Counting points on superelliptic curves in average polynomial time

Andrew V. Sutherland

Massachusetts Institute of Technology

ANTS XIV

Why count points?

Let X/\mathbb{Q} be a nice (smooth, projective, geometrically integral) curve of genus g. For each prime p of good reduction for X (the good primes) we have

 $#X_p(\mathbb{F}_p) = p + 1 - a_p,$

where the trace of Frobenius a_p satisfies $|a_p| \leq 2g\sqrt{p}$.

Some open questions about the distribution of a_p as p varies:

- For a fixed integer *t*, how often is $a_p = t$? [Lang–Trotter]
- What is the distribution of $x_p := a_p / \sqrt{p}$? [Sato-Tate]
- Is the sign of *a_p* subject to a Chebyshev bias? [Mazur–Sarnak]
- Is the order of vanishing of L(X, s) at s = 1 equal to the rank of Jac(X)? [BSD] Some partial answers are known for g = 1, but for g > 1 very little is known.

Why average polynomial time?

To "compute" L(s) it is enough to know a_n for $n \le N$ with $N \propto \sqrt{\text{cond Jac}(X)}$. We would like to be able to do this in quasi-linear time (as a function of N).

The a_n are determined by the a_{p^r} with $p^r \le N$, almost all of which are a_p 's. We can compute the a_{p^r} for r > 1 in O(p) time using *p*-adic methods. But we need to be able to compute the a_p in time polynomial in $\log p$ (on average).

What about bad primes?

- For distributional questions we can ignore the finitely many bad primes.
- For computing L(X, s) we can deduce the a_{p^r} for bad p using the functional equation if we are willing to assume the Hasse–Weil conjecture holds for X (and prepared to compute lots of a_p , more than we might otherwise need).

Note: For $p \ge 16g^2$ it is enough to know $a_p \mod p$, since $|a_p| \le 2g\sqrt{p}$.

Algorithms for hyperelliptic curves

Let X/\mathbb{Q} : $y^2 = f(x)$ with $d = \deg(f)$, then $g = (d - \gcd(d, 2))/2$. We wish to compute a_p for good $p \le N$ for some bound *N*. Three approaches:

- Use Harvey's optimization [Har07] of Kedlaya's *p*-adic algorithm for each *p*. This costs $O(p^{1/2}(\log p)^2 g^{\omega})$ per $p \le N$, yielding $O(N^{3/2}(\log N)g^3)$.
- ② Apply Abelard's optimization [Abe18] of Pila's *ℓ*-adic algorithm for each *p*. This costs $O((\log p)^{O(g)})$ per $p \le N$, yielding $O(N(\log N)^{O(g)})$.
- Solution Apply the optimization [HS16] of Harvey's average polynomial-time algorithm. This costs $O((\log p)^4 g^3)$ per $p \le N$ on average, or $O(N(\log N)^3 g^3)$.

Only the third has a running time that is quasi-linear in N and polynomial in g.

In practice it is much faster than the *p*-adic or ℓ -adic approaches for all values of *g*. The best known value for the O(g) ℓ -adic exponent is 5, 8, 14 for g = 1, 2, 3.

Algorithms for superelliptic curves

Let X/\mathbb{Q} : $y^m = f(x)$ with $d = \deg(f)$, then $g = ((d-2)(m-1) + m - \gcd(m, d))/2$. We wish to compute a_p for good $p \le N$ for some bound *N*. Three approaches:

- Use the ANTS XIII [ABCMT19] generalization of Harvey's optimization of Kedlaya's *p*-adic for hyperelliptic curves. This costs $O(p^{1/2}(\log p)^2md^{\omega})$ per $p \le N$, yielding $O(N^{3/2}(\log N)md^{\omega})$.
- **2** Use an optimization [AH01] of Pila's generalization of Schoof's algorithm. This costs $O((\log p)^{g^{O(1)}})$ per $p \le N$, yielding $O(N(\log N)^{g^{O(1)}})$.
- 3 Use the algorithm presented in this talk. This costs $O((\log p)^4 md^3)$ per $p \le N$ on average, or $O(N(\log N)^3 md^3)$.

As in the hyperelliptic case, not only is the average polynomial-time approach asymptotically faster, it is faster in practice for essentially all values of d, m and N.

Note: Our definition of superelliptic curves coincides with the cyclic covers of \mathbb{P}^1 considered in [ABCMT19], which also requires *f* to be separable

The Cartier–Manin matrix

Let *K* be the function field of curve X/\mathbb{F}_p , and let Ω_K be its module of differentials. If we fix $x \in K$ so that $K/\mathbb{F}_p(x)$ is separable, every $z \in K$ can be written uniquely as

$$z = z_0^p + z_1^p x + \cdots + z_{p-1}^p x^{p-1}$$

with $z_1 \in K^p$. The Cartier operator $C: \Omega_K \to \Omega_K$ defined by $zdx \mapsto z_{p-1}dx$ satisfies

•
$$\mathcal{C}(\omega_1 + \omega_2) = \mathcal{C}(\omega_1) + \mathcal{C}(\omega_2)$$
 for all $\omega_1, \omega_2 \in \Omega_K$;

2
$$C(z^p \omega) = z C(\omega)$$
 for all $z \in K$ and $\omega \in \Omega_K$;

•
$$\mathcal{C}(dz/z) = dz/z$$
 for all $z \in K^{\times}$.

and restricts to a semilinear operator on the space $\Omega_K(0)$ of regular differentials. The Cartier–Manin matrix $A_p \in \mathbb{F}_p^{g \times g}$ of *X* gives the action of *C* on a basis for $\Omega_K(0)$.

For a superelliptic curve $X: y^m = f(x)$ we use the basis $\omega := \{\omega_{ij}: mi + dj < md\}$, where $\omega_{ij} := \frac{1}{m} x^{i-1} y^{j-m} dx$ for $i, j \ge 1$. Key fact: $tr(A_p) \equiv a_p \mod p$.

Stöhr-Voloch

Write
$$k(X) = k(x)[y]/(F)$$
 with $F \in k[x][y]$. Then
 $\mathcal{C}\left(h\frac{dx}{F_y}\right) = \left(\nabla(F^{p-1}h)\right)^{1/p}\frac{dx}{F_y}, \quad \text{where } \nabla \coloneqq \frac{\partial^{2p-2}}{\partial x^{p-1}\partial y^{p-1}}.$

If we now define $\omega_{k\ell} \coloneqq x^{k-1}y^{\ell-1}\frac{dx}{F_y}$, with $k, \ell \ge 1$ and $k + \ell \le \deg(F) - 1$), then

$$\mathcal{C}(\omega_{k\ell}) = \sum \left(F_{ip-k,jp-\ell}^{p-1} \right)^{1/p} \omega_{ij}.$$

Not all $\omega_{k\ell}$ are regular, $F(x, y) = y^m - f(x)$ requires $mk + d\ell < md$. The matrix of C is

$$A_p \coloneqq [B^{j\ell}]_{j\ell}, \qquad B^{j\ell} \coloneqq [(b_{ik}^{j\ell})^{1/p}]_{ik}, \qquad b_{ik}^{j\ell} \coloneqq \begin{cases} f_{ip-k}^{n_j} & \text{for } (jp-\ell)m \in \mathbb{Z}_{\geq 0} \\ 0 & \text{otherwise} \end{cases}$$

where $j, \ell \leq m - \lfloor \frac{m}{d} \rfloor - 1$, $i \leq d - \lfloor \frac{dj}{m} \rfloor - 1$, $k \leq d - \lfloor \frac{d\ell}{m} \rfloor - 1$, and $n_j := p - 1 - \lfloor \frac{jp}{m} \rfloor$.

A genus 4 example

For $X: y^5 = f(x)$ with deg(f) = 3 the Cartier–Manin matrix has the form

,

for $p \equiv 1, 2, 3, 4 \mod 5$. Here f_k^n denotes the coefficient of x^k in f^n .

Linear recurrences

Let $f = \sum_{i} f_{i}x^{i}$ with $f_{0} \neq 0$. The identities $f^{n+1} = f \cdot f^{n}$ and $(f^{n+1})' = (n+1)f^{n}$ imply $\sum_{i} ((n+1)i - k)f_{i}f_{k-i}^{n} = 0,$

For the exponents $n = ((m - j)p - (m - \ell))/m$ of interest to us (with $1 \le j, \ell < m$)

$$\sum_{i} (\ell i - mk) f_i f_{k-i}^n \equiv 0 \bmod p,$$

for all $n \in \mathbb{Z}_{\geq 0}$, $k \in \mathbb{Z}$. If we know $f_{k-1-d}^n, \dots f_{k-1}^n$ we can compute f_k^n using

$$M_{k-1} := \begin{bmatrix} 0 & \cdots & 0 & (\ell r - mk)f_d \\ mkf_0 & \cdots & 0 & (\ell(d-1) - mk)f_{d-1} \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & mkf_0 & (\ell - mk)f_1 \end{bmatrix}$$

We want to compute $v_0 M_0 \cdots M_{k-1} \mod m_k$ for $1 \le k \le N$, where $v_0 = [0, \ldots, 0, f_0^n]$.

Accumulating remainder forest

We can save both time and space by using a remainder forest rather than a tree. Given an initial vector (or matrix) v_0 , matrices M_i , and moduli m_i , we compute

 $v_k \coloneqq v_0 M_0 \cdots M_{k-1} \mod m_k$

for $1 \le k \le N$. by partitioning the *N* matrices and moduli into 2^{κ} blocks of size $n := N/2^{\kappa}$ and applying the remainder tree algorithm to each block.

Let $V := v_0$ and $m := m_1 \cdots m_N$, and for *j* from 1 to 2^{κ} proceed as follows:

- Compute product trees of $M_{(j-1)n} \cdots M_{jn-1}$ and $m_{(j-1)n+1} \cdots m_{jn}$.
- 2 Starting with $V_{\text{parent}} \coloneqq V$, work down the trees computing $V_{\text{left}} \coloneqq V_{\text{parent}} \mod m_{\text{left}}$ and $V_{\text{right}} \coloneqq V_{\text{parent}} M_{\text{left}} \mod m_{\text{right}}$ at each node.
- 3 Output $v_{(j-1)n}, \dots, v_{jn-1}$ at the leaves.
- Set $m \leftarrow m/(m_{(j-1)n+1} \cdots m_{jn})$ and $V \leftarrow VM_{(j-1)n} \cdots M_{jn-1} \mod m$.

Average time per $p \le N$ in milliseconds (2.8GHz CPU)

			N =	$N = 2^{16}$		$N = 2^{20}$		$N = 2^{24}$		$N = 2^{28}$	
g	т	d	sage	new	sage	new	sage	new	sage	new	
1	2	3	21	0.01	27	0.05	67	0.13	230	0.30	
2	2	5	30	0.08	55	0.38	163	0.92	580	2.01	
2	2	6	42	0.16	83	0.74	280	1.77	1070	3.92	
3	2	7	53	0.24	112	1.29	307	3.12	1217	6.71	
3	2	8	74	0.34	169	2.07	528	4.94	2106	10.57	
3	3	4	34	0.05	61	0.26	178	0.70	702	1.63	
3	4	3	32	0.03	58	0.15	165	0.37	601	0.89	
3	4	4	49	0.09	101	0.44	343	1.14	1283	2.63	
4	2	9	96	0.44	194	3.24	576	7.70	2214	15.90	
4	2	10	138	0.55	319	4.65	974	10.98	3693	22.79	
4	3	5	47	0.11	93	0.65	287	1.67	1105	3.68	
4	3	6	71	0.18	152	1.28	535	3.20	2121	7.07	
4	5	3	37	0.03	68	0.13	200	0.40	778	0.99	
4	6	3	49	0.06	112	0.24	313	0.64	1184	1.53	

Choose your own adventure!

Questions you could now ask:

- Your cover slide seemd to promise a Sato-Tate histogram, where is it?!
- Remainder forests use a time/space trace-off, so they must be slower, right?
- What about arbitrary cyclic covers of \mathbb{P}^1 ? $C_{a,b}$ curves? Smooth plane curves?
- Traces aren't enough, I want the full zeta function! How do I compute that in average polynomial time?
- Something else entirely...

click histogram to animate (requires adobe reader)

Optimal values of κ (2^{κ} trees in the forest) for various N

g	т	d	2^{12}	214	2 ¹⁶	2 ¹⁸	2^{20}	2^{22}	2^{24}	2^{26}	2^{28}
1	3	3	12	14	12	12	12	12	12	12	12
1	2	3	12	13	10	11	10	10	10	10	10
1	2	4	12	14	10	11	10	10	10	10	10
2	2	5	12	14	11	11	10	10	10	10	11
2	2	6	12	14	16	11	10	10	10	10	11
3	2	7	12	14	16	12	10	10	10	11	11
3	2	8	12	14	16	11	10	10	10	11	11
3	4	3	12	14	12	12	12	12	12	12	12
3	3	4	12	14	13	13	12	12	12	12	12
3	4	4	12	14	13	13	12	12	12	12	12
4	2	9	12	14	16	12	10	10	10	10	11
4	3	5	12	14	16	13	12	12	12	12	12
4	3	6	12	14	16	13	12	12	12	12	13
4	2	10	12	14	16	18	10	10	10	11	11
4	5	3	12	14	15	15	15	14	14	14	14
4	6	3	12	14	12	12	12	12	12	12	12

Cyclic covers of \mathbb{P}^1

The *p*-rank of ramified covers of curves

Irene I. Bouw, Compositio. Mathematica 126 (2001), 295–322.

Lemma (Lemma 5.1)

Let $X: y^m = (x - x_1)^{a_1} (x - x_2)^{a_2} \cdots (x - x_r)^{a_r}$ be a cyclic cover of \mathbb{P}^1 over an algebraically closed field of characteristic p. If $i' \equiv pi \mod m$ then the (i,j), (i',j') coefficient of the Hasse-Witt matrix of X is given by

$$(-1)^N \sum_{n_1 + \cdots + n_r = N} \binom{\left[p \left\langle \frac{ia_1}{\ell} \right\rangle\right]}{n_1} \cdots \binom{\left[p \left\langle \frac{ia_r}{\ell} \right\rangle\right]}{n_r} x_1^{n_1} \cdots x_r^{n_r},$$

where N = p(||i|| + 1 - j) - (||i'|| + 1 - j'), and if $i' \not\equiv pi \mod m$ then it is zero.

Here $\langle z \rangle$ and [z] denote the fractional and integers parts of $z \in \mathbb{Q}$.

Harvey's results for arithmetic schemes

Theorem (Harvey 2014)

Let *X* be an arithmetic scheme. The following hold:

- There is a deterministic algorithm that, given a prime p, outputs $Z_{X_p} \in \mathbb{Q}[T]$ in $p(\log p)^{1+o(1)}$ time using $O(\log p)$ space.
- 2 There is a deterministic algorithm that, given a prime p, outputs $Z_{X_p} \in \mathbb{Q}[T]$ in $\sqrt{p} (\log p)^{2+o(1)}$ time using $O(\sqrt{p} \log p)$ space.
- 3 There is a deterministic algorithm that, given an integer N outputs $Z_{X_p} \in \mathbb{Q}[T]$ for all $p \leq N$ in time $N(\log N)^{3+o(1)}$ using $O(N \log^2 N)$ space.

In these complexity estimates, X is fixed, only p or the bound N are part of the input (the arithmetic scheme X is effectively "hardwired" into the algorithm).

If one constrains *X* and fixes its representation (e.g. a smooth plane curve), one can make the dependence on *X* completely explicit.

This theorem is not merely an existence statement, its gives explicit algorithms.

Complexity analysis for smooth plane curves

There are four ways to compute $M_s \mod p^e$ for $1 \le s \le e$;

• Apply
$$M_s = [F_{p\vec{v}-\vec{u}}^{s(p-1)}]$$
; time $g^5p^2(\log p)^{1+o(1)}$.
(multivariate Kronecker: $\sum_{0 \le s \le e} ((dsp)^2)^3 e(\log p)^{1+o(1)} = g^5p^2(\log p)^{1+o(1)})$

- 2 Use $Q(k, \ell)$ to compute rows of M_s using mat-vec mults: time $g^{11}p(\log p)^{1+o(1)}$. $(\sum_{0 \le s \le e} ((ds)^2 p((ds)^2)^2 e(\log p)^{1+o(1)} = g^{11}p(\log p)^{1+o(1)})$
- 3 Apply BGS to compute $Q(k, \ell)$ products: time $g^{14}\sqrt{p}(\log p)^{2+o(1)}$. (as above, but now we need matrix-matrix mults, dimension is $O(g^3)$)
- **(**) Use an average polynomial time approach for $p \le N$: time $g^{14}N(\log N)^{3+o(1)}$.

Except for 1, these dominate the time to compute $Z_{C_p}(T)$ given the $M_s \mod p^e$. In case 1 we obtain a total complexity of $(g^5p^2 + g^{11}\log p)(\log p)^{1+o(1)}$.