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/=-volcanoes

For a prime ¢, an ¢-volcano is a connected undirected graph whose
vertices are partitioned into levels Vg, ..., V,.

1. The subgraph on V; (the surface) is a connected regular graph
of degree 0, 1, or 2.

2. Fori > 0, each v € V; has exactly one neighbor in V;_;.
All edges not on the surface arise in this manner.

3. Fori < d, eachv € V; has degree /+1.

We allow self-loops and multi-edges in our graphs, but this can happen only on the
surface of an ¢-volcano.
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A 3-volcano of depth 2
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Elliptic curves

An elliptic curve E/k is a smooth projective curve of genus 1 with
a distinguished k-rational point 0.

For any field extension k' /k, the set of k’-rational points E(k") forms
an abelian group with identity element 0.

When the characteristic of k is not 2 or 3 (which we assume for
convenience) we may define E with an equation of the form

2 =x*+Ax+ B,

where A, B € k.
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J-invariants

The k-isomorphism classes of elliptic curves E/k are in bijection
with the field k. For E: y> = x> + Ax + B, the j-invariant of E is

4A3

i(E) =j(A,B) = 1728———— €k
JE) = J(AB) = 1728 "

The j-invariants j(0, B) = 0 and j(A,0) = 1728 are special.
They correspond to elliptic curves with extra automorphisms.

For jo & {0, 1728}, we have j, = j(A, B), where
A=3j,(1728 —jo) and B = 2jo(1728 — jo).

Note that j(E:) = j(E2) does not necessarily imply that £, and £,
are isomorphic over k, but they must be isomorphic over k.
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/-isogenies

An jsogeny ¢: E; — E, is a morphism of elliptic curves,
a rational map that fixes the point 0.

It induces a group homomorphism ¢: E; (k) — Ex(k).
If ¢ is nonzero then it has a finite kernel.
Every finite subgroup of E; (k) is the kernel of an isogeny.
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/-isogenies

An jsogeny ¢: E; — E, is a morphism of elliptic curves,
a rational map that fixes the point 0.

It induces a group homomorphism ¢: E; (k) — Ex(k).
If ¢ is nonzero then it has a finite kernel.
Every finite subgroup of E; (k) is the kernel of an isogeny.

The degree of an isogeny is its degree as a rational map.
For a nonzero separable isogeny, deg ¢ = | ker ¢|.

We are interested in isogenies of prime degree ¢ # chark,
which are necessarily separable isogenies with cyclic kernels.

The dual isogeny ¢: E, — E; has the same degree ¢ as ¢, and
god=dod =l

is the multiplication-by-¢ map.



The /-torsion subgroup

For ¢ # char(k), the ¢-torsion subgroup

E[f] = {P € E(k) : tP = 0}

is isomorphic to Z/¢Z x Z/¢Z and thus contains ¢ + 1 cyclic
subgroups of order ¢, each of which is the kernel of an ¢-isogeny.

These ¢-isogenies are not necessarily defined over k.

An (-isogeny is defined over k (and has image defined over k)
if and only if its kernel is Galois-invariant.

The number of Galois-invariant order-¢ subgroups of E[/] is either
0,1,2,or ¢+ 1.
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The modular equation

Letj: H — C be the classical modular function.

For any 7 € H, the values j(r) and j(¢7) are the j-invariants of elliptic
curves over C that are ¢-isogenous.

The minimal polynomial ®,(Y) of the function j(¢z) over C(j)
has coefficients that are actually integer polynomials of j(z).

Replacing j(z) with X yields the modular polynomial &, € Z[X, Y]
that parameterizes pairs of ¢-isogenous elliptic curves E/C:

o(j(E)),j(E2)) =0 <= j(Ey) and j(E,) are (-isogenous.

This moduli interpretation remains valid over any field of
characteristic not /.

®,(X,Y) = 0is a defining equation for the affine modular curve Y, (¢) = Ty (¢)\H.
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The graph of /-isogenies

Definition
The ¢-isogeny graph G.(k) has vertex set {j(E) : E/k} =k
and edges (ji,/») for each root j, € k of ®,(j1, ¥) (with multiplicity).

Except for j € {0, 1728}, the in-degree of each vertex of G, is equal
to its out-degree. Thus Gy is a bi-directed graph on £\ {0, 1728},
which we may regard as an undirected graph.

Note that we have an infinite family of graphs G, (k) with vertex set k,
one for each prime ¢ # char(k).
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Ordinary and supersingular curves

For an elliptic curve E/k with char(k) = p we have

Elp] ~ {i{fz E:lrjdinarjv),
persingular).

For isogenous elliptic curves E; ~ E,, either both are ordinary or both
are supersingular. Thus the each isogeny graph G, decomposes into
ordinary and supersingular components.

This has cryptographic applications; see [Charles-Lauter-Goren 2008], for example.
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Ordinary and supersingular curves

For an elliptic curve E/k with char(k) = p we have

Elp] ~ {i{fz E:lrjdinarjv),
persingular).

For isogenous elliptic curves E; ~ E,, either both are ordinary or both
are supersingular. Thus the each isogeny graph G, decomposes into
ordinary and supersingular components.

Every supersingular curve is defined over .. Thus the supersingular
components of G,(IF,») are regular graphs of degree £ + 1.

In fact, G¢(FF,») has just one supersingular component, and it is a
Ramanujan graph [Pizer 1990].

This has cryptographic applications; see [Charles-Lauter-Goren 2008], for example.
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Endomorphism rings

Isogenies from an elliptic curve E to itself are endomorphisms.
They form a ring End(E) under composition and point addition.

We always have Z C End(E), due to scalar multiplication maps.
If Z C End(E), then E has complex multiplication (CM).

For an elliptic curve E with complex multiplication:

End(E) ~ {order in an imaginary quadratic field (ordinary),

order in a quaternion algebra (supersingular).

Every elliptic curve over a finite field IF, has CM, since if E is ordinary
then the Frobenius endomorphism mg(x,y) = (x4,y7) does not lie in Z.
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Horizontal and vertical isogenies

Let p: E; — E; by an ¢-isogeny of ordinary elliptic curves with CM.
Let End(El) ~0 = [1,7’1] and End(Eg) ~ 0, = [1,7‘2].

Then ¢ € Oy and 477 € O,.

Thus one of the following holds:
» O; = O,, in which case ¢ is horizontal,
» [0 : O] = ¢, in which case ¢ is descending;

» [0, : O] = ¢, in which case ¢ is ascending.

In the latter two cases we say that ¢ is a vertical isogeny.
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The theory of complex multiplication
Let E/k have End(E) ~ O C K = Q(v/D), with D = disc K.
For each invertible O-ideal a, the a-torsion subgroup
Ela] ={P € E(k): a(P) =0forall a € a}

is the kernel of an isogeny ¢, : E — E’ of degree N(a) =[O : a].
We necessarily have End(E) ~ End(E’), SO ¢, is horizontal.

If a is principal, then E’ ~ E. This induces a cl(O)-action on the set.
Ellp (k) = {j(E) : E/k with End(E) ~ O}.

This action is faithful and transitive; thus Ellp (k) is a principal
homogeneous space, a torsor, for cl(O).

One can decompose horizontal isogenies of large prime degree into an equivalent
sequence of isogenies of small prime degrees, which makes them easy to compute;
see [Broker-Charles-Lauter 2008, Jao-Souhkarev ANTS IX].
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Horizontal isogenies

Every horizontal /-isogeny arises from the action of an invertible
O-ideal [ of norm ¢.

If £ | [Ok : O], no such [ exists; if £1 [Ok : O], then there are

D 0 fisinertin K,
1+ <€) =41 £ is ramified in K,
2 ¢ splits in K,

such ¢-isogenies.

In the split case, (¢) = [ - [, and the [-orbits partition Ellp (k) into
cycles corresponding to the cosets of ([l]) in c1(O).
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Vertical isogenies
Let O be an imaginary quadratic order with discriminant Dp < —4,
and let O’ = Z + £O be the order of index ¢ in O.

The map that sends each invertible O’-ideal a to the (invertible)
O-ideal aO preserves norms and induces a surjective homomorphism

¢: cl(O) = cl(0)
compatible with the class group actions on Ellp (k) and Ellpr (k).

It follows that each j(E’) € Ellp/ (k) has a unique ¢-isogenous “parent”
J(E) in Ellp (k), and every vertical isogeny must arise in this way.

The “children” of j(E) correspond to a coset of the kernel of ¢,

which is a cyclic of order £ — (22), generated by the class of an
invertible O’-ideal with norm ¢2.
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Ordinary elliptic curves over finite fields
Let E/IF, be an ordinary elliptic curve with trace of Frobenius
t=trmg =g+ 1—#EF,).
Then 77 — tmr + g = 0 and we have the norm equation
4q = 1> —V*D,

where D is the (fundamental) discriminant of the imaginary quadratic
field K = Q(\/#> — 4q) ~ End(E) ® Q and v = [Ok : Z[rg]]. We have

Thus [Ok : End(E)] divides v; this holds for any E with trace .
If we define Ell,(F,) = {j(E) : E/F, with trmz = t}, then

ElL(F) = |J Elo(F,).
Zlme ] COCOx
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The main theorem

Theorem (Kohel)

LetV be an ordinary connected component of G,(F,) that does not
contain 0,1728. Then 'V is an £-volcano in which the following hold:

(i) Vertices in level V; all have the same endomorphism ring O;.
(ii) £1[Ok : O], and [O; : O] = £.
(iii) The subgraph on V, has degree 1 + (2), where D = disc(Oy).
(iv) If(2) > 0 then |Vy| is the order of [1] in c1(Oy).
(v) The depth of V is ord,(v), where 4q = t* —v?D.

The term volcano is due to Fouquet and Morain (ANTS V).
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Finding the floor

Curves on the floor necessarily have cyclic rational ¢-torsion. This is useful, for

example, when constructing Edwards curves with the CM method [Morain 2009].
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Finding a shortest path to the floor



Finding a shortest path to the floor



Finding a shortest path to the floor

We now know that we are 2 levels above the floor.
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Application: identifying supersingular curves

The equation 4¢ = > — v*D implies that each ordinary component of
G((F,) is an ¢-volcano of depth less than log, /44.

Given j(E) € I, if we cannot find a shortest path to the floor in
G>(F,2) within [log, p] steps, then E must be supersingular.

Conversely, if E is supersingular, our attempt to find the floor must fail,
since every vertex in the supersingular component has degree ¢ + 1.

See [S 2012] for details.
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Application: identifying supersingular curves

The equation 4¢ = > — v*D implies that each ordinary component of
G((F,) is an ¢-volcano of depth less than log, /44.

Given j(E) € I, if we cannot find a shortest path to the floor in
G>(F,2) within [log, p] steps, then E must be supersingular.

Conversely, if E is supersingular, our attempt to find the floor must fail,
since every vertex in the supersingular component has degree ¢ + 1.

This yields a (probabilistic) algorithm to determine supersingularity in
O(n?) time, where n = log p, improving the O(n*) complexity of the
best previously known algorithms.

Moreover, the expected running time on a random elliptic curve is
O(n?), matching the complexity of the best Monte Carlo algorithms,
and faster in practice.

See [S 2012] for details.
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Application: computing endomorphism rings

Given an ordinary elliptic curve E/F,, if we compute the Frobenius
trace t and put 4¢ = * — v*D, we can determine O ~ End(E) by
determining u = [Ok : O], which must divide v.

It suffices to determine the level of j(E) in its ¢-volcano for £|v.

Problem: when ¢ is large it is not feasible to compute &y,
nor is it feasible to directly compute a vertical /-isogeny.

See [Bisson-S 2011] and [Bisson 2011] for more details.
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Application: computing endomorphism rings

Given an ordinary elliptic curve E/F,, if we compute the Frobenius
trace t and put 4¢ = * — v*D, we can determine O ~ End(E) by
determining u = [Ok : O], which must divide v.

It suffices to determine the level of j(E) in its ¢-volcano for £]v.

Problem: when ¢ is large it is not feasible to compute &y,
nor is it feasible to directly compute a vertical /-isogeny.

Solution: we may determine the primes ¢|u by finding smooth
relations that hold in cl((v/¢)>D) but not in cl(¢2D) and evaluating
the corresponding horizontal isogenies (and similarly for ¢¢)

This yields a probabilistic algorithm to compute End(E) with
subexponential expected running time L[1/2,+/3/2], under GRH..

See [Bisson-S 2011] and [Bisson 2011] for more details.
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Example

Let g = 2320 4+ 261 and suppose tr 7z = t, where
t = 2306414344576213633891236434392671392737040459558.

Then 4g = > —v?*D, where D = —147759 and v = 22p,p, with

p1 = 16447689059735824784039,
p2 = 71003976975490059472571.

For D, = 2*p3D, and D) = p3D, the relation

2 2210 =145 = - =6 =7 =
{ps, 079, P23 929, P31, P41 0139, P149, D167, P191, Pos1» D269, Psg7, Peas }

holds in cI(D;) but not in cI(D}) (p, is an ideal of norm /).
For D, = 2*p?D, and D), = p3D, the relation

=576 2 & o -28 o3 -
{p11, 973", 933, Par, P47, P83, Pio1s Plo7, P37, P317, P49, Por1 }

holds in cl(D,) but not in cl(D}).
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Constructing elliptic curves with the CM method

Let O be an imaginary quadratic order with discriminant D.
The Hilbert class polynomial Hp € Z[X] is defined by

Hp(X) = H (X =)

JEElH (C)

Equivalently, it is the minimal polynomial of j(©) over K = Q(v/D).
The field Ko = K(j(O)) is the ring class field for O.

One can also construct supersingular curves with Hilbert class polynomials; see
[Broker 2008].
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Constructing elliptic curves with the CM method

Let O be an imaginary quadratic order with discriminant D.
The Hilbert class polynomial Hp € Z[X] is defined by

Hp(X) = H (X =)

JEElH (C)

Equivalently, it is the minimal polynomial of j(©) over K = Q(v/D).
The field Ko = K(j(O)) is the ring class field for O.

If ¢ splits completely in Ko, then Hp(X) splits completely in F,[X],
and every root of Hj, is the j-invariant of an elliptic curve E/IF, with
N = g+ 1 — t points, where 4g = 1> — v?D.

Every ordinary elliptic curve E/F, can be constructed in this way,
but computing Hj becomes quite difficult as |D| grows.

The size of Hp is O(|D|log |D|) bits, exponential in log g.

One can also construct supersingular curves with Hilbert class polynomials; see
[Broker 2008].
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Application: computing Hilbert class polynomials

The CRT approach to computing Hp(X), as described in
[Belding-Broker-Enge-Lauter ANTX VIII] and [S 2011].

1. Select a sufficiently large set of primes of the form 4p = 1> — v?D.
2. For each prime p, compute Hp mod p as follows:

a. Generate random curves E/F, until #£ =p+1 — 1.

b. Use volcano climbing to find E’ ~ E with End(E’) ~ O.

c. Enumerate Ellp(F,) by applying the cl(O)-action to j(E').

d. Compute [[;cp, (,) (X —J) = Hp(X) mod p.

3. Use the CRT to recover Hp over Z (or mod g via the explicit CRT).

Under the GRH, the expected running time is O(|D|log> " |D|),
quasi-linear in the size of Hp.

One can similarly compute other types of class polynomials [Enge-S ANTS IX].
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Using a polycyclic presentation

For D = —79447, cI(D) is cyclic of order h(D) = 100.
It is generated by the class of an ideal a;9 with norm 19.
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Using a polycyclic presentation

For D = —79447, cI(D) is cyclic of order h(D) = 100.
It is generated by the class of an ideal a;9 with norm 19.

But cl(D) is also generated by the classes of ideals a, and a;3 with

norms 2 and 13. The classes [a,] and [a;3] have orders 20 and 50

and thus are not independent in cl(©), in fact [a;3]° = [a,]'.

Nevertheless, every element of cl(D) can uniquely represented as
[a2][a13]*",

with0 <e; <20and 0 < ej3 < 5.

In general, any sequence of generators for a finite abelian group G
determines a polycyclic presentation for G.
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Using a polycyclic presentation

For D = —79447, cI(D) is cyclic of order h(D) = 100.
It is generated by the class of an ideal a;9 with norm 19.

But cl(D) is also generated by the classes of ideals a, and a;3 with

norms 2 and 13. The classes [a,] and [a;3] have orders 20 and 50

and thus are not independent in cl(©), in fact [a;3]° = [a,]'.

Nevertheless, every element of cl(D) can uniquely represented as
[a2][a13]*",

with0 <e; <20and 0 < ej3 < 5.

In general, any sequence of generators for a finite abelian group G
determines a polycyclic presentation for G.

Using the polycyclic presentation ([a,], [a;3]) to enumerate Ellp(F,) is
100 times faster than using ([a9]).
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Running the rim

ANAAAARAA



Running the rim

ANNAARAAA
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Running the rim

AAAAAAAAA




Running the rim
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Running the rim

AAAARNAAL



Running the rim

ANAAANAARA

For particularly deep volcanoes, one may prefer to use a pairing-based approach;
see [lonica-Joux ANTS IX].
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Computational results

The CRT method has been used to compute Hp(X) with [D| > 1013,
and using alternative class polynomials, with |D| > 10"
(for comparison, the previous record was |D| ~ 10'9).

When c1(O) is composite (almost always the case), one can
accelerate the CM method by decomposing the ring class field
[Hanrot-Morain 2001, Enge-Morain 2003].

Combining this idea with the CRT approach has made CM
constructions with [D| > 10'® possible [S 2012].
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Application: computing modular polynomials

We can also use a CRT approach to compute &,(X,Y)
[Broker-Lauter-S 2012].

1. Select a sufficiently large set of primes of the form
4p = > — (*D with £ {v, p =1 mod ¢, and k(D) > ¢ + 1.
2. For each prime p, compute ®, mod p as follows:
a. Compute Ellp(F,) using Hp mod p.
b. Map the ¢-volcanoes intersecting Ello(IF,) (without using ).
c. Interpolate ®,(X,Y) mod p.

3. Use the CRT to recover &, over Z (or mod ¢ via the explicit CRT).

Under the GRH, the expected running time is O(¢> log> ™ ¢),
quasi-linear in the size of &,.

We can similarly compute modular polynomials for other modular functions.

One can also use a CRT approach to compute ®y for composite N [Ono-S in prog].
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Mapping a volcano

N AN
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Mapping a volcano

Example General requirements
£ =5, p=4451, D= —151 4p =12 —V2?D, p=1mod?/

N AN
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Mapping a volcano

Example General requirements
£ =5, p=4451, D= —151 4p =12 —V2?D, p=1mod?/
t =52, v=2, h(D)=7 Ctv, (2)=1, h(D)>1+2

N AN
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Mapping a volcano

Example General requirements
£ =5, p=4451, D= —151 4p =12 —V2?D, p=1mod?/
t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2

N

1. Find a root of Hp(X)
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Mapping a volcano

Example General requirements
£ =5, p=4451, D= —151 4p =12 —V2?D, p=1mod?/
t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2

N

1. Find a root of Hp(X): 901
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7
by=2

General requirements

4p =1 —Vv?D, p=1mod/
ttv, (8)=1, nD)>r+2
by # ¢, (%) 1

N

2. Enumerate surface using the action of ay,
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

by = 2, a5:a%

General requirements

4p =12 —V2?D, p=1mod?/
ttv, (8)=1, nD)>r+2
by # £, ((L‘))) 1, ap aﬁ“

N

2. Enumerate surface using the action of «ay,
901 25 1582 25 2501 —25 351 —25 701 —2» 2872 —25 2215 2>
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Example
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

by = 2, a5:a§

General requirements

4p =12 —V2?D, p=1mod?/
ttv, (8)=1, nD)>r+2
by # £, (%) 1, ap aﬁ“

o 351 A 2215

2. Enumerate surface using the action of «ay,
901 25 1582 25 2501 —25 351 —25 701 —2» 2872 —25 2215 2>
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

by = 2, a5:a%

General requirements

4p =12 —V2?D, p=1mod?/
ttv, (8)=1, nD)>r+2
by # £, ((L‘))) 1, ap aﬁ“

901 351 A 2215 2501

2. Enumerate surface using the action of «ay,
901 25 1582 25 2501 —25 351 —25 701 —2» 2872 —25 2215 2>
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

by = 2, a5:a%

General requirements

4p =12 —V2?D, p=1mod?/
ttv, (8)=1, nD)>r+2
by # £, ((L‘))) 1, ap aﬁ“

2872

901 351 A 2215 2501

2. Enumerate surface using the action of «ay,
901 25 1582 25 2501 —25 351 —25 701 —2» 2872 —25 2215 —2»
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

by = 2, a5:a%

General requirements

4p =12 —V2?D, p=1mod?/
ttv, (8)=1, nD)>r+2
by # £, ((L‘))) 1, ap aﬁ“

1582 2872

901 351 A 2215 2501

2. Enumerate surface using the action of «ay,
901 25 1582 25 2501 —25 351 —25 701 —2» 2872 —25 2215 2>
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

by = 2, a5:a%

General requirements

4p =12 —V2?D, p=1mod?/
ttv, (8)=1, nD)>r+2
by # £, ((L‘))) 1, ap aﬁ“

1582 2872

701
9 351

/\ e P

2. Enumerate surface using the action of «ay,
901 25 1582 25 2501 —25 351 —25 701 —2» 2872 —25 2215 —2»
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

by = 2, a5:a§

701

General requirements

4p =12 —V2?D, p=1mod?/
ttv, (8)=1, nD)>r+2
by # £, (%) 1, ap aﬁ“

1582 2872

901

351

/\ e P

3. Descend to the floor using Vélu’s formula
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

by = 2, a5:a§

701

General requirements

4p =12 —V2?D, p=1mod?/
ttv, (8)=1, nD)>r+2
by # £, (%) 1, ap aﬁ“

1582 2872

901

351

3188

/\ e P

3. Descend to the floor using Vélu's formula: 901 —- 3188
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Mapping a volcano

Example

¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

by = 2, a5:a§

701

General requirements

4p =12 —V2?D, p=1mod?/
ttv, (8)=1, nD)>r+2
by # ¢, (%) 1, oy (1,2:0

1582 2872

901

351

3188

/\ e P

4. Enumerate floor using the action of g,
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Mapping a volcano

Example General requirements
¢ =5, p=4451, D= —151 4p =12 —Vv’D, p=1mod/
t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2 /
=2, as=0a3, Pos=p] by # ¢, (:([»T),) L, ap = oy, B = By,
1582 2872
ﬁ ﬁ
3188

4. Enumerate floor using the action of B,
2

3188 — 945 —5 3144 — 3508 — 2843 — 1502 —+ 676 —
2970 2+ 3497 2 1180 — 2464 — 4221 —>5 4228 — 2434 —»

1478 25 3244 —5 2255 5 2976 — 3345 — 1064 —- 1868 —
3328 25291 25 3147 25 2566 — 4397 —25 2087 2+ 3341 5
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Mapping a volcano

Example General requirements

¢ =5, p=4451, D= —-151 4p =12 —Vv’D, p=1mod/

t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2 /
ZO = 2, a5 = a%, ﬁZS = IB; (i() / (17 ((L)) 1, Qy (ktnf rif;j jju

0

1582 2872

ﬁ i i

3188 2970 1478 3328

4. Enumerate floor using the action of B,
2

3188 =945 —5 3144 — 3508 — 2843 — 1502 —+ 676 —»
2970 — 3497 — 1180 —+ 2464 — 4221 — 4228 —+ 2434 —»
1478 25 3244 — 2255 — 2976 — 3345 — 1064 —- 1868 —

3328 25201 25 3147 -2 2566 —= 4397 —25 2087 —2 3341 —2»
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Mapping a volcano

Example General requirements
¢ =5, p=4451, D= —-151 4p =12 —Vv’D, p=1mod/
t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2 /
ZO = 2, a5 = a%, ﬁZS = IB; (i() / (17 (([T))) 1, Qy (ktnf rif;j jju
1532 2872
ﬁ ﬁ
3188 2070 1478 3328 3508 2464 2976 2566

4. Enumerate floor using the action of B,
2

3188 =945 —5 3144 — 3508 — 2843 — 1502 —+ 676 —
2970 -+ 3497 2 1180 — 2464 — 4221 —>5 4228 — 2434 —»
1478 25 3244 — 2255 — 2976 — 3345 — 1064 —- 1868 —

3328 25201 25 3147 -2 2566 —2 4397 —25 2087 —2 3341 —2»
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Mapping a volcano

Example General requirements
¢ =5, p=4451, D= —151 4p =12 —Vv’D, p=1mod/
t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2 /
=2, as=0a3, Pos=p] by # ¢, (:([»T),) L, ap = oy, B = By,
1582 2872
ﬁ ﬁ
3188 2070 1478 3328 3508 2464 2976 2566 676 2434 1868 3341

4. Enumerate floor using the action of B,
2

3188 =945 —5 3144 — 3508 — 2843 — 1502 —+ 676 —
2970 2+ 3497 5 1180 — 2464 — 4221 > 4228 — 2434 —»

1478 25 3244 — 2255 — 2976 — 3345 — 1064 —- 1868 —
3328 25291 25 3147 25 2566 — 4397 —25 2087 2+ 3341 >

32/34



Mapping a volcano

Example General requirements

¢ =5, p=4451, D= —151 4p =12 —Vv’D, p=1mod/

t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2 /

=2, as=0a3, Pos=p] by # ¢, (:([»T),) L, ap = oy, B = By,
1582 2872

ﬁ i i

3188 2970 1478 3328 3508 2464 2976 2566 676 2434 1868 3341 3144 1180 2255 3147

4. Enumerate floor using the action of B,
2

3188 =945 —5 3144 — 3508 — 2843 — 1502 —+ 676 —
2970 2+ 3497 2 1180 — 2464 — 4221 —> 4228 —+ 2434 —»

1478 25 3244 —5 2255 — 2976 — 3345 — 1064 —- 1868 —
3328 25291 25 3147 25 2566 —+ 4397 —25 2087 2+ 3341 >
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Mapping a volcano

Example General requirements

¢ =5, p=4451, D= —151 4p =12 —Vv’D, p=1mod/

t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2 /

=2, as=0a3, Pos=p] by # ¢, (:([»T),) L, ap = oy, B = By,
1582 2872

ﬁ i i

3188 2970 1478 3328 3508 2464 2976 2566 676 2434 1868 3341 3144 1180 2225 3147

4. Enumerate floor using the action of B,
2

3188 =945 —5 3144 — 3508 — 2843 — 1502 —+ 676 —
2970 -+ 3497 2 1180 — 2464 — 4221 —>5 4228 — 2434 —»

1478 25 3244 — 2255 — 2976 — 3345 — 1064 —- 1868 —
3328 25291 25 3147 25 2566 —» 4397 —25 2087 2+ 3341 2>
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Mapping a volcano

Example General requirements

¢ =5, p=4451, D= —151 4p =12 —Vv’D, p=1mod/

t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2 /

=2, as=0a3, Pos=p] by # ¢, (:([»T),) L, ap = oy, B = By,
1582 2872

ﬁ i i

3188 2970 1478 3328 3508 2464 2976 2566 676 2434 1868 3341 3144 1180 2225 3147

4. Enumerate floor using the action of B,
2

3188 =945 — 3144 — 3508 — 2843 — 1502 —+ 676 —»
2970 2+ 3497 25 1180 — 2464 — 4221 — 4228 —+ 2434 —»

1478 25 3244 — 2255 — 2976 — 3345 — 1064 —- 1868 —
3328 25291 25 3147 25 2566 —+ 4397 —25 2087 2+ 3341 >
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Mapping a volcano

Example General requirements

¢ =5, p=4451, D= —151 4p =12 —Vv’D, p=1mod/

t =52, v=2, h(D)=7 ttv, (8)=1, nD)>r+2 /

=2, as=0a3, Pos=p] by # ¢, (:([»T),) L, ap = oy, B = By,
1582 2872

ﬁ i i

3188 2970 1478 3328 3508 2464 2976 2566 676 2434 1868 3341 3144 1180 2225 3147

4. Enumerate floor using the action of B,
2

3188 =945 —5 3144 — 3508 — 2843 — 1502 —+ 676 —
2970 -+ 3497 2 1180 — 2464 — 4221 —>5 4228 — 2434 —»

1478 25 3244 — 2255 — 2976 — 3345 — 1064 —- 1868 —
3328 23291 25 3147 25 2566 —+ 4397 —25 2087 2+ 3341 >
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Mapping a volcano

Example
¢ =5, p=4451, D=—151
t =52, v=2, h(D)=7

bh=2, as=0a3, Ps=p]

General requirements
4p =12 —V2?D, p=1mod?/
Chv, (2y=1, mD)>t+2

(
bo#0, (B)=1, ap ai“f B2 d/(‘“

1582 2872

351

3188 2970 1478 3328

/\ e P

3508 2464 2976 2566

676 2434 1868 3341 3144 1180 2225 3147

32/34



Interpolating ¢, mod p

1582

2872

3188 2970 1478 3328

X, 901
X, 351
X,2215

s ( )
s ( )
‘1)5( )
P5(X,2501)
( )
( )
( )

( )
( )
(X — 351)
(X —2215)
X,2872) = ( )
X,1582) = ( )
X, 701) = (X )

X —2501

s
;5
;5

3508 2464 2976 2566

( )
( )
(X —2501)(X — 3341)
(X —2872)(X — 3147)
(X — 1582 )
( )
( )

676 2434 1868 3341

X — 701)(X — 351)(X — 3188)(X — 2970)(X

X — 1502) (X — 4228)(X —
X —2872)(X — 701)(X — 945)(X — 3497)(X — 3244)(X — 291)
— 1582)(X — 901)(X — 2843)(X — 4221)(X — 3345)(X — 4397)

3144 1180 2225 3147

— 1478)(X — 3328)

(

X — 901)(X — 2215)(X — 3508) (X — 2464)(X — 2976)(X — 2566)
(X — 1868)(X — 2434)(X — 676)
(X —2255)(X — 1180)(X — 3144)
(
(
(

1064)(X — 2087)

33/34



Interpolating ¢, mod p

1582 2872
3188 2970 1478 3328 3508 2464 2976 2566 676 2434 1868 3341 3144 1180 2225 3147

®s5(X, 901) = X6 + 1337X° + 543X* + 497X3 + 4391X? + 3144X + 3262
®s5(X, 351) = X6 + 3174X° + 1789X* + 3373X> + 3972X? + 2932X + 4019
<1>5(X 2215) = X6 +2182X° + 512X* + 435X3 + 2844X? + 2084X + 2709

®5(X,2501) = X6 +2991X° + 3075X5 + 3918X> + 2241X? + 3755X + 1157
®5(X,2872) = X0 + 389X° + 3292X* + 3909X> + 161X? + 1003X + 2091
®s(X,1582) = X0 + 1803X° + 794X* + 3584X3 + 225X% + 1530X + 1975
Os5(X, 701) = X6+ 515X° + 1419X* + 941X3 + 4145X? + 2722X + 2754
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Interpolating ¢, mod p

1582 2872

701
ﬁmﬁ

3188 2970 1478 3328 3508 2464 2976 2566 676 2434 1868 3341 3144 1180 2225 3147

D5(X,Y) = X6 + (4450Y5 + 3720Y* + 2433Y3 4 3499Y2 +  70Y + 3927)X°
(37205 + 3683Y* + 2348Y3 + 2808Y2 + 3745Y + 233)X*
(2433Y5 + 2348Y* + 2028Y3 + 2025Y2 + 4006Y + 2211)X3
(3499Y5 + 2808Y* + 2025Y3 + 4378Y2 + 3886Y + 2050)X>
( 70Y5 4 3745Y* + 40063 4 3886Y2 + 905Y +2091)X
(Y6 + 3927Y5 + 233Y* 4 2211Y3 4 20502 + 2091Y + 2108)
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Computational results

Level records

1. 10009: @,
2. 20011: &, mod ¢
3. 60013: @]

Speed records

1. 251: &,in28s ®y mod ¢ in 4.8s (vs 688s)
2. 1009: ®,in2830s  ®; mod ¢ in 265s (vs 107200s)
3. 1009: @} in2.8s

Effective throughput when computing ®1000 mod ¢ is 100Mb/s.

Single core CPU times (AMD 3.0 GHz), using prime ¢ = 22%.

Polynomials &/, for ¢ < 5000 available at http://math.mit .edu/~drew.
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