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A Diophantine problem
Many of the oldest problems in number theory involve equations of the form

P (x1, . . . , xn) = k,

where P is a polynomial with integer coefficients and k is a fixed integer.
We seek integer solutions in x1, . . . , xn. Some notable examples:

x2 + y2 = z2 [Babylonians?]
(119, 120, 169), (4601, 4800, 6649), . . . [Babylonians ∼1800 BCE]
x2 − 4729494y2 = 1 [Archimedes 251 BCE]
776 . . . 800 cattle [Amthor 1880, German-Williams-Zarnke 1965]
x3 + y3 = z3 [Fermat 1637]
No solutions with xyz ̸= 0. [Euler 1753]
w4 + x4 + y4 = z4 [Euler 1769]
(2682440, 15365639, 18796760, 20615673) [Elkies 1986]
v5 + w5 + x5 + y5 = z5 [Euler 1769]
(27, 84, 110, 133, 144) [Lander-Parkin 1966]



Algorithm to find (or determine existence of) solutions?

Q: Is there an algorithm that can answer all such questions? [Hilbert 1900]
A: No! [Davis, Robinson, Davis-Putnam, Robinson, Matiyasevich 1970]

What if we restrict the degree of the polynomial P?

Q: How about degree one? [Euclid ∼250 BCE, Diophantus ∼250]
A: Yes! [Euclid ∼250 BCE, Brahmagupta 628]

Q: How about degree two? [Babylonians, Diophantus, Hilbert 1900]
A: Yes! [Babylonians, Diophantus, Fermat, Euler, Lagrange, Legendre, Gauss, Siegel 1972]

Q: How about degree three, say, sums of cubes? [Waring 1770]
A: For sums of positive cubes, yes (we can bound the possible solutions).

But for the “easier” Waring problem with no sign constraints, this is an open problem.
It is the simplest example of a potentially undecidable Diophantine equation.



Sums of two cubes
Let us now consider any positive integer k. If we have

k = x3 + y3 = (x + y)(x2 − xy + y2),

then we can write k = rs with r = x + y and s = x2 − xy + y2.
If we now put y = r − x, we obtain the quadratic equation

s = 3x2 − 3rx + r2,

whose integer solutions we can find using the quadratic formula.
This yields an algorithm to determine all integer solutions to x3 + y3 = k:

Factor the integer k.
Use this factorization to enumerate all positive integers r, s for which k = rs.
If t :=

√
12s − 3r2 ∈ Z then output x = (3r + t)/6 and y = (3r − t)/6.

For k = 1729 = 19 · 91 we find t = 3, yielding x = 10 and y = 9.
For k = 1729 = 13 · 133 we find t = 33, yielding x = 12 and y = 1.



Sums of four or more cubes
Every integer has infinitely many representations as the sum of five cubes.

This follows from the identity

6m = (m + 1)3 + (m − 1)3 − m3 − m3.

If we write k = 6n + r, then r3 ≡ r mod 6 and, we can apply this identity to
m = f(n) := (k − (6n + r)3)/6 for any integer n, yielding the parameterization

k = (6n + r)3 + (f(n) + 1)3 + (f(n) − 1)3 − f(n)3 − f(n)3.

A more complicated collection of similar identities shows that all k ̸≡ ±4 mod 9 can be
represented as a sum of four cubes in infinitely many ways [Demjanenko 1966].

It is conjectured that in fact every integer k has infinitely many representations as a sum of
four cubes [Sierpinski 1960], but the case k ≡ ±4 mod 9 remains open.

https://mathscinet.ams.org/mathscinet-getitem?mr=202663
https://mathscinet.ams.org/mathscinet-getitem?mr=120183


Sums of three cubes
Not every integer is the sum of three cubes. Indeed, if x3 + y3 + z3 = k then

x3 + y3 + z3 ≡ k mod 9

The cubes modulo 9 are 0, ±1; we cannot write ±4 as a sum of three elements of {0, ±1}.
This rules out all k ≡ ±4 mod 9, including 4, 5, 13, 14, 22, 23, 31, 32, . . .

There are infinitely many ways to write k = 0, 1, 2 as sums of three cubes. For all n ∈ Z,

n3 + (−n)3 + 03 = 0,

(9n4)3 + (3n − 9n4)3 + (1 − 9n3)3 = 1,

(1 + 6n3)3 + (1 − 6n3)3 + (−6n2)3 = 2.

Multiplying by m3 yields similar parameterizations for k of the form m3 or 2m3.
For k ̸≡ ±4 mod 9 not of the form m3 or 2m3 the question is completely open.

Remark 1: The parameterizations above are not exhaustive [Payne and Vaserstein 1992].
Remark 2: Every k ∈ Z is the sum of three rational cubes in infinitely many ways [Ryley 1825].

https://mathscinet.ams.org/mathscinet-getitem?mr=1196532
https://doi.org/10.1017/S0013091500007604


Mordell’s challenge
There are two easy ways to write 3 as a sum of three cubes:

13 + 13 + 13 = 3 and (−5)3 + 43 + 43 = 3.

In his paper On the integer solutions of the equation x2 + y2 + z2 + 2xyz = n Mordell wrote:

I do not know anything about the integer solutions of x3 + y3 + z3 = 3 beyond the
existence of. . . it must be very difficult indeed to find out anything about any other
solutions. One may wonder if the problem of finding other solutions is comparable in
difficulty with that of finding when an assigned sequence, e.g. 123456789, occurs in
the decimal expansion of π

This remark sparked a 65 year search for additional solutions.

None were found, but researchers did have success with many other values of k ̸≡ ±4 mod 9.
But some proved to be particularly difficult.

https://doi.org/10.1112/jlms/s1-28.4.500


20th century timeline for x3 + y3 + z3 = k with k > 0 and |x|, |y|, |z| ≤ N
1908 Werebrusov finds a parametric solution for k = 2.
1936 Mahler finds a parametric solution for k = 1.
1942 Mordell proves any other parameterization has degree at least five (likely none exist).
1953 Mordell asks about k = 3.
1955 Miller, Woollett check k ≤ 100, N = 3200, solve all but nine k ≤ 100.
1963 Gardiner, Lazarus, Stein: k ≤ 1000, N = 216, crack k = 87, all but seventy k ≤ 1000.
1992 Heath-Brown, Lioen, te Riele crack k = 39.
1992 Heath-Brown conjectures infinity of solutions for all k ̸≡ ±4 mod 9.
1994 Koyama checks k ≤ 1000, N = 221 − 1, finds 16 new solutions.
1994 Koyama checks k ≤ 1000, N = 3414387, finds 2 new solutions.
1994 Conn, Vaserstein crack k = 84.
1995 Jagy cracks k = 478.
1995 Bremner cracks k = 75 and k = 768.
1995 Lukes cracks k = 110, k = 435, and k = 478.
1996 Elkies checks k ≤ 1000, N = 107 finding several new solutions (follow up by Bernstein).
1997 Koyama, Tsuruoka, Sekigawa check k ≤ 1000, N = 2 · 107 finding five new solutions.
1999-2000 Bernstein checks k ≤ 1000, N ≥ 2 · 109, cracks k = 30 and ten other k ≤ 1000.
1999-2000 Beck, Pine, Tarrant, Yarbrough Jensen also crack k = 30, and k = 52.



Poonen’s challenge
In 2008 Bjorn Poonen opened his AMS Notices article Undecidability in number theory
(winner of the Chauvenet prize) with the following challenge:

Does the equation x3 + y3 + z3 = 29 have a solution in integers?
Yes: (3, 1, 1), for instance. How about x3 + y3 + z3 = 30?
Again yes, although this was not known until 1999: the smallest solution
is (283059965, −2218888517, 2220422932).
And how about 33? This is an unsolved problem.

This spurred another 10 years of searches for solutions to 33 (as well as 3).
Elsenhans and Jahnel searched to N = 1014 cracking nine more k ≤ 1000.
Huisman pushed on to N = 1015 and cracked k = 74 in 2016.

In the spring of 2019 Andrew Booker finally answered Poonen’s challenge with
88661289752875283 − 87784054428622393 − 27361114688070403 = 33,

leaving 42 as the only unresolved case below 100 (and ten other k ≤ 1000).
But still no progress on Mordell’s challenge, even with N = 1016 [Booker19].

https://www.ams.org/notices/200803/tx080300344p.pdf
https://link.springer.com/article/10.1007/s40993-019-0162-1


Popularization

Numberphile host Brady Haran has made several YouTube videos popularizing this problem.

74 is Cracked! The uncracked problem with 33 42 is the new 33
(Sander Huisman) (Tim Browning) (Andrew Booker)

Booker’s breakthrough with 33 received international press coverage.

Mathematician solves 64-year-old ‘Diophantine puzzle’ (Newsweek):

“. . . the mathematician is now working with ... in an attempt to find the solution
for the final unsolved number below a hundred: 42.”

https://www.youtube.com/playlist?list=PLt5AfwLFPxWJcqG5YM89Qes5gZdAFM4Q1


The significance of 42 (according to Douglas Adams)

“O Deep Thought computer. . . We want you to tell us....The Answer.”
“The Answer to what?” asked Deep Thought.
“Life!” urged Fook. “The Universe!” said Lunkwill. “Everything!” they said in chorus.

Deep Thought paused for a moment’s reflection. . .
“There is an answer. But, I’ll have to think about it.”

seven and a half million years pass. . .

“Good Morning,” said Deep Thought at last. “Er...good morning, O Deep Thought”
said Loonquawl nervously, “do you have...”
“An Answer for you?” interrupted Deep Thought. “I have.”
“Forty-two," said Deep Thought, with infinite majesty and calm.

Deep Thought then designs Earth to compute the Ultimate Question whose answer is 42.



Search algorithms
We seek solutions to x3 + y3 + z3 = k for some fixed k (such as k = 3 or k = 42).
How long does it take to check all x, y, z ∈ Z with max(|x|, |y|, |z|) ≤ N?

1 Naive brute force: O(N3) arithmetic operations.
2 Less naive brute force (is x3 + y3 − k a cube?): O(N2+o(1)).
3 Apply the sum of two cubes algorithm to k − z3: O(N1+o(1)) expected time.

None of these is fast enough to go past N = 1016 in a reasonable amount of time.

We instead use the approach suggested in [Heath-Brown 1989], which seeks solutions for a
fixed k (by contrast, Elkies’ approach seeks solutions to x3 + y3 + z3 ≤ b with b small).

With suitable optimizations this gives a heuristic complexity of O(N(log log N)1+o(1))
arithmetic operations (each takes less than a nanosecond in the practical range of interest).

The asymptotic bit complexity is O(N(log N)(log log N)2+o(1)).

https://doi.org/10.1007/978-1-4757-4269-5_6


Assume x3 + y3 + z3 = k > 0, |x| > |y| > |z| ≥
√

k, k ≡ ±3 mod 9 cube free, and put

k − z3 = x3 + y3 = (x + y)(x2 − xy + y2).

Define d := |x + y| so that z is a cube root of k modulo d. Then

{x, y} =

sgn(k − z3)
2

d ±

√
4|k − z3| − d3

3d

 ,

Thus d, z determine x, y, and one finds that d < α|z|, where α := 3√2 − 1 ≈ 0.26.
One also finds that 3 ∤ d and sgn(z) is determined by d mod 3 and k mod 9.
Given N , our strategy is to enumerate all d ∈ Z ∩ (0, αN) coprime to 3, and for each d
enumerate all z ∈ Z satisfying z3 ≡ k mod d with |z| ≤ N such that

3d(4 sgn(z)(z3 − k) − d3) = □. (1)

Every such (d, z) yields a solution (x, y, z), and we will find all solutions satisfying our
assumptions with |z| ≤ N , even when |x|, |y| > N .



Complexity obstacles

problem: To compute cube roots of k mod d we need the factorization of d.
solution: Enumerate d combinatorially, as a product of prime powers along with the cube

roots of k mod d (this also lets us efficiently skip d for which there are none).

problem: There are Ω(N log N) pairs (d, z) we potentially need to consider.
solution: For d ≤ N3/4 (say) we sieve arithmetic progressions of z mod d using auxiliary p ∤ d.

Each reduces the number of pairs (d, z) by a factor of ≈ 2 and O(log log N) suffice.

We don’t literally sieve, we use the CRT to lift progressions mod d to progressions mod pd,
but only use the lifts that yield solutions modulo p (about half, on average).

With this approach the total number of pairs (d, z) with d ≤ N3/4 we need to consider
becomes o(N), and for d > N3/4 we heuristically expect O(N).



CRT sieving
For k = 33 and d = 5 we have z ≡ 2 mod d and sgn(z) = +1 and z ≡ k + d ≡ 0 mod 2,
and only z ≡ 0 mod 7 satisfies 3d(4 sgn(z)(z3 − k) − d3) = □ mod 7.

p modulus residue classes |z| ≤ 1016 to check
5 1 2.0 × 1015

2 10 1 1.0 × 1015

7 70 1 1.4 × 1014

13 910 3 3.3 × 1013

17 15470 27 1.7 × 1013

23 355810 324 9.1 × 1012

29 10318490 4860 4.7 × 1012

43 443695070 92340 2.1 × 1012

67 29727569690 2493180 8.4 × 1011

103 3061939678070 107206740 3.5 × 1011

Cubic reciprocity constraints allow only 14 residue classes modulo 27k = 891.
This further reduces the number of z to check by another factor of 63.6.
This leaves only 5.5 × 109 values of z to check, which takes about a minute.



The conjecture of Heath-Brown
[Heath-Brown 1992] uses products of local densities to heuristically estimate

Rk(N1, N2) := #
{

(x, y, z) ∈ Z3 : x3 + y3 + z3 = k, N1 ≤ max(|x|, |y|, |z|) ≤ N2
}

.

Assume k is cube free, and for each prime power q = pn define

N(q) := #
{

(x, y, z) mod q : x3 + y3 + z3 ≡ k mod q
}

,

σp := N(p)
p2 (p ̸= 3), σ3 = N(9)

81 , σ∞ := 4
∫ ∞

1

∫ N2/t

N1/t

dz

z

dt

(t3 + 1)2/3
= c log N2

N1
,

where c = 2Γ(1/3)2

3Γ(2/3) ≈ 3.5332. For N2 ≫ N1 ≫ 0 we should then expect

Rk(N1, N2) ∼
∏

p≤∞
σp = δk log N2

N1
,

where δk is an explicit constant that depends only on k. If we put ωk := exp(6/δk) then we
should expect one solution with |x| > |y| > |z| in [N, ωkN ] on average (as N → ∞).

https://doi.org/10.1090/S0025-5718-1992-1146835-5


Heath-Brown’s predictions for 3 ≤ k < 100 compared to Huisman’s data
N = 105 N = 1010 N = 1015

k δk/6 ωk expect actual expect actual expect actual

3 0.061 12969857 0.7 2 1.4 2 2.1 2
93 0.072 1185438 0.8 2 1.6 3 2.5 3
74 0.086 106692 1.0 0 2.0 0 3.0 1
33 0.089 77368 1.0 0 2.0 0 3.1 0
30 0.090 68020 1.0 0 2.1 1 3.1 3
39 0.090 68358 1.0 0 2.1 1 3.1 1
12 0.100 22518 1.1 1 2.3 2 3.4 2
87 0.104 14593 1.2 1 2.4 2 3.6 3
75 0.112 7287 1.3 0 2.6 1 3.9 4
42 0.113 6728 1.3 0 2.6 0 3.9 0
60 0.119 4531 1.4 3 2.7 5 4.1 8

· · ·
9 0.427 11 4.9 3 9.8 8 14.8 15

44 0.434 11 5.0 1 10.0 7 15.0 16
7 0.437 10 5.0 3 10.1 11 15.1 18

· · ·
83 1.210 3 13.9 16 27.9 32 41.8 49
90 1.854 2 21.3 20 42.7 36 64.0 48
99 1.989 2 22.9 21 45.8 35 68.7 56



The search for 42

Each dot represents 50 cores, approximately 90 core-years.
Purple dots correspond to smooth values of d, blue dots do not.



The result for 42

−805387388120759743 + 804357581458175153 + 126021232973356313 = 42

d = |x + y| = 11 · 43 · 215921 · 1008323 = 102980666258459 ≈ 1.030 × 1014

x ≈ −8.053873 × 1016, y ≈ 8.043575 × 1016, z ≈ 1.260212 × 1016

−522413599036979150280966144853653247149764362110424
+520412211582497361738652718463552780369306583065875
+ 2001387454481788542313426390100466780457779044591

42



The result for 3

5699368212219623807203 − 5699368211135634935093 − 4727154934533270323 = 3

d = |x + y| = 167 · 649095133 = 108398887211 ≈ 1.084 × 1011

x ≈ 5.699368 × 1020, y ≈ −5.699368 × 1020, z ≈ −4.727155 × 1017

185131426470358721030003064550489120286063150089838997749248000
−185131426364725746289073278168542399539619802127338908944671229
− 105632974740929786381946720746443347962500088804576768

3



Heath-Brown’s predictions for 100 < k ≤ 1000
N = 105 N = 1010 N = 1015

k δk/6 ωk expect actual expect actual expect actual

858 0.029 1720798182665417 0.3 1 0.7 2 1.0 2
276 0.032 42958715811596 0.4 1 0.7 1 1.1 2
390 0.033 15332443619105 0.4 0 0.8 0 1.1 0
516 0.033 13632255817671 0.4 0 0.8 1 1.1 1
663 0.033 12076668982001 0.4 0 0.8 1 1.1 1
975 0.039 163996624946 0.5 0 0.9 0 1.3 0
165 0.040 90472906051 0.5 0 0.9 0 1.4 0
555 0.043 14746456526 0.5 1 1.0 2 1.5 2
921 0.044 6885076231 0.5 0 1.0 0 1.5 0
348 0.045 5369191063 0.5 2 1.0 2 1.5 3
906 0.050 536676769 0.6 0 1.1 0 1.7 0
366 0.051 324767552 0.6 0 1.2 0 1.8 1
579 0.051 348505529 0.6 0 1.2 0 1.8 0
654 0.057 46795226 0.7 2 1.3 2 2.0 3
114 0.058 26824751 0.7 0 1.3 0 2.0 0
705 0.062 8959243 0.7 1 1.4 2 2.2 2
732 0.063 7553865 0.7 0 1.5 0 2.2 0
402 0.079 321328 0.9 1 1.8 2 2.7 3
633 0.080 282820 0.9 0 1.8 0 2.8 0
537 0.089 80345 1.0 2 2.0 3 3.1 3
795 0.089 71223 1.0 0 2.1 0 3.1 0
641 0.128 2519 1.5 1 2.9 1 4.4 2
627 0.130 2248 1.5 0 3.0 0 4.5 0
956 0.217 102 2.5 3 5.0 6 7.5 8
782 0.453 10 5.2 3 10.4 5 15.7 11
855 2.641 2 30.4 27 60.8 51 91.2 77



A better search strategy

To check |z| ≤ N we need to check d ≤ B := ( 3√2 − 1)N ≈ N/4.

The value of B determines the number of arithmetic progressions (about B/2).
The value of N/B determines the length of these arithmetic progressions.

It is much cheaper to increase N than it is to increase B.

On the other hand, one heuristically expects the density of solutions to decay exponentially
with N/B. This leads to an optimization problem. We want to choose R := N/B to minimize
T (B, N) = T (B, RB). The optimal R should satisfy

TB(B, RB)∂B

∂R
+ TN (B, RB)(B + R

∂B

∂R
) = 0,

where TB and TN denote partial derivatives of T (B, N). We typically want R ∈ [50, 250].

We should also skip prime values of d close to B, which produce few progressions.



The search for 42 redux

Each dot represents 2 cores, approximately 0.7 core years.


