frac{D_1}{\ell_i}\right) = 1$, and let $\alpha_i \in \text{cl}(D_1)$ contain an ideal of norm ℓ_i.

2. Generate $\beta = \prod \alpha_i^{x_i}$ where all but k_0 of the x_i are zero and the other x_i are suitably bounded.

3. For each β, test whether $N(b)$ is B-smooth, where b is the reduced representative of β.

4. If so write $\prod \alpha_i^{x_i} = \prod \alpha_i^{y_i}$ and compute R. Verify that $\#R/D_1 > \#R/D_2$ (almost always true).

For suitable B, the complexity is $L[1/2, \sqrt{3}/2](|D|)$
An example of cryptographic size (200 bits)

We have $4q = t^2 - v^2 D_K$ where $t = 212$, $D_K = -7$ and

$$v = 2 \cdot 127 \cdot \underbrace{524287}_{p_1} \cdot \underbrace{71957776666870732918103}_{p_2}.$$

After finding $2 \nmid u$ and $127 \nmid u$ we test $p_1 | u$ by computing

$$R_1 = (2^{2533}, 11^{752}, 29^2, 37^47, 79^1, 113^1, 149^1, 151^2, 347^1, 431^1),$$

which holds in $\text{cl}(p_2^2 D_K)$ but not $\text{cl}(p_1^2 D_K)$. We test $p_2 | u$ using

$$R_2 = (2^{23}, 11^5, 43^1, 71^2),$$

which holds in $\text{cl}(p_1^2 D_K)$ but not in $\text{cl}(p_2^2 D_K)$.

Total time to compute $\text{End}(E)$ is under 30 minutes.
Certifying the endomorphism ring

To verify a claimed value of \(u \), it suffices to have a relation \(R_p \) for each prime divisor of \(v \) such that:

1. For each prime \(p \mid (v/u) \), we have \(\#R_p/E > \#R_p/p^2D_K \).
2. For each prime \(p \mid u \), we have \(\#R_p/(u/p)^2D_K > \#R_p/E \).

Certificate size is \(O(\log^{2+\epsilon} q) \).

Note that either \(D_1u^2D_K \) or \(D_1 = (u/p)^2D_K \).

We always have \(D_1 \leq D \). Very useful when \(D \ll D_\pi \).

This yields an algorithm to compute \(u \) with complexity

\[
L[1/2 + o(1), 1](|D|) + L[1/3, c](q)
\]

which depends primarily on \(D \), not \(q \).