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COURSE OUTLINE

Let E : y2 = x3+Ax+B be an elliptic curve overQ. For each prime p of good reduction for E
(all but finitely many), let Ep := E mod p denote the reduced curve and let

ap := p+ 1−#Ep(Fp)

be the trace of Frobenius. By a theorem of Hasse, each normalized trace xp := ap/
p

p is a real
number in the interval [−2, 2]. The xp vary with p in an apparently unpredictable way, and
in the absence of any other information, one might suppose that they should be uniformly dis-
tributed over [−2, 2]. A few experiments quickly dispels this notion (here is a typical example),
however, the distribution of the xp does appear to be converging to something. Remarkably,
with just a few exceptions, it does not seem to matter which elliptic curve we use (here is an
extreme example), the picture always looks the same asymptotically. This was observed some
fifty years ago by Mikio Sato and John Tate, who independently conjectured that the semicircu-
lar distribution visible in two of the three linked examples above is the limiting distribution of
the xp for every elliptic curve E/Q without complex multiplication (this means End(EQ) = Z,
which is typically the case). Thanks to recent work by Richard Taylor and others [5, 13, 34],
the Sato-Tate conjecture is now a celebrated theorem.

The Frobenius traces ap also appear as coefficients in the L-series of the elliptic curve. One
can ask similar questions about other L-functions, such as those attached to modular forms
(with rational coefficients), algebraic curves, abelian varieties, Galois representations, or more
generally, any motivic L-function. Almost all of these more general questions remain open,
but a rich theory and a precise set of conjectures has arisen around them that suggest deep
connections between the analytic and arithmetic aspects of these L-functions (this may be
viewed as part of the Langlands program).

The goal of this course is to introduce Sato-Tate distributions, both from an analytic perspec-
tive (as distributions of normalized Euler factors of L-functions), and an arithmetic perspective
(as distributions of normalized Frobenius polynomials), and to describe the generalized Sato-
Tate conjecture, which postulates that in each case these distributions are governed by the Haar
measure of a certain compact Lie group, the Sate-Tate group (of the L-function or motive).

Lecture 1. Introduction to Sato-Tate distributions. We introduce the topic of Sato-Tate dis-
tributions by first considering the situation in dimension zero, in which the L-functions of
interest are Artin L-functions, Sato-Tate groups arise as images of Artin representations, and
equidistribution is implied by the Chebotarev density theorem. We then present the Sato-Tate
Conjecture/Theorem for elliptic curves over Q.
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Lecture 2. Equidistribution, L-functions, and moment sequences. We formally define the
notion of equidistribution with respect to a measure and relate it to L-functions arising from
representations of compact groups as Euler products over primes of a given number field. We
then prove the Sato–Tate conjecture for CM elliptic curves and present Tate’s formulation of the
Sato–Tate conjecture for non-CM elliptic curves E as a statement about the analytic properties
of a family of associated L-functions [27, 33].

Lecture 3. Sato-Tate groups. Following Serre [30, 31], we define the Sato–Tate group of an
abelian variety over a number field and state the generalized Sato–Tate conjecture. We then
relate the identity component of the Sato–Tate group to the Mumford–Tate and Hodge groups
associated to an abelian variety and show that the group of components can be realized as a
Galois group. We also discuss the algebraic Sato–Tate group of Banaszak and Kedlaya [2, 3].

Lecture 4. Sato–Tate axioms. We present the Sato–Tate axioms for abelian varieties (and for
self-dual motives with rational coefficients), following [9, §2] and [31, Ch. 8], and consider
the problem of classifying the groups that satisfy the Sato–Tate axioms for a given weight and
choice of Hodge numbers. We then introduce Galois endomorphism types and explain their
relationship with Sato-Tate groups, which has produced a complete classification in dimension
g ≤ 2 and partial results in dimension 3. Finally, we consider the problem of computing the
Haar measure for a given Sato-Tate group, via the Weyl integration formulas [37], and explain
how these may be used to compute moment sequences and moment generating functions.

PROJECT DESCRIPTIONS

Project 1. Sato-Tate groups of trinomial hyperelliptic curves. For each integer g ≥ 2 we
may consider the following one-parameter families of hyperelliptic curves of genus g:

C1(a): y2 = x2g+2 − a, C2(a): y2 = x2g+1 − ax , C3(a): y2 = x2g+1 − a,

with a ∈Q×. As explained in [12, §2], the Hasse–Witt matrices of these curves have a particu-
larly simple form that makes it possible to use an optimized version of the average polynomial-
time algorithm in [17] to compute statistic of normalized Frobenius traces very quickly for
moderate values of g (say 2 ≤ g ≤ 10). In many cases one can do even better by applying
explicit trace formulas, as in [12, §3.1] and [36], for example. For g = 3 the families C1(a)
and C2(a) are analyzed in [12].

The goal of this project is to similarly analyze the trace distributions for curves in these
families for various values of g as follows:

(a) Compute trace formulas for each family, following [12, §3].
(b) Determine the possible shapes of the corresponding Hasse-Witt matrices as in [12, §4]

and use this to determine the density of zero traces for generic values of a.
(c) Determine trace moment sequences for generic values of a.
(d) Refine your answers to (b) and (c) for special values of a.
(e) Using your knowledge of the trace distributions, try to determine (or at least guess)

the identity component of the Sato-Tate group (as in [12, §5], for example).

Note that in steps (b)–(e), you can empirically check/guide your work by computing moment
statistics of example curves (software to do so will be provided [14, 15, 16, 17, 23, 32]).



Project 2. Classifying Sato-Tate groups of abelian threefolds with finite centralizer. A
key step in the classification of Sato-Tate groups of abelian surfaces was determining, up to
conjugacy, the 55 subgroups of USp(4) that satisfy the Sato-Tate axioms [9, §3] (it turns out
that only 52 of these arise as Sato-Tate groups of an abelian surface [9, §4]). The corresponding
classification for USp(6), which includes the Sato-Tate groups of all abelian threefolds, remains
open, although some progress has been made; for example, the connected Sato-Tate groups
are known (a complete list can be found here).

The main obstacle to completing the classification of candidate Sato-Tate groups in USp(6)
is that some of the connected Sato-Tate groups have very large centralizers, and this makes
it difficult to exhaustively determine all candidates with this identity component. The goal
of this project is to address the easier cases, those for which the centralizer of G0 is finite.
In parallel, we would also like to find or construct abelian threefolds (ideally as Jacobians
of genus 3 curves) whose Sato-Tate groups appear to match these candidates, by comparing
moment statistics to moment sequences (as the case of abelian surfaces demonstrates, there is
no reason to expect that we will be able to do so in every case).

The goal of this project is to classify the Sato-Tate groups USp(6) with finite centralizer by
proceeding as follows:

(a) Determine which connected Sato-Tate groups G0 ⊆ USp(6) have finite centralizer Z .
(b) For each pair (G0, Z), determine a complete list (up to conjugacy) of the subgroups of

USp(6) that satisfy the Sato-Tate axioms and have identity component G0.
(c) Compute moment sequences for each of the candidate Sato-Tate groups.
(d) For each candidate Sato-Tate group, try to find a genus 3 curve whose moment statistics

appear to match the moment sequences computed in (c).
(e) (optional) Determine Galois endomorphism types corresponding to your candidate

Sato-Tate groups and attempt to prove that the Jacobians of the curves identified in (d)
have the Sato-Tate group whose moments they appear to match.

Project 3. Twisting Sato-Tate groups of genus 3 hyperelliptic curves. Of the 34 possible
Sato-Tate groups of an abelian surface overQ, more than than half are realized by Jacobians of
twists1 of the hyperelliptic curves y2 = x6+1 and y2 = x5−x; the Sato-Tate conjecture has been
proved in all such cases [11]. These curves represent two isolated points in the moduli space
of genus 2 curves distinguished by their exceptionally large automorphism groups; both have
Jacobians that are Q-isogenous to the square of an elliptic curve with complex multiplication
(CM), which makes proving the Sato-Tate conjecture much easier.

The classification of the Sato-Tate groups of these twists, and the proof that they satisfy the
Sato-Tate conjecture was achieved through an analysis of the twisting Sato-Tate group, a closed
subgroup of USp(2g) associated to a genus g curve C/Q that contains (with finite index) the
Sato-Tate group of the Jacobian of every twist of C; see [11, Def. 2.4].

In this project we wish to consider the twisting Sato-Tate groups of the hyperelliptic curves

C1 : y2 = x8 + 1, C2 : y2 = x7 − x , C3 : y2 = x8 − 14x4 + 1,

of genus 3, all of which have extremal automorphism groups. As in genus 2, the Jacobians of
these curves are all Q-isogenous to products of elliptic curves, but each of these products is of
a distinctly different type:

1Recall that two objects defined over a field k are said to be twists if their base changes to k̄ are isomorphic.
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• Jac(C1) isQ-isogenous to E2
1×E2, where E1 and E2 are non-isogenous CM elliptic curves;

• Jac(C2) is Q-isogenous to the cube of an elliptic curve with CM;
• Jac(C3) is Q-isogenous to the cube of an elliptic curve without CM.

The Sato-Tate groups of these curves have been determined (see [12] for the first two), but
little is known about their twisting Sato-Tate groups other than its identity component, which
necessarily coincides with that of the corresponding Sato-Tate group. The goal of this project
is to analyze the twisting Sato-Tate groups of C1, C2, C3 as follows:

(a) Determine the twisting Sato-Tate group of each curve Ci along with a list Si of the
subgroups that can arise as the Sato-Tate group of a twist of Ci.

(b) Determine moment sequences for each candidate Sato-Tate group in Si.
(c) Find or construct twists of Ci whose Jacobians realize the Sato-Tate groups in Si.
(d) (optional) Prove the Sato-Tate conjecture for Jacobians of twists of Ci.

This is a substantial project. The solutions may be quite different for each curve Ci, due to the
different identity components of their Sato-Tate groups; depending on the number of partici-
pants we may want to divide the work, or simply pick a particular curve to focus on.

Project 4. Lang-Trotter conjectures for non-generic abelian surfaces. Let E/Q be an elliptic
curve and let t be an integer. Suppose that End(EQ) ' Z or t 6= 0. For each prime p of good
reduction for E, let ap be the trace of Frobenius. The Lang-Trotter conjecture [24] states that

πE(x; t) := #{p ≤ x | E has good reduction at p and ap = t} ∼ c(E, t)
p

x
log x

,

where c(E, t) ∈ R is an explicit constant defined in terms of the image of the Galois represen-
tation (a continuous homomorphism)

ρE : Gal(Q/Q)→ GL2(bZ),

which is defined as the inverse limit of representations ρE,m : Gal(Q/Q)→ GL2(Z/mZ) arising
from the action of the absolute Galois group of Q on the m-torsion subgroup of E.

Unlike the Sato-Tate conjecture for elliptic curves over Q, the Lang-Trotter conjecture re-
mains open. In a recent preprint [8] Cojocaru et al. propose a generalization of the Lang-Trotter
conjecture for principally polarized abelian varieties over Q that are generic. An abelian vari-
ety A of dimension g is said to be generic if its Sato-Tate group ST(A) is isomorphic to USp(2g);
this implies End(AQ)' Z.

2 Otherwise we say that A is non-generic (or exceptional).
To understand the role that the Sato-Tate group plays in these conjectures, recall that the

constant c(E, t) in the Lang-Trotter conjecture depends on the image of the Galois representa-
tion ρE. For an abelian variety of dimension g we similarly have a Galois representation

ρA : Gal(Q/Q)→ GSp2g(bZ),

where GSp2g denotes the group of symplectic similitudes (the subgroup of GL2g(bZ) that pre-
serves a symplectic form associated to the Weil pairing, up to a scalar multiple) A key ingredi-
ent to the conjecture formulated in [8] is that the image of ρA is an open subgroup of GSp2g(bZ)
and therefore has finite index; this is known to hold for generic A when g is 2, 6, or odd by
results of Serre [28, 29]. However, when A is not generic the image of ρA will not have finite

2The converse holds for g ≤ 3 but not in general; as shown by Mumford, for g = 4 there are abelian varieties A
for which End(AQ)' Z but ST(A) 6' USp(2g).



index in GSp2g(bZ). Indeed, one can directly relate the Q`-dimension of an associated `-adic
representation ρA,` to the real dimension of the identity component of the Sato-Tate group
ST(A)0; in every non-generic case this dimension will be strictly smaller than it is generically.
The approach in [8] will thus need to be modified.

The only non-generic case for g = 1 is a CM elliptic curve, which is already addressed by
the Lang-Trotter conjecture (except when t = 0, but then πE(x; 0) ∼ x/(2 log x)). The next
case to consider is when A/Q is an abelian surface. As shown in [9], there are 33 non-generic
Sato-Tate groups to consider, with 5 distinct identity components.

The goal of this project is to investigate analogs of the Lang-Trotter conjecture for non-generic
abelian surfaces as follows:

(a) Propose a Lang-Trotter type conjecture for abelian surfaces A/Qwith non-generic Sato-
Tate group (see [9] for a list), including a specification of the leading constant c(A, t)
(you may find [1, §3] and [7, §4] helpful). You may assume that A/Q is principally
polarized, and may wish to restrict your attention to a subset of the 33 possible Sato-
Tate groups (for example, those with a particular identity component).

(b) Check for numerical agreement between the conjectures formulated in (a) and some
actual examples (software will be provided to assist with this task). Explicit equations
for genus 2 curves overQwhose Jacobians realize each of the 33 non-generic Sato-Tate
groups can be found in [9, Table 11].
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