Supersingular Curves with Small Non-integer Endomorphisms

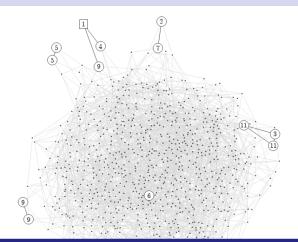
Jonathan Love¹ Dan Boneh²

¹Department of Mathematics, Stanford University https://stanford.edu/~jonlove

²Department of Computer Science, Stanford University https://stanford.edu/~dabo

Algorithmic Number Theory Symposium, June 2020

Preview



Main Goal

Describe a manageable subclass of supersingular curves and analyze its structure.

Outline

Background: Isogenies and endomorphisms

Isogeny graphs and cryptography

3 Elliptic curves with small non-integer endomorphisms

Outline

Background: Isogenies and endomorphisms

Isogeny graphs and cryptography

3 Elliptic curves with small non-integer endomorphisms

Elliptic Curves

Throughout:

• $p \ge 5$ is a prime,

Elliptic Curves

Throughout:

- $p \ge 5$ is a prime,
- F is a finite field of characteristic p,
- E and E' are elliptic curves defined over F.

Isogeny $\phi: E \to E'$: a non-constant map of algebraic varieties (i.e. given by rational functions in x and y) that sends O to O. We will assume isogenies are defined over \overline{F} .

Isogeny $\phi: E \to E'$: a non-constant map of algebraic varieties (i.e. given by rational functions in x and y) that sends O to O. We will assume isogenies are defined over \overline{F} .

An isogeny $E \to E'$ induces a homomorphism $E(\overline{F}) \to E'(\overline{F})$.

Isogeny $\phi: E \to E'$: a non-constant map of algebraic varieties (i.e. given by rational functions in x and y) that sends O to O. We will assume isogenies are defined over \overline{F} .

An isogeny $E \to E'$ induces a homomorphism $E(\overline{F}) \to E'(\overline{F})$.

Degree of ϕ : degree as a map of varieties. This equals the size of the kernel of $\phi: E(\overline{F}) \to E'(\overline{F})$ when ϕ is separable.

Isogeny $\phi: E \to E'$: a non-constant map of algebraic varieties (i.e. given by rational functions in x and y) that sends O to O. We will assume isogenies are defined over \overline{F} .

An isogeny $E \to E'$ induces a homomorphism $E(\overline{F}) \to E'(\overline{F})$.

Degree of ϕ : degree as a map of varieties. This equals the size of the kernel of $\phi: E(\overline{F}) \to E'(\overline{F})$ when ϕ is separable.

Example

If $E: y^2 = x^3 + x$ and $E': y^2 = x^3 - 4x$, then

$$(x,y)\mapsto \left(\frac{y^2}{x^2},\frac{y(x^2-1)}{x^2}\right)$$

is an isogeny of degree 2 from E to E', with kernel $\{(0,0),O\}$.

Endomorphisms

Endomorphism of E: an isogeny $E \to E$. The constant map $P \mapsto O$ is also considered to be an endomorphism.

Endomorphisms

Endomorphism of E: an isogeny $E \to E$. The constant map $P \mapsto O$ is also considered to be an endomorphism.

Example

For any $n \in \mathbb{Z}$, the map $P \mapsto nP$ is an endomorphism of degree n^2 .

Endomorphisms

Endomorphism of E: an isogeny $E \to E$. The constant map $P \mapsto O$ is also considered to be an endomorphism.

Example

For any $n \in \mathbb{Z}$, the map $P \mapsto nP$ is an endomorphism of degree n^2 .

Example

If $E: y^2 = x^3 + x$, then

$$(x, y) \mapsto (-x, iy)$$

is a non-integer endomorphism of degree 1.

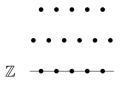
Endomorphism Ring of E, End(E): the set of endomorphisms of E under pointwise addition and composition.

Endomorphism Ring of E, End(E): the set of endomorphisms of E under pointwise addition and composition.

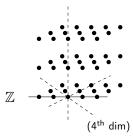
```
E is ordinary if \operatorname{End}(E) is 2-dimensional (order in some \mathbb{Q}(\sqrt{D}))
```

Endomorphism Ring of E, End(E): the set of endomorphisms of E under pointwise addition and composition.

E is ordinary if End(E) is 2-dimensional (order in some $\mathbb{Q}(\sqrt{D})$)

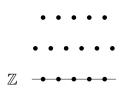


E is supersingular if End(E) is 4-dimensional (order in a quaternion algebra)

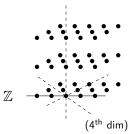


Endomorphism Ring of E, End(E): the set of endomorphisms of E under pointwise addition and composition.

E is ordinary if End(E) is 2-dimensional (order in some $\mathbb{Q}(\sqrt{D})$)



E is supersingular if End(E) is 4-dimensional (order in a quaternion algebra)



In both cases, degree = norm.

Outline

Background: Isogenies and endomorphisms

Isogeny graphs and cryptography

3 Elliptic curves with small non-integer endomorphisms

Let $\ell \neq p$ be a prime, and define a graph as follows:

- Vertices: elliptic curves over F (up to isomorphism)
- ullet Edges: isogenies of degree ℓ

Let $\ell \neq p$ be a prime, and define a graph as follows:

- Vertices: elliptic curves over F (up to isomorphism)
- ullet Edges: isogenies of degree ℓ

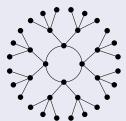
Example: elliptic curves over \mathbb{F}_{p^2} with p=401, $\ell=3$.

Let $\ell \neq p$ be a prime, and define a graph as follows:

- Vertices: elliptic curves over F (up to isomorphism)
- ullet Edges: isogenies of degree ℓ

Example: elliptic curves over \mathbb{F}_{p^2} with p=401, $\ell=3$.

An ordinary component:

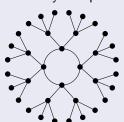


Let $\ell \neq p$ be a prime, and define a graph as follows:

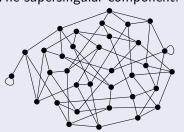
- Vertices: elliptic curves over F (up to isomorphism)
- ullet Edges: isogenies of degree ℓ

Example: elliptic curves over \mathbb{F}_{p^2} with p=401, $\ell=3$.

An ordinary component:



The supersingular component:



ℓ -isogeny graphs

Example: elliptic curves over \mathbb{F}_{p^2} with p=401, $\ell=3$.

An ordinary component:



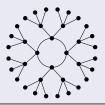
The supersingular component:

Each ordinary component has the structure of a volcano.¹

¹Andrew Sutherland. *Isogeny Volcanoes*, The Open Book Series 1, Aug 2012.

Example: elliptic curves over \mathbb{F}_{p^2} with p=401, $\ell=3$.

An ordinary component:



The supersingular component:

- Each ordinary component has the structure of a volcano.¹
- There is a unique supersingular component, and it has the structure of a Ramanjuan graph² (implies that random walks converge rapidly to the uniform distribution).

¹Andrew Sutherland. *Isogeny Volcanoes*, The Open Book Series 1, Aug 2012.

²Pizer, A.K. *Ramanujan Graphs and Hecke Operators*, Bulletin of the AMS, Volume 23, Number 1, July 1990.

Hard Problem:

Hard Problem:

Given two random supersingular curves E and E', find an isogeny $E \to E'$.

Hash function³

³Denis Charles, Kritin Lauter, Eyal Goren. *Cryptographic Hash Functions from Expander Graphs*. Journal of Cryptology 22, 93–113 (2009).

Hard Problem:

- Hash function³
- Diffie-Hellman Key Exchange⁴

³Denis Charles, Kritin Lauter, Eyal Goren. *Cryptographic Hash Functions from Expander Graphs*. Journal of Cryptology 22, 93–113 (2009).

⁴Luca De Feo, David Jao, Jérôme Plût. *Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies*. Journal of Mathematical Cryptology 8(3), 209-247.

Hard Problem:

- Hash function³
- Diffie-Hellman Key Exchange⁴
- CSIDH (a modified approach to Diffie-Hellman)⁵

³Denis Charles, Kritin Lauter, Eyal Goren. *Cryptographic Hash Functions from Expander Graphs*. Journal of Cryptology 22, 93–113 (2009).

⁴Luca De Feo, David Jao, Jérôme Plût. *Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies*. Journal of Mathematical Cryptology 8(3), 209-247.

⁵Wouter Castryck et al. *CSIDH: An Efficient Post-Quantum Commutative Group Action.* IACR Cryptol. ePrint Arch. (2018): 383.

Hard Problem:

- Hash function³
- Diffie-Hellman Key Exchange⁴
- CSIDH (a modified approach to Diffie-Hellman)⁵
- And more!

³Denis Charles, Kritin Lauter, Eyal Goren. *Cryptographic Hash Functions from Expander Graphs.* Journal of Cryptology 22, 93–113 (2009).

⁴Luca De Feo, David Jao, Jérôme Plût. *Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies*. Journal of Mathematical Cryptology 8(3), 209-247.

⁵Wouter Castryck et al. *CSIDH: An Efficient Post-Quantum Commutative Group Action.* IACR Cryptol. ePrint Arch. (2018): 383.

Finding supersingular curves

Rare: about $\frac{1}{12p}$ of elliptic curves over \mathbb{F}_{p^2} are supersingular.

Finding supersingular curves

Rare: about $\frac{1}{12p}$ of elliptic curves over \mathbb{F}_{p^2} are supersingular.

Bröker's algorithm⁶ finds one supersingular curve:

- Find an elliptic curve with complex multiplication, defined over a number field K.
- Reduce modulo a prime of K dividing p.
- Under certain congruence conditions, the result is supersingular.

⁶Reinier Bröker. Constructing supersingular elliptic curves. Frontiers of Combinatorics and Number Theory, Jan 2009.

Finding supersingular curves

Rare: about $\frac{1}{12p}$ of elliptic curves over \mathbb{F}_{p^2} are supersingular.

Bröker's algorithm⁶ finds one supersingular curve:

- Find an elliptic curve with complex multiplication, defined over a number field K.
- Reduce modulo a prime of K dividing p.
- Under certain congruence conditions, the result is supersingular.

Then take a random walk in an $\ell\text{-isogeny}$ graph to obtain a random supersingular curve.

⁶Reinier Bröker. *Constructing supersingular elliptic curves*. Frontiers of Combinatorics and Number Theory, Jan 2009.

Finding hard supersingular curves

A supersingular curve E is "hard" if no one (not even the party who generated E) can efficiently compute End(E).

Finding hard supersingular curves

A supersingular curve E is "hard" if no one (not even the party who generated E) can efficiently compute End(E).

Motivation: In some cryptographic applications, 7 knowing End(E) allows for the creation of backdoors. A hard curve would eliminate the need for trusted setup.

⁷For one example: Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. *Verifiable Delay Functions from Supersingular Isogenies and Pairings*. IACR Cryptology ePrint Archive, 2019.

Finding hard supersingular curves

A supersingular curve E is "hard" if no one (not even the party who generated E) can efficiently compute $\operatorname{End}(E)$.

Motivation: In some cryptographic applications, 7 knowing End(E) allows for the creation of backdoors. A hard curve would eliminate the need for trusted setup.

Open Problem

Find an explicit hard supersingular elliptic curve.

⁷For one example: Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. *Verifiable Delay Functions from Supersingular Isogenies and Pairings*. IACR Cryptology ePrint Archive, 2019.

Outline

Background: Isogenies and endomorphisms

Isogeny graphs and cryptography

3 Elliptic curves with small non-integer endomorphisms

M-small Curves

Consider:

- p: A "cryptographic" prime (e.g. $p \sim 2^{200}$)
- ullet M: A "reasonable" parameter (e.g. $M\sim 2^{10}$)

M-small Curves

Consider:

- p: A "cryptographic" prime (e.g. $p \sim 2^{200}$)
- M: A "reasonable" parameter (e.g. $M \sim 2^{10}$)

Definition

An elliptic curve E over a finite field of characteristic p is M-small if there exists $\alpha \in \operatorname{End}(E) - \mathbb{Z}$ with $\deg \alpha \leq M$.

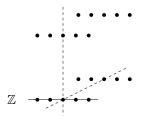
Visualizing M-small endomorphism rings

What does (a 3-dimensional slice of) the endomorphism ring of a supsersingular curve look like?

Visualizing M-small endomorphism rings

What does (a 3-dimensional slice of) the endomorphism ring of a supsersingular curve look like?

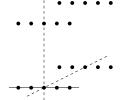
Typical:



Smallest degree of non-integer endomorphism $\sim p^{2/3}$

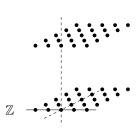
Visualizing M-small endomorphism rings

What does (a 3-dimensional slice of) the endomorphism ring of a supsersingular curve look like?



Smallest degree of non-integer endomorphism $\sim p^{2/3}$

M-small:



Smallest degree of non-integer endomorphism $\leq M$

• The number of *M*-small curves is $O(M^{3/2})$.

- The number of *M*-small curves is $O(M^{3/2})$.
- The set of *M*-small curves can be generated efficiently using a generalization of Bröker's algorithm.

- The number of *M*-small curves is $O(M^{3/2})$.
- The set of *M*-small curves can be generated efficiently using a generalization of Bröker's algorithm.
- When $M \ll p$, approximately half of all M-small curves appear to be supersingular.

- The number of M-small curves is $O(M^{3/2})$.
- The set of *M*-small curves can be generated efficiently using a generalization of Bröker's algorithm.
- When $M \ll p$, approximately half of all M-small curves appear to be supersingular.
- Endomorphism rings of *M*-small curves, and isogenies between them, can be computed efficiently.

- The number of M-small curves is $O(M^{3/2})$.
- The set of *M*-small curves can be generated efficiently using a generalization of Bröker's algorithm.
- When $M \ll p$, approximately half of all M-small curves appear to be supersingular.
- Endomorphism rings of *M*-small curves, and isogenies between them, can be computed efficiently.
- The set of M-small supersingular curves forms "clusters" indexed by fundamental discriminants.

Theorem 1.3

Suppose $p\gg M$. The set of M-small supersingular curves partitions into sets T_D , for fundamental discriminants $-4M\leq D<0$ with $\left(\frac{D}{p}\right)=-1$.

Theorem 1.3

Suppose $p\gg M$. The set of M-small supersingular curves partitions into sets T_D , for fundamental discriminants $-4M\leq D<0$ with $\left(\frac{D}{p}\right)=-1$.

• If E, E' are in distinct subsets $T_D \neq T_{D'}$, then any isogeny $E \to E'$ has degree at least $\frac{\sqrt{p}}{2M}$.

Theorem 1.3

Suppose $p\gg M$. The set of M-small supersingular curves partitions into sets T_D , for fundamental discriminants $-4M\leq D<0$ with $\left(\frac{D}{P}\right)=-1$.

- If E, E' are in distinct subsets $T_D \neq T_{D'}$, then any isogeny $E \to E'$ has degree at least $\frac{\sqrt{p}}{2M}$.
- If E, E' are in the same subset T_D , then they can be linked by a chain of isogenies of degree at most $\frac{4}{\pi}\sqrt{M}$ between elements of T_D .

Theorem 1.3

Suppose $p\gg M$. The set of M-small supersingular curves partitions into sets T_D , for fundamental discriminants $-4M\leq D<0$ with $\left(\frac{D}{P}\right)=-1$.

- If E, E' are in distinct subsets $T_D \neq T_{D'}$, then any isogeny $E \to E'$ has degree at least $\frac{\sqrt{p}}{2M}$.
- If E, E' are in the same subset T_D , then they can be linked by a chain of isogenies of degree at most $\frac{4}{\pi}\sqrt{M}$ between elements of T_D .

^aOne may need to replace E' with its Frobenius conjugate $E'^{(p)}$.

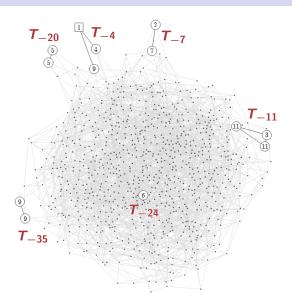


Figure: Supersingular curves in characteristic p=20011 (modulo conjugation on \mathbb{F}_{p^2}). Edges: isogenies of prime degree at most $\frac{4}{\pi}\sqrt{12}\approx 4.4$. 12-small curves labelled with smallest degree of a non-integer endomorphism.

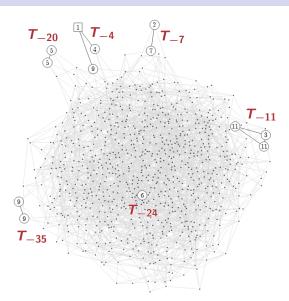


Figure: Supersingular curves in characteristic p=20011 (modulo conjugation on \mathbb{F}_{p^2}). Edges: isogenies of prime degree at most $\frac{4}{\pi}\sqrt{12}\approx 4.4$. 12-small curves labelled with smallest degree of a non-integer endomorphism.

Despite their distance, we can compute (large-degree) isogenies between the clusters!

No clustering in *ℓ*-isogeny graphs

This clustering is not evident in ℓ -isogeny graphs for any individual ℓ . We must consider all sufficiently small primes to see clustering.

No clustering in *ℓ*-isogeny graphs

This clustering is not evident in ℓ -isogeny graphs for any individual ℓ . We must consider all sufficiently small primes to see clustering.

Corollary C.2

Suppose ℓ is a prime such that an (M/ℓ^2) -small supersingular curve exists. Then there are two M-small supersingular curves E, E', linked by an isogeny of degree ℓ , such that for any isogeny $\phi: E \to E'$ with degree relatively prime to ℓ ,

$$\deg \phi \geq \frac{p\ell}{4M}$$
.

No clustering in *ℓ*-isogeny graphs

This clustering is not evident in ℓ -isogeny graphs for any individual ℓ . We must consider all sufficiently small primes to see clustering.

Corollary C.2

Suppose ℓ is a prime such that an (M/ℓ^2) -small supersingular curve exists. Then there are two M-small supersingular curves E, E', linked by an isogeny of degree ℓ , such that for any isogeny $\phi: E \to E'$ with degree relatively prime to ℓ ,

$$\deg \phi \geq \frac{p\ell}{4M}.$$

In other words,

Conclusion

• We have defined a set of supersingular curves that is relatively easy to analyze and to work with.

Conclusion

- We have defined a set of supersingular curves that is relatively easy to analyze and to work with.
- We can compute isogenies between these curves that could not reasonably be found by an ℓ-isogeny graph search.

Conclusion

- We have defined a set of supersingular curves that is relatively easy to analyze and to work with.
- We can compute isogenies between these curves that could not reasonably be found by an ℓ -isogeny graph search.

Thank you for listening!

Questions/Comments?

jonlove@stanford.edu dabo@cs.stanford.edu