Counting points on superelliptic curves
in average polynomial time

Andrew V. Sutherland

Massachusetts Institute of Technology

ANTS XIV

Why count points?

Let X/Q be a nice (smooth, projective, geometrically integral) curve of genus g.
For each prime p of good reduction for X (the good primes) we have

#Xp(Fp) =p+1—ap,
where the trace of Frobenius q, satisfies |a,| < 2g./p.

Some open questions about the distribution of a, as p varies:

@ For a fixed integer ¢, how often is a, = ¢? [Lang—Trotter]

@ What is the distribution of x, :== a,/,/p? [Sato-Tate]

@ Is the sign of a, subject to a Chebyshev bias? [Mazur—Sarnak]

@ Is the order of vanishing of L(X, s) at s = 1 equal to the rank of Jac(X)? [BSD]
Some partial answers are known for g = 1, but for g > 1 very little is known.

Why average polynomial time?

To “compute” L(s) it is enough to know a,, for n < N with N y/cond Jac(X).
We would like to be able to do this in quasi-linear time (as a function of N).

The a, are determined by the a,- with p” < N, almost all of which are a,’s.
We can compute the g, for r > 1in O(p) time using p-adic methods.
But we need to be able to compute the g, in time polynomial in log p (on average).

What about bad primes?

@ For distributional questions we can ignore the finitely many bad primes.

@ For computing L(X, s) we can deduce the a, for bad p using the functional
equation if we are willing to assume the Hasse—Weil conjecture holds for X
(and prepared to compute lots of a,, more than we might otherwise need).

Note: For p > 16g? it is enough to know a, mod p, since |a,| < 2g,/p.

Algorithms for hyperelliptic curves

Let X/Q : y* = f(x) with d = deg(f), then g = (d — gcd(d, 2))/2.
We wish to compute g, for good p < N for some bound N. Three approaches:
@ Use Harvey’s optimization [Har07] of Kedlaya’s p-adic algorithm for each p.
This costs O(p'/?(logp)2g¥) per p < N, yielding O(N3/?(log N)g?).
© Apply Abelard’s optimization [Abe18] of Pila’s ¢-adic algorithm for each p.
This costs O((log p)?®)) per p < N, yielding O(N(log N)°(®)),
© Apply the optimization [HS16] of Harvey’s average polynomial-time algorithm.
This costs O((log p)*g?) per p < N on average, or O(N(logN)3g?).

Only the third has a running time that is quasi-linear in N and polynomial in g.

In practice it is much faster than the p-adic or ¢-adic approaches for all values of g.
The best known value for the O(g) ¢-adic exponent is 5,8, 14 for g = 1,2, 3.

https://arxiv.org/abs/math/0610973
https://cs.uwaterloo.ca/~sabelard//theseabelard.pdf
https://arxiv.org/abs/1410.5222

Algorithms for superelliptic curves

Let X/Q : y" = f(x) with d = deg(f), then g = ((d —2)(m — 1) + m — ged(m,d)) /2.
We wish to compute q, for good p < N for some bound N. Three approaches:
@ Use the ANTS XIIl [ABCMT19] generalization of Harvey’s optimization
of Kedlaya’s p-adic for hyperelliptic curves.
This costs O(p'/?(log p)*md) per p < N, yielding O(N*/?(log N)md*).
© Use an optimization [AHO1] of Pila’s generalization of Schoof’s algorithm.
This costs O((logp)¢™") per p < N, yielding O(N(log N)™").
© Use the algorithm presented in this talk.
This costs O((log p)*md®) per p < N on average, or O(N(log N)*md?).
As in the hyperelliptic case, not only is the average polynomial-time approach
asymptotically faster, it is faster in practice for essentially all values of d, m and N.

Note: Our definition of superelliptic curves coincides with the cyclic covers of P!
considered in [ABCMT19], which also requires f to be separable

https://msp.org/obs/2019/2-1/p03.xhtml
https://core.ac.uk/download/pdf/82622477.pdf
https://msp.org/obs/2019/2-1/p03.xhtml

The Cartier—Manin matrix

Let K be the function field of curve X/IF,,, and let Qx be its module of differentials.
If we fix x € K so that K/F,(x) is separable, every z € K can be written uniquely as

Z:ZS+ZI;X+"‘Z§_1XP_1,

with z1 € K?. The Cartier operator C: Qg — Q defined by zdx — z,_1dx satisfies
C(wy + wy) = C(wy) + C(wy) for all wy, wy € Q;
C(Fw) = zC(w) for all z € K and w € Qk;
C(dz) =0forall z € K;

0 C(dz/z) = dz/zforall z € K*.

and restricts to a semilinear operator on the space Qx(0) of regular differentials.
The Cartier—Manin matrix A, € F5 ¢ of X gives the action of C on a basis for Qx(0).

For a superelliptic curve X: y"" = f(x) we use the basis w := {w;j: mi + dj < md},
where w;; = 1 x—ly=mdx fori,j > 1. Key fact: tr(4,) = a, mod p.

Stohr-Voloch
Write k(X) = k(x)[y]/(F) with F € k[x][y]. Then

dx o2

@ 1)) /7 4% —_ 9 =
C<th> (V(F"~'h)) F, where V : N EEY=E

If we now define wy, := xk—lyf—l%’;, with k,¢ > 1 and k + ¢ < deg(F) — 1), then

_ 1/
C(wkg) == Z <Fi7—lk,jp—€) pwij.

Not all wy, are regular, F(x,y) = y" — f(x) requires mk + d¢ < md. The matrix of C is

. . . , Y for (jp — O)m € Z>
A, =B, B =[P, b= Tk -
p = [B"lje (B Lk k™"lo0 otherwise

wherej 0 <m— 2] —1,i<d— 9| -1,k<d—|%]—1,andn;:=p— 1 — |2].

m

A genus 4 example

For X: y5 = f(x) with deg(f) = 3 the Cartier—Manin matrix has the form

jﬁp] 4)/5 f(4]72 4)/5 0 0 0 0 f(4"1 /5
f2417 4)/5 fz(;p24 /5 0 0 0 0 f24p 3)/5
0 VAR B 0 0 0

2p—2)/5 (2p—4)/5 (2p—4)/5
0 0 0 fp(—pl / fp—l bp—Z 0
0 0 0 fIP 00 0 0
0 0 0 f24” /5 00 0 0
f,,(f”f‘”/s J;(iz;4>/s 0 0 ’ 0 0 . 03)/5 fp(iplfzws
0 o 0 0 00 f£7 0

for p =1,2,3,4 mod 5. Here £ denotes the coefficient of x* in f".

S O O O

Linear recurrences
Letf =, fix! with fy # 0. The identities f"+! = - f" and (f"*1) = (n + 1)f" imply
>i(n+Di—kfif; =0,
For the exponents n = ((m — j)p — (m — ¢))/m of interest to us (with 1 <, ¢ < m)
S(ti = mi)fif; = 0 mod p,

foralln € Z>o, k € Z. If we know f;' ,_,,...f;, we can compute f;' using

0 - 0 (r — mk)f
mkfo -+ 0 (6(d — 1) — mk)fg—
M1 =1 SO :
0 - mkfy (£ — mk)f;

We want to compute voMy - - - My mod my for 1 < k < N, where vo = [0,...,0,f].

Accumulating remainder forest

We can save both time and space by using a remainder forest rather than a tree.
Given an initial vector (or matrix) v, matrices M;, and moduli m;, we compute

Vi = V()MO B 'Mk—l mod my

for 1 < k < N. by partitioning the N matrices and moduli into 2* blocks of size
n = N /2" and applying the remainder tree algorithm to each block.

Let V:=vgand m := my - - - my, and for j from 1 to 2" proceed as follows:

@ Compute product trees of M;_y), - - - Mj,—1 and m;_y,11 - - - Mjn.

© Starting with Vparent =V, Work down the trees computing
Vieft = Vparent mod mer; and Vright = VparentMleft mod Myight at each node.

© Output v(;_y),, - ,vjn—1 at the leaves.
Q Setm <« m/(m;_1yyp1---mjp) @and V <= VM;_yy, - - - Mj,_ mod m.

Average time per p < N in milliseconds (2.8GHz CPU)

N:216 N:22O N:224 N:228
g m d sage new sage new sage new sage new
1 2 3 21 0.01 27 0.05 67 0.13 230 0.30
2 2 5 30 0.08 55 0.38 163 0.92 580 2.01
2 2 6 42 0.16 83 0.74 280 1.77 1070 3.92
3 2 7 53 0.24 112 1.29 307 3.12 1217 6.71
3 2 8 74 0.34 169 2.07 528 4.94 2106 10.57
3 3 4 34 0.05 61 0.26 178 0.70 702 1.63
3 4 3 32 0.08 58 0.15 165 0.37 601 0.89
3 4 4 49 0.09 101 0.44 343 1.14 1283 2.63
4 2 9 96 0.44 194 3.24 576 7.70 2214 15.90
4 2 10 138 0.55 319 4.65 974 10.98 3693 22.79
4 3 5 47 0.11 93 0.65 287 1.67 1105 3.68
4 3 6 71 0.18 152 1.28 535 3.20 2121 7.07
4 5 3 37 0.03 68 0.13 200 0.40 778 0.99
4 6 3 49 0.06 112 0.24 313 0.64 1184 1.53

Choose your own adventure!

Questions you could now ask:

@ Your cover slide seemd to promise a Sato-Tate histogram, where is it?!
@ Remainder forests use a time/space trace-off, so they must be slower, right?
@ What about arbitrary cyclic covers of P!? C,, curves? Smooth plane curves?

@ Traces aren’t enough, | want the full zeta function!
How do | compute that in average polynomial time?

@ Something else entirely...

al histogram of y7 = x3 + 4x? + 3x- 1 forp<=210
170 data points in 13 buckets, z1 = 0.829, out of range data has area 0.829

Moments: 1 -0.102 1.247 1.339 47.773 230.195 2943.015 20456.367 207226.170 1639084.370 15253280.851

click histogram to animate (requires adobe reader)

Optimal values of « (2" trees in the forest) for various N
d 212 214 216 218 220 222 224 226 228

12 14 12 12 12 12 12 12 12
12 13 10 11 10 10 10 10 10
12 14 10 11 10 10 10 10 10
i2 14 11 11 10 10 10 10 11
12 14 16 11 10 10 10 10 11
12 14 16 12 10 10 10 11 11
12 14 16 11 10 10 10 11 11
12 14 12 12 12 12 12 12 12
12 14 13 13 12 12 12 12 12
12 14 13 13 12 12 12 12 12
12 14 16 12 10 10 10 10 11
12 14 16 13 12 12 12 12 12
12 14 16 13 12 12 12 12 13
12 14 16 18 10 10 10 11 11
12 14 15 15 15 14 14 14 14
12 14 12 12 12 12 12 12 12

—
WWOoOOoOUWOA~APPWoONOOOIAWW

ADRPAADRDOWWWWNN = 2 2|
CUOMNDWWNRWAPDPONONONOND WS

Cyclic covers of P!

The p-rank of ramified covers of curves
Irene |. Bouw, Compositio. Mathematica 126 (2001), 295-322.

Lemma (Lemma 5.1)

LetX: y™ = (x — x1)" (x — x2)® - - - (x — x,)% be a cyclic cover of P! over an
algebraically closed field of characteristic p. If i’ = pi mod m then the (i,j), (i',j)
coefficient of the Hasse-Witt matrix of X is given by

oy (M:fln) (M:frﬂ)x,l,l

where N = p(||i|| + 1 —j) — (||I'|| + 1 =), and ifi’ # pi mod m then it is zero.

Here (z) and [z] denote the fractional and integers parts of z € Q.

https://doi.org/10.1023/A:1017513122376

Harvey’s results for arithmetic schemes

Theorem (Harvey 2014)
Let X be an arithmetic scheme. The following hold:
Q There is a deterministic algorithm that, given a prime p, outputs Zx, € Q[T] in
p(log p)'*+°() time using O(log p) space.
© There is a deterministic algorithm that, given a prime p, outputs Zx, € Q[T] in
VP (log p)*+°() time using O(,/plog p) space.
© There is a deterministic algorithm that, given an integer N outputs Zx, € Q[T
for all p < N in time N(log N)3t°(") using O(N log®N) space.

In these complexity estimates, X is fixed, only p or the bound N are part of the input
(the arithmetic scheme X is effectively “hardwired” into the algorithm).

If one constrains X and fixes its representation (e.g. a smooth plane curve), one can make
the dependence on X completely explicit.

This theorem is not merely an existence statement, its gives explicit algorithms.

Complexity analysis for smooth plane curves

There are four ways to compute M, mod p° for 1 < s <e¢;
@ Apply M, = [F¥); time g% (log p)! (V).
(multivariate Kronecker S o<s<e((dsp)?)e(log p)' T = g°p? (log p)' M)

@ Use Q(k,) to compute rows of M, using mat-vec mults: time g''p(log p)' ().
(Po<s<c((d5)’p((ds)*)e(log p)) = g"'p(log p)'+°(V)

@ Apply BGS to compute Q(k, £) products: time g'4, /p(log p)>+o(V.

(as above, but now we need matrix-matrix mults, dimension is 0(g?))

@ Use an average polynomial time approach for p < N: time g'*N(log N)3*o(1).

Except for 1, these dominate the time to compute Z¢,(T) given the M, mod p°.
In case 1 we obtain a total complexity of (g°p? + g'! log p)(log p)' o).

	anm0:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

