Counting points on superelliptic curves in average polynomial time

Andrew V. Sutherland
Massachusetts Institute of Technology

ANTS XIV

Why count points?

Let X / \mathbb{Q} be a nice (smooth, projective, geometrically integral) curve of genus g. For each prime p of good reduction for X (the good primes) we have

$$
\# X_{p}\left(\mathbb{F}_{p}\right)=p+1-a_{p}
$$

where the trace of Frobenius a_{p} satisfies $\left|a_{p}\right| \leq 2 g \sqrt{p}$.
Some open questions about the distribution of a_{p} as p varies:

- For a fixed integer t, how often is $a_{p}=t$? [Lang-Trotter]
- What is the distribution of $x_{p}:=a_{p} / \sqrt{p}$? [Sato-Tate]
- Is the sign of a_{p} subject to a Chebyshev bias? [Mazur-Sarnak]
- Is the order of vanishing of $L(X, s)$ at $s=1$ equal to the rank of $\operatorname{Jac}(X)$? [BSD] Some partial answers are known for $g=1$, but for $g>1$ very little is known.

Why average polynomial time?

To "compute" $L(s)$ it is enough to know a_{n} for $n \leq N$ with $N \propto \sqrt{\operatorname{cond} \operatorname{Jac}(X)}$. We would like to be able to do this in quasi-linear time (as a function of N).

The a_{n} are determined by the $a_{p^{r}}$ with $p^{r} \leq N$, almost all of which are a_{p} 's. We can compute the $a_{p^{r}}$ for $r>1$ in $O(p)$ time using p-adic methods. But we need to be able to compute the a_{p} in time polynomial in $\log p$ (on average).

What about bad primes?

- For distributional questions we can ignore the finitely many bad primes.
- For computing $L(X, s)$ we can deduce the $a_{p^{r}}$ for bad p using the functional equation if we are willing to assume the Hasse-Weil conjecture holds for X (and prepared to compute lots of a_{p}, more than we might otherwise need).

Note: For $p \geq 16 g^{2}$ it is enough to know $a_{p} \bmod p$, since $\left|a_{p}\right| \leq 2 g \sqrt{p}$.

Algorithms for hyperelliptic curves

Let $X / \mathbb{Q}: y^{2}=f(x)$ with $d=\operatorname{deg}(f)$, then $g=(d-\operatorname{gcd}(d, 2)) / 2$.
We wish to compute a_{p} for good $p \leq N$ for some bound N. Three approaches:
(1) Use Harvey's optimization [Har07] of Kedlaya's p-adic algorithm for each p. This costs $O\left(p^{1 / 2}(\log p)^{2} g^{\omega}\right)$ per $p \leq N$, yielding $O\left(N^{3 / 2}(\log N) g^{3}\right)$.
(2) Apply Abelard's optimization [Abe18] of Pila's ℓ-adic algorithm for each p. This costs $O\left((\log p)^{O(g)}\right)$ per $p \leq N$, yielding $O\left(N(\log N)^{O(g)}\right)$.
(3) Apply the optimization [HS16] of Harvey's average polynomial-time algorithm. This costs $O\left((\log p)^{4} g^{3}\right)$ per $p \leq N$ on average, or $O\left(N(\log N)^{3} g^{3}\right)$.
Only the third has a running time that is quasi-linear in N and polynomial in g.
In practice it is much faster than the p-adic or ℓ-adic approaches for all values of g. The best known value for the $O(g) \ell$-adic exponent is $5,8,14$ for $g=1,2,3$.

Algorithms for superelliptic curves

Let $X / \mathbb{Q}: y^{m}=f(x)$ with $d=\operatorname{deg}(f)$, then $g=((d-2)(m-1)+m-\operatorname{gcd}(m, d)) / 2$. We wish to compute a_{p} for good $p \leq N$ for some bound N. Three approaches:
(1) Use the ANTS XIII [ABCMT19] generalization of Harvey's optimization of Kedlaya's p-adic for hyperelliptic curves. This costs $O\left(p^{1 / 2}(\log p)^{2} m d^{\omega}\right)$ per $p \leq N$, yielding $O\left(N^{3 / 2}(\log N) m d^{\omega}\right)$.
(2) Use an optimization [AH01] of Pila's generalization of Schoof's algorithm. This costs $O\left((\log p)^{g^{o(1)}}\right)$ per $p \leq N$, yielding $O\left(N(\log N)^{g^{g(1)}}\right)$.
(3) Use the algorithm presented in this talk.

This costs $O\left((\log p)^{4} m d^{3}\right)$ per $p \leq N$ on average, or $O\left(N(\log N)^{3} m d^{3}\right)$.
As in the hyperelliptic case, not only is the average polynomial-time approach asymptotically faster, it is faster in practice for essentially all values of d, m and N.

Note: Our definition of superelliptic curves coincides with the cyclic covers of \mathbb{P}^{1} considered in [ABCMT19], which also requires f to be separable

The Cartier-Manin matrix

Let K be the function field of curve X / \mathbb{F}_{p}, and let Ω_{K} be its module of differentials. If we fix $x \in K$ so that $K / \mathbb{F}_{p}(x)$ is separable, every $z \in K$ can be written uniquely as

$$
z=z_{0}^{p}+z_{1}^{p} x+\cdots z_{p-1}^{p} x^{p-1}
$$

with $z_{1} \in K^{p}$. The Cartier operator $\mathcal{C}: \Omega_{K} \rightarrow \Omega_{K}$ defined by $z d x \mapsto z_{p-1} d x$ satisfies
(1) $\mathcal{C}\left(\omega_{1}+\omega_{2}\right)=\mathcal{C}\left(\omega_{1}\right)+\mathcal{C}\left(\omega_{2}\right)$ for all $\omega_{1}, \omega_{2} \in \Omega_{K}$;
(2) $\mathcal{C}\left(z^{p} \omega\right)=z \mathcal{C}(\omega)$ for all $z \in K$ and $\omega \in \Omega_{K}$;
(3) $\mathcal{C}(d z)=0$ for all $z \in K$;
(4) $\mathcal{C}(d z / z)=d z / z$ for all $z \in K^{\times}$.
and restricts to a semilinear operator on the space $\Omega_{K}(0)$ of regular differentials. The Cartier-Manin matrix $A_{p} \in \mathbb{F}_{p}^{g \times g}$ of X gives the action of \mathcal{C} on a basis for $\Omega_{K}(0)$.

For a superelliptic curve $X: y^{m}=f(x)$ we use the basis $\omega:=\left\{\omega_{i j}: m i+d j<m d\right\}$, where $\omega_{i j}:=\frac{1}{m} x^{i-1} y^{j-m} d x$ for $i, j \geq 1$. Key fact: $\operatorname{tr}\left(A_{p}\right) \equiv a_{p} \bmod p$.

Stöhr-Voloch

Write $k(X)=k(x)[y] /(F)$ with $F \in k[x][y]$. Then

$$
\mathcal{C}\left(h \frac{d x}{F_{y}}\right)=\left(\nabla\left(F^{p-1} h\right)\right)^{1 / p} \frac{d x}{F_{y}}, \quad \text { where } \nabla:=\frac{\partial^{2 p-2}}{\partial x^{p-1} \partial y^{p-1}} .
$$

If we now define $\omega_{k \ell}:=x^{k-1} y^{\ell-1} \frac{d x}{F_{y}}$, with $k, \ell \geq 1$ and $\left.k+\ell \leq \operatorname{deg}(F)-1\right)$, then

$$
\mathcal{C}\left(\omega_{k \ell}\right)=\sum\left(F_{i p-k, j p-\ell}^{p-1}\right)^{1 / p} \omega_{i j}
$$

Not all $\omega_{k \ell}$ are regular, $F(x, y)=y^{m}-f(x)$ requires $m k+d \ell<m d$. The matrix of \mathcal{C} is

$$
A_{p}:=\left[B^{j \ell}\right]_{j \ell}, \quad B^{j \ell}:=\left[\left(b_{i k}^{i \ell}\right)^{1 / p}\right]_{i k}, \quad b_{i k}^{j \ell}:= \begin{cases}f_{i p-k}^{n_{j}} & \text { for }(j p-\ell) m \in \mathbb{Z}_{\geq 0} \\ 0 & \text { otherwise }\end{cases}
$$

where $j, \ell \leq m-\left\lfloor\frac{m}{d}\right\rfloor-1, i \leq d-\left\lfloor\frac{d j}{m}\right\rfloor-1, k \leq d-\left\lfloor\frac{d \ell}{m}\right\rfloor-1$, and $n_{j}:=p-1-\left\lfloor\frac{j p}{m}\right\rfloor$.

A genus 4 example

For $X: y^{5}=f(x)$ with $\operatorname{deg}(f)=3$ the Cartier-Manin matrix has the form

$$
\begin{aligned}
& \left(\begin{array}{cccc}
f_{p}^{(4 p-1) / 5} & f_{p-2)}^{(4 p-4) / 5} & 0 & 0 \\
f_{2 p}^{(4 p-4) / 5} & f_{2 p-2}^{(4 p-4) / 5} & 0 & 0 \\
0 & 0 & f_{p-1}^{(3 p-3) / 5} & 0 \\
0 & 0 & 0 & f_{p-1}^{(2 p-2) / 5}
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 0 & f_{p-1}^{(4 p-3) / 5} & 0 \\
0 & 0 & f_{2 p-1}^{(p p-3) / 5} & 0 \\
0 & 0 & 0 \\
f_{p-1}^{(2 p-4) / 5} & b_{p-2}^{(2 p-4) / 5} & 0 & 0
\end{array}\right), \\
& \left(\begin{array}{cccc}
0 & 0 & 0 & f_{p-1}^{(4 p-2) / 5} \\
0 & 0 & 0 & f_{2 p-2) / 5}^{(4 p-1} \\
f_{p-1}^{(3 p-4) / 5} & f_{p-2}^{(3 p-4) / 5} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & f_{p-1}^{(3 p-2) / 5} \\
0 & 0 & f_{p-1}^{(2 p-3) / 5} & 0
\end{array}\right) .
\end{aligned}
$$

for $p \equiv 1,2,3,4 \bmod 5$. Here f_{k}^{n} denotes the coefficient of x^{k} in f^{n}.

Linear recurrences

Let $f=\sum_{i} f_{i} x^{i}$ with $f_{0} \neq 0$. The identities $f^{n+1}=f \cdot f^{n}$ and $\left(f^{n+1}\right)^{\prime}=(n+1) f^{n}$ imply

$$
\sum_{i}((n+1) i-k) f_{i} f_{k-i}^{n}=0,
$$

For the exponents $n=((m-j) p-(m-\ell)) / m$ of interest to us (with $1 \leq j, \ell<m$)

$$
\sum_{i}(\ell i-m k) f_{i} f_{k-i}^{n} \equiv 0 \bmod p
$$

for all $n \in \mathbb{Z}_{\geq 0}, k \in \mathbb{Z}$. If we know $f_{k-1-d}^{n}, \ldots f_{k-1}^{n}$ we can compute f_{k}^{n} using

$$
M_{k-1}:=\left[\begin{array}{cccc}
0 & \cdots & 0 & (\ell r-m k) f_{d} \\
m k f_{0} & \cdots & 0 & (\ell(d-1)-m k) f_{d-1} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & m k f_{0} & (\ell-m k) f_{1}
\end{array}\right]
$$

We want to compute $v_{0} M_{0} \cdots M_{k-1} \bmod m_{k}$ for $1 \leq k \leq N$, where $v_{0}=\left[0, \ldots, 0, f_{0}^{n}\right]$.

Accumulating remainder forest

We can save both time and space by using a remainder forest rather than a tree. Given an initial vector (or matrix) v_{0}, matrices M_{i}, and moduli m_{i}, we compute

$$
v_{k}:=v_{0} M_{0} \cdots M_{k-1} \bmod m_{k}
$$

for $1 \leq k \leq N$. by partitioning the N matrices and moduli into 2^{κ} blocks of size $n:=N / 2^{\kappa}$ and applying the remainder tree algorithm to each block.

Let $V:=v_{0}$ and $m:=m_{1} \cdots m_{N}$, and for j from 1 to 2^{κ} proceed as follows:
(1) Compute product trees of $M_{(j-1) n} \cdots M_{j n-1}$ and $m_{(j-1) n+1} \cdots m_{j n}$.
(2) Starting with $V_{\text {parent }}:=V$, work down the trees computing $V_{\text {left }}:=V_{\text {parent }} \bmod m_{\text {left }}$ and $V_{\text {right }}:=V_{\text {parent }} M_{\text {left }} \bmod m_{\text {right }}$ at each node.
(3) Output $v_{(j-1) n}, \cdots, v_{j n-1}$ at the leaves.
(4) Set $m \leftarrow m /\left(m_{(j-1) n+1} \cdots m_{j n}\right)$ and $V \leftarrow V M_{(j-1) n} \cdots M_{j n-1} \bmod m$.

Average time per $p \leq N$ in milliseconds (2.8GHz CPU)

g	m	d	$N=2^{16}$		$N=2^{20}$		$N=2^{24}$		$N=2^{28}$	
			sage	new	sage	new	sage	new	sage	new
1	2	3	21	0.01	27	0.05	67	0.13	230	0.30
2	2	5	30	0.08	55	0.38	163	0.92	580	2.01
2	2	6	42	0.16	83	0.74	280	1.77	1070	3.92
3	2	7	53	0.24	112	1.29	307	3.12	1217	6.71
3	2	8	74	0.34	169	2.07	528	4.94	2106	10.57
3	3	4	34	0.05	61	0.26	178	0.70	702	1.63
3	4	3	32	0.03	58	0.15	165	0.37	601	0.89
3	4	4	49	0.09	101	0.44	343	1.14	1283	2.63
4	2	9	96	0.44	194	3.24	576	7.70	2214	15.90
4	2	10	138	0.55	319	4.65	974	10.98	3693	22.79
4	3	5	47	0.11	93	0.65	287	1.67	1105	3.68
4	3	6	71	0.18	152	1.28	535	3.20	2121	7.07
4	5	3	37	0.03	68	0.13	200	0.40	778	0.99
4	6	3	49	0.06	112	0.24	313	0.64	1184	1.53

Choose your own adventure!

Questions you could now ask:

- Your cover slide seemd to promise a Sato-Tate histogram, where is it?!
- Remainder forests use a time/space trace-off, so they must be slower, right?
- What about arbitrary cyclic covers of \mathbb{P}^{1} ? $C_{a, b}$ curves? Smooth plane curves?
- Traces aren't enough, I want the full zeta function! How do I compute that in average polynomial time?
- Something else entirely...
a1 histogram of $y^{7}=x^{3}+4 x^{2}+3 x-1$ for $p<=2^{10}$
170 data points in 13 buckets, $z 1=0.829$, out of range data has area 0.829

Moments: 1 - $0.1021 .2471 .33947 .773 \quad 230.195 \quad 2943.015 \quad 20456.367 \quad 207226.170 \quad 1639084.37015253280 .851$

Optimal values of $\kappa\left(2^{\kappa}\right.$ trees in the forest) for various N

g	m	d	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	2^{22}	2^{24}	2^{26}	2^{28}
1	3	3	12	14	12	12	12	12	12	12	12
1	2	3	12	13	10	11	10	10	10	10	10
1	2	4	12	14	10	11	10	10	10	10	10
2	2	5	12	14	11	11	10	10	10	10	11
2	2	6	12	14	16	11	10	10	10	10	11
3	2	7	12	14	16	12	10	10	10	11	11
3	2	8	12	14	16	11	10	10	10	11	11
3	4	3	12	14	12	12	12	12	12	12	12
3	3	4	12	14	13	13	12	12	12	12	12
3	4	4	12	14	13	13	12	12	12	12	12
4	2	9	12	14	16	12	10	10	10	10	11
4	3	5	12	14	16	13	12	12	12	12	12
4	3	6	12	14	16	13	12	12	12	12	13
4	2	10	12	14	16	18	10	10	10	11	11
4	5	3	12	14	15	15	15	14	14	14	14
4	6	3	12	14	12	12	12	12	12	12	12

Cyclic covers of \mathbb{P}^{1}

The p-rank of ramified covers of curves
Irene I. Bouw, Compositio. Mathematica 126 (2001), 295-322.

Lemma (Lemma 5.1)

Let $X: y^{m}=\left(x-x_{1}\right)^{a_{1}}\left(x-x_{2}\right)^{a_{2}} \cdots\left(x-x_{r}\right)^{a_{r}}$ be a cyclic cover of \mathbb{P}^{1} over an algebraically closed field of characteristic p. If $i^{\prime} \equiv p i \bmod m$ then the $(i, j),\left(i^{\prime}, j^{\prime}\right)$ coefficient of the Hasse-Witt matrix of X is given by

$$
(-1)^{N} \sum_{n_{1}+\cdots n_{r}=N}\binom{\left[p\left\langle\frac{i a_{1}}{\ell}\right\rangle\right]}{n_{1}} \cdots\binom{\left[p\left\langle\frac{i a_{r}}{\ell}\right\rangle\right]}{n_{r}} x_{1}^{n_{1}} \cdots x_{r}^{n_{r}},
$$

where $N=p(\|i\|+1-j)-\left(\left\|i^{\prime}\right\|+1-j^{\prime}\right)$, and if $i^{\prime} \not \equiv p i \bmod m$ then it is zero.
Here $\langle z\rangle$ and $[z]$ denote the fractional and integers parts of $z \in \mathbb{Q}$.

Harvey's results for arithmetic schemes

Theorem (Harvey 2014)

Let X be an arithmetic scheme. The following hold:
(1) There is a deterministic algorithm that, given a prime p, outputs $Z_{X_{p}} \in \mathbb{Q}[T]$ in $p(\log p)^{1+o(1)}$ time using $O(\log p)$ space.
(2) There is a deterministic algorithm that, given a prime p, outputs $Z_{X_{p}} \in \mathbb{Q}[T]$ in $\sqrt{p}(\log p)^{2+o(1)}$ time using $O(\sqrt{p} \log p)$ space.
(3) There is a deterministic algorithm that, given an integer N outputs $Z_{X_{p}} \in \mathbb{Q}[T]$ for all $p \leq N$ in time $N(\log N)^{3+o(1)}$ using $O\left(N \log ^{2} N\right)$ space.

In these complexity estimates, X is fixed, only p or the bound N are part of the input (the arithmetic scheme X is effectively "hardwired" into the algorithm).
If one constrains X and fixes its representation (e.g. a smooth plane curve), one can make the dependence on X completely explicit.
This theorem is not merely an existence statement, its gives explicit algorithms.

Complexity analysis for smooth plane curves

There are four ways to compute $M_{s} \bmod p^{e}$ for $1 \leq s \leq e$;
(1) Apply $M_{s}=\left[F_{p \vec{v}-\vec{u}}^{s(p-1)}\right]$; time $g^{5} p^{2}(\log p)^{1+o(1)}$. (multivariate Kronecker: $\left.\sum_{0 \leq s \leq e}\left((d s p)^{2}\right)^{3} e(\log p)^{1+o(1)}=g^{5} p^{2}(\log p)^{1+o(1)}\right)$
(2) Use $Q(k, \ell)$ to compute rows of M_{s} using mat-vec mults: time $g^{11} p(\log p)^{1+o(1)}$. $\left(\sum_{0 \leq s \leq e}\left((d s)^{2} p\left((d s)^{2}\right)^{2} e(\log p)^{1+o(1)}=g^{11} p(\log p)^{1+o(1)}\right)\right.$
(3) Apply BGS to compute $Q(k, \ell)$ products: time $g^{14} \sqrt{p}(\log p)^{2+o(1)}$. (as above, but now we need matrix-matrix mults, dimension is $O\left(g^{3}\right)$)
(4) Use an average polynomial time approach for $p \leq N$: time $g^{14} N(\log N)^{3+o(1)}$.

Except for 1 , these dominate the time to compute $Z_{C_{p}}(T)$ given the $M_{s} \bmod p^{e}$. In case 1 we obtain a total complexity of $\left(g^{5} p^{2}+g^{11} \log p\right)(\log p)^{1+o(1)}$.

