
Counting points on superelliptic curves
in average polynomial time

Andrew V. Sutherland

Massachusetts Institute of Technology

ANTS XIV

Why count points?

Let X/Q be a nice (smooth, projective, geometrically integral) curve of genus g.
For each prime p of good reduction for X (the good primes) we have

#Xp(Fp) = p + 1− ap,

where the trace of Frobenius ap satisfies |ap| ≤ 2g
√

p.

Some open questions about the distribution of ap as p varies:
For a fixed integer t, how often is ap = t? [Lang–Trotter]
What is the distribution of xp := ap/

√
p? [Sato-Tate]

Is the sign of ap subject to a Chebyshev bias? [Mazur–Sarnak]
Is the order of vanishing of L(X, s) at s = 1 equal to the rank of Jac(X)? [BSD]

Some partial answers are known for g = 1, but for g > 1 very little is known.

Why average polynomial time?

To “compute” L(s) it is enough to know an for n ≤ N with N ∝
√

cond Jac(X).
We would like to be able to do this in quasi-linear time (as a function of N).

The an are determined by the apr with pr ≤ N, almost all of which are ap’s.
We can compute the apr for r > 1 in O(p) time using p-adic methods.
But we need to be able to compute the ap in time polynomial in log p (on average).

What about bad primes?

For distributional questions we can ignore the finitely many bad primes.
For computing L(X, s) we can deduce the apr for bad p using the functional
equation if we are willing to assume the Hasse–Weil conjecture holds for X
(and prepared to compute lots of ap, more than we might otherwise need).

Note: For p ≥ 16g2 it is enough to know ap mod p, since |ap| ≤ 2g
√

p.

Algorithms for hyperelliptic curves

Let X/Q : y2 = f (x) with d = deg(f), then g = (d − gcd(d, 2))/2.
We wish to compute ap for good p ≤ N for some bound N. Three approaches:

1 Use Harvey’s optimization [Har07] of Kedlaya’s p-adic algorithm for each p.
This costs O(p1/2(log p)2gω) per p ≤ N, yielding O(N3/2(log N)g3).

2 Apply Abelard’s optimization [Abe18] of Pila’s `-adic algorithm for each p.
This costs O((log p)O(g)) per p ≤ N, yielding O(N(log N)O(g)).

3 Apply the optimization [HS16] of Harvey’s average polynomial-time algorithm.
This costs O((log p)4g3) per p ≤ N on average, or O(N(log N)3g3).

Only the third has a running time that is quasi-linear in N and polynomial in g.

In practice it is much faster than the p-adic or `-adic approaches for all values of g.
The best known value for the O(g) `-adic exponent is 5, 8, 14 for g = 1, 2, 3.

https://arxiv.org/abs/math/0610973
https://cs.uwaterloo.ca/~sabelard//theseabelard.pdf
https://arxiv.org/abs/1410.5222

Algorithms for superelliptic curves
Let X/Q : ym = f (x) with d = deg(f), then g = ((d − 2)(m− 1) + m− gcd(m, d))/2.
We wish to compute ap for good p ≤ N for some bound N. Three approaches:

1 Use the ANTS XIII [ABCMT19] generalization of Harvey’s optimization
of Kedlaya’s p-adic for hyperelliptic curves.
This costs O(p1/2(log p)2mdω) per p ≤ N, yielding O(N3/2(log N)mdω).

2 Use an optimization [AH01] of Pila’s generalization of Schoof’s algorithm.
This costs O((log p)gO(1)

) per p ≤ N, yielding O(N(log N)gO(1)
).

3 Use the algorithm presented in this talk.
This costs O((log p)4md3) per p ≤ N on average, or O(N(log N)3md3).

As in the hyperelliptic case, not only is the average polynomial-time approach
asymptotically faster, it is faster in practice for essentially all values of d, m and N.

Note: Our definition of superelliptic curves coincides with the cyclic covers of P1

considered in [ABCMT19], which also requires f to be separable

https://msp.org/obs/2019/2-1/p03.xhtml
https://core.ac.uk/download/pdf/82622477.pdf
https://msp.org/obs/2019/2-1/p03.xhtml

The Cartier–Manin matrix
Let K be the function field of curve X/Fp, and let ΩK be its module of differentials.
If we fix x ∈ K so that K/Fp(x) is separable, every z ∈ K can be written uniquely as

z = zp
0 + zp

1x + · · · zp
p−1xp−1,

with z1 ∈ Kp. The Cartier operator C : ΩK → ΩK defined by zdx 7→ zp−1dx satisfies
1 C(ω1 + ω2) = C(ω1) + C(ω2) for all ω1, ω2 ∈ ΩK ;
2 C(zpω) = z C(ω) for all z ∈ K and ω ∈ ΩK ;
3 C(dz) = 0 for all z ∈ K;
4 C(dz/z) = dz/z for all z ∈ K×.

and restricts to a semilinear operator on the space ΩK(0) of regular differentials.
The Cartier–Manin matrix Ap ∈ Fg×g

p of X gives the action of C on a basis for ΩK(0).

For a superelliptic curve X : ym = f (x) we use the basis ω := {ωij : mi + dj < md},
where ωij := 1

m xi−1yj−mdx for i, j ≥ 1. Key fact: tr(Ap) ≡ ap mod p.

Stöhr-Voloch
Write k(X) = k(x)[y]/(F) with F ∈ k[x][y]. Then

C
(

h
dx
Fy

)
=
(
∇(Fp−1h)

)1/p dx
Fy
, where ∇ :=

∂2p−2

∂xp−1∂yp−1 .

If we now define ωk` := xk−1y`−1 dx
Fy

, with k, ` ≥ 1 and k + ` ≤ deg(F)− 1), then

C(ωk`) =
∑(

Fp−1
ip−k, jp−`

)1/p
ωij.

Not all ωk` are regular, F(x, y) = ym − f (x) requires mk + d` < md. The matrix of C is

Ap := [Bj`]j`, Bj` := [(bj`
ik)

1/p]ik, bj`
ik :=

{
f nj
ip−k for (jp− `)m ∈ Z≥0

0 otherwise

where j, ` ≤ m− bm
d c − 1, i ≤ d − b dj

mc − 1, k ≤ d − b d`
m c − 1, and nj := p− 1− b jp

mc.

A genus 4 example

For X : y5 = f (x) with deg(f) = 3 the Cartier–Manin matrix has the form
f (4p−4)/5
p−1 f (4p−4)/5

p−2 0 0

f (4p−4)/5
2p−1 f (4p−4)/5

2p−2 0 0

0 0 f (3p−3)/5
p−1 0

0 0 0 f (2p−2)/5
p−1

 ,

0 0 f (4p−3)/5

p−1 0

0 0 f (4p−3)/5
2p−1 0

0 0 0 0
f (2p−4)/5
p−1 b(2p−4)/5

p−2 0 0

 ,

0 0 0 f (4p−2)/5

p−1

0 0 0 f (4p−2)/5
2p−1

f (3p−4)/5
p−1 f (3p−4)/5

p−2 0 0
0 0 0 0

 ,

0 0 0 0
0 0 0 0
0 0 0 f (3p−2)/5

p−1

0 0 f (2p−3)/5
p−1 0

 .

for p ≡ 1, 2, 3, 4 mod 5. Here f n
k denotes the coefficient of xk in f n.

Linear recurrences
Let f =

∑
i fixi with f0 6= 0. The identities f n+1 = f · f n and (f n+1)′ = (n + 1)f n imply∑

i((n + 1)i− k)fif n
k−i = 0,

For the exponents n = ((m− j)p− (m− `))/m of interest to us (with 1 ≤ j, ` < m)∑
i(`i− mk)fif n

k−i ≡ 0 mod p,

for all n ∈ Z≥0, k ∈ Z. If we know f n
k−1−d, . . . f

n
k−1 we can compute f n

k using

Mk−1 :=

0 · · · 0 (`r − mk)fd

mkf0 · · · 0 (`(d − 1)− mk)fd−1
...

. . .
...

...
0 · · · mkf0 (`− mk)f1

 .
We want to compute v0M0 · · ·Mk−1 mod mk for 1 ≤ k ≤ N, where v0 = [0, . . . , 0, f n

0].

Accumulating remainder forest
We can save both time and space by using a remainder forest rather than a tree.
Given an initial vector (or matrix) v0, matrices Mi, and moduli mi, we compute

vk := v0M0 · · ·Mk−1 mod mk

for 1 ≤ k ≤ N. by partitioning the N matrices and moduli into 2κ blocks of size
n := N/2κ and applying the remainder tree algorithm to each block.

Let V := v0 and m := m1 · · ·mN , and for j from 1 to 2κ proceed as follows:

1 Compute product trees of M(j−1)n · · ·Mjn−1 and m(j−1)n+1 · · ·mjn.
2 Starting with Vparent := V, work down the trees computing

Vleft := Vparent mod mleft and Vright := VparentMleft mod mright at each node.
3 Output v(j−1)n, · · · , vjn−1 at the leaves.
4 Set m← m/(m(j−1)n+1 · · ·mjn) and V ← VM(j−1)n · · ·Mjn−1 mod m.

Average time per p ≤ N in milliseconds (2.8GHz CPU)
N = 216 N = 220 N = 224 N = 228

g m d sage new sage new sage new sage new

1 2 3 21 0.01 27 0.05 67 0.13 230 0.30
2 2 5 30 0.08 55 0.38 163 0.92 580 2.01
2 2 6 42 0.16 83 0.74 280 1.77 1070 3.92
3 2 7 53 0.24 112 1.29 307 3.12 1217 6.71
3 2 8 74 0.34 169 2.07 528 4.94 2106 10.57
3 3 4 34 0.05 61 0.26 178 0.70 702 1.63
3 4 3 32 0.03 58 0.15 165 0.37 601 0.89
3 4 4 49 0.09 101 0.44 343 1.14 1283 2.63
4 2 9 96 0.44 194 3.24 576 7.70 2214 15.90
4 2 10 138 0.55 319 4.65 974 10.98 3693 22.79
4 3 5 47 0.11 93 0.65 287 1.67 1105 3.68
4 3 6 71 0.18 152 1.28 535 3.20 2121 7.07
4 5 3 37 0.03 68 0.13 200 0.40 778 0.99
4 6 3 49 0.06 112 0.24 313 0.64 1184 1.53

Choose your own adventure!

Questions you could now ask:

Your cover slide seemd to promise a Sato-Tate histogram, where is it?!

Remainder forests use a time/space trace-off, so they must be slower, right?

What about arbitrary cyclic covers of P1? Ca,b curves? Smooth plane curves?

Traces aren’t enough, I want the full zeta function!
How do I compute that in average polynomial time?

Something else entirely...

click histogram to animate (requires adobe reader)

Optimal values of κ (2κ trees in the forest) for various N
g m d 212 214 216 218 220 222 224 226 228

1 3 3 12 14 12 12 12 12 12 12 12
1 2 3 12 13 10 11 10 10 10 10 10
1 2 4 12 14 10 11 10 10 10 10 10
2 2 5 12 14 11 11 10 10 10 10 11
2 2 6 12 14 16 11 10 10 10 10 11
3 2 7 12 14 16 12 10 10 10 11 11
3 2 8 12 14 16 11 10 10 10 11 11
3 4 3 12 14 12 12 12 12 12 12 12
3 3 4 12 14 13 13 12 12 12 12 12
3 4 4 12 14 13 13 12 12 12 12 12
4 2 9 12 14 16 12 10 10 10 10 11
4 3 5 12 14 16 13 12 12 12 12 12
4 3 6 12 14 16 13 12 12 12 12 13
4 2 10 12 14 16 18 10 10 10 11 11
4 5 3 12 14 15 15 15 14 14 14 14
4 6 3 12 14 12 12 12 12 12 12 12

Cyclic covers of P1

The p-rank of ramified covers of curves
Irene I. Bouw, Compositio. Mathematica 126 (2001), 295–322.

Lemma (Lemma 5.1)

Let X : ym = (x− x1)a1(x− x2)a2 · · · (x− xr)
ar be a cyclic cover of P1 over an

algebraically closed field of characteristic p. If i′ ≡ pi mod m then the (i, j), (i′, j′)
coefficient of the Hasse-Witt matrix of X is given by

(−1)N
∑

n1+···nr=N

(
[p〈 ia1

` 〉]
n1

)
· · ·
(

[p〈 iar
` 〉]

nr

)
xn1

1 · · · x
nr
r ,

where N = p(‖i‖+ 1− j)− (‖i′‖+ 1− j′), and if i′ 6≡ pi mod m then it is zero.

Here 〈z〉 and [z] denote the fractional and integers parts of z ∈ Q.

https://doi.org/10.1023/A:1017513122376

Harvey’s results for arithmetic schemes

Theorem (Harvey 2014)
Let X be an arithmetic scheme. The following hold:

1 There is a deterministic algorithm that, given a prime p, outputs ZXp ∈ Q[T] in
p(log p)1+o(1) time using O(log p) space.

2 There is a deterministic algorithm that, given a prime p, outputs ZXp ∈ Q[T] in
√

p (log p)2+o(1) time using O(
√

p log p) space.

3 There is a deterministic algorithm that, given an integer N outputs ZXp ∈ Q[T]

for all p ≤ N in time N(log N)3+o(1) using O(N log2N) space.

In these complexity estimates, X is fixed, only p or the bound N are part of the input
(the arithmetic scheme X is effectively “hardwired” into the algorithm).

If one constrains X and fixes its representation (e.g. a smooth plane curve), one can make
the dependence on X completely explicit.

This theorem is not merely an existence statement, its gives explicit algorithms.

Complexity analysis for smooth plane curves

There are four ways to compute Ms mod pe for 1 ≤ s ≤ e;

1 Apply Ms = [Fs(p−1)
p~v−~u]; time g5p2(log p)1+o(1).

(multivariate Kronecker:
∑

0≤s≤e((dsp)2)3e(log p)1+o(1) = g5p2(log p)1+o(1))

2 Use Q(k, `) to compute rows of Ms using mat-vec mults: time g11p(log p)1+o(1).
(
∑

0≤s≤e((ds)2p((ds)2)2e(log p)1+o(1) = g11p(log p)1+o(1))

3 Apply BGS to compute Q(k, `) products: time g14√p(log p)2+o(1).
(as above, but now we need matrix-matrix mults, dimension is O(g3))

4 Use an average polynomial time approach for p ≤ N: time g14N(log N)3+o(1).

Except for 1, these dominate the time to compute ZCp(T) given the Ms mod pe.
In case 1 we obtain a total complexity of (g5p2 + g11 log p)(log p)1+o(1).

	anm0:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

