Principal polarizations and Shimura data for families of cyclic covers of the projective line

Dr. Rachel Pries, Colorado State University Fourteenth Algorithmic Number Theory Symposium, ANTS-XIV, (virtually) at University of Auckland, New Zealand

Thanks to organizers for invitation

Work in progress: Joint with Wanlin Li, Elena Mantovan, and Yunqing Tang

The synergy between curves and abelian varieties

Let's say you want to study elliptic curves or more generally curves of genus g where $1 \le g \le 3$.

Very helpful fact:

If $1 \le g \le 3$, then almost every principally polarized abelian variety *A* of dimension *g* is the Jacobian of a smooth curve of genus *g*. (*1) (*2)

There is more information about abelian varieties than about curves. For many years, I leveraged this fact to prove things about curves, even about curves of arbitrarily large genus.

This project is an opportunity for the curves to give back.

Technical notes:

(*1) If not, then A is the Jacobian of a curve of compact type.

(*2) Geometric statement: the image of the Torelli morphism $\mathcal{M}_g \to \mathcal{A}_g$ is open and dense if $1 \le g \le 3$.

Bird's eye view

We study curves that are cyclic covers of the projective line \mathbb{P}^1 . Their invariants: degree *m*, number of branch points *N*, genus *g*, etc. **Hurwitz spaces** parametrize (families of) curves with same invariants.

The Jacobians of the curves are p.p. abelian varieties. Their invariants: dimension g, endomorphisms, signature. **Shimura varieties** parametrize (families of) abelian varieties with same invariants.

Main result:

Under a condition on the class number of $\mathbb{Q}(\zeta_m)$, for an arbitrary N, we determine the Hermitian form and integral Shimura datum of the component of the Shimura variety containing the Torelli locus.

General strategy: identify point in family whose Jacobian has CM; explicitly compute this Jacobian, as \mathbb{C}^g/Λ ; write down Hermitian form coming from its polarization as a Jacobian, and the polarization as a Jacobian, and the polarization as a Jacobian.

Key ingredients: boundaries of Hurwitz spaces, narrow class numbers of cyclotomic fields, an **algorithm** of Van Wamelen about principal polarizations for abelian varieties with complex multiplication.

- (Moduli spaces of) cyclic covers of \mathbb{P}^1 .
- Algebraic Number Theory: complex multiplication, principal polarizations, independent units, narrow class groups.
- Main result
- Examples
- Simple types and future directions

Introduction - cyclic covers of the projective line

Degree *m* cyclic cover $X \to \mathbb{P}^1$ with *N* branch points not ramified at ∞ has affine equation

$$X: y^m = \prod_{i=1}^N (x-b_i)^{a_i}.$$

(Note - the singularities are no big deal - there is a unique smooth projective curve which has this affine equation away from $\{b_i\}$.)

Inertia type (a_1, \ldots, a_N) with $\sum a_i \equiv 0 \mod m$ and $gcd(a_1, \ldots, a_N, m) = 1$.

Fix monodromy datum $\gamma = (m, N, a)$. The genus of X is:

$$g = g(\gamma) = 1 + \frac{1}{2} \Big((N-2)m - \sum_{i=1}^{N} \gcd(a(i), m) \Big).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The signature of the Jacobian

Given the curve
$$X : y^m = \prod_{i=1}^N (x - b_i)^{a_i}$$
.

The Jacobian Jac(X) is a principally polarized abelian variety of dimension g with an action by $\mathbb{Z}[\mu_m]$.

Decompose $H^0(X, \Omega^1) \simeq \bigoplus_{i=1}^{m-1} L_i$, where L_i is the eigenspace given by $\omega \in L_i$ iff $\zeta \cdot \omega = \zeta^i \omega$.

The **signature type** is $f = (f_1, ..., f_{m-1})$, where $f_i = \dim(L_i)$. Note $g = \sum_{i=1}^{m-1} f_i$.

Kani: formula for each f_i in terms of a.

$$f_i = -1 + \sum_{j=1}^N \langle \frac{-ia_j}{m} \rangle.$$

The data of *a* is equivalent to the data of *f*, up to equivalence.

An example that will show up throughout the talk

Degree m = 5. Number of branch points N = 4.

Choose inertia type a = (1, 2, 3, 4). Then genus g = 4.

$$X: y^5 = (x-b_1)(x-b_2)^2(x-b_3)^3(x-b_4)^4.$$

Easier equation: $X : y^5 = x(x-1)^2(x-t)^3$.

Signature f = (1, 1, 1, 1) since $f_i = -1 + \langle \frac{-i}{5} \rangle + \langle \frac{-2i}{5} \rangle + \langle \frac{-3i}{5} \rangle + \langle \frac{-4i}{5} \rangle$.

In \mathcal{M}_4 , the family of these curves has dimension 1.

In \mathcal{A}_4 , the family of p.p. abelian varieties with an action of $\mathbb{Z}[\zeta_5]$ with signature *f* has dimension 2.

Hurwitz space: Z_{γ} is moduli space of μ_m -covers with type γ .

 Z_{γ} is irreducible. There is a morphism $Z_{\gamma} \rightarrow \mathcal{M}_{g}$.

Also, γ determines a PEL-type **Shimura variety** Sh(*m*, *f*). Its points represent p.p. abelian varieties with an action of $\mathbb{Z}[\mu_m]$ of signature *f*. It can have many components.

Let S_{γ} be the component containing the image of Z_{γ} under the Torelli morphism T. There is a morphism $S_{\gamma} \rightarrow \mathcal{A}_g$.

Goal

Determine the integral Shimura datum for S_{γ} .

イロト イヨト イヨト イヨト

What is the integral Shimura datum?

Integral Shimura datum for \mathcal{A}_g : (i) vector space $V = \mathbb{Q}^{2g}$; (ii) lattice $\Lambda = \mathbb{Z}^{2g}$; (iii) standard symplectic form $\Psi : V \times V \to \mathbb{Q}$, integral on Λ .

Group $G = \operatorname{GSp}(V, \Psi)$ is the group of symplectic similitudes over \mathbb{Q} . Homomorphisms $h : \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to G_{\mathbb{R}}$ that define Hodge structures.

Add action by $\mathbb{Q}[\mu_m]$: group $H = \operatorname{GL}_{\mathbb{Q}[\mu_m]}(V) \cap G$.

The data of signature *f* is equivalent to data of orbit of $\{h\}$ under $H(\mathbb{R})$.

Goal: *integral Shimura datum for* S_{γ} (i) express *V* as a vector space over $F = \mathbb{Q}(\zeta_m)$; (ii) find a \mathcal{O}_F -lattice $\Lambda \subset V$; and (iii) explicitly find Hermitian form $\langle \cdot, \cdot \rangle$ on *V*, taking integral values on Λ .

Digression on dimension

The dimension of the Hurwitz family grows linearly with g. dim $(Z_{\gamma}) = N - 3$

The dimension of the Shimura variety grows quadratically with *g*. For *m* odd, $\dim(S_{\gamma}) = \sum_{i=1}^{(m-1)/2} f_i f_{m-i}$.

The monodromy type γ (and Z_{γ} and S_{γ}) are *special* if dim(Z_{γ}) = dim(S_{γ}).

If special, then $T(Z_{\gamma})$ is open and dense in S_{γ} ; its points represent Jacobians of smooth curves.

Remark

Our method does not depend on whether γ is special or not. It applies regardless of the codimension of $T(Z_{\gamma})$ in S_{γ} .

Moonen: Up to equivalence, there are exactly 20 γ which are special. The example $\gamma = (5,4,(1,2,3,4))$ is not special. M[11] given by $\gamma = (5,4,(1,3,3,3))$ has f = (1,2,0,1) and is special.

Algebraic number theory - Complex multiplication CM

Let *L* be a CM-field of degree 2n over \mathbb{Q} .

Let L_0 be its maximal totally real subfield; it has degree *n* over \mathbb{Q} .

A CM-type of *L* is an ordered set Φ of distinct embeddings $\phi_i : L \hookrightarrow \mathbb{C}$, for $1 \le i \le n$, no two of which are complex conjugate.

A CM-type of *L* is *simple* if it is not induced from the CM-type of a proper CM-subfield of *L*.

Let *A* be a complex torus such that $L \subset \text{End}(A) \otimes \mathbb{Q}$.

We say that *A* is of type (L, Φ) if the complex representation of End $(A) \otimes \mathbb{Q}$ on the tangent space of *A* is isomorphic to $\sum_{\phi \in \Phi} \phi$.

This implies that $\dim(A) = n$.

If, in addition, $\operatorname{End}(A) \simeq O_L$, we say A has type (O_L, Φ) .

The example that everything depends on

Let *m* be prime and $L = \mathbb{Q}(\zeta_m)$.

Let $\sigma_j : L \to \mathbb{C}$ be the embedding taking $\zeta_m \mapsto (e^{2\pi i/m})^j$.

The Jacobian of a 3-branch point cover

Let J = Jac(C) where $C \to \mathbb{P}^1$ is a μ_m -cover with N = 3 branch points.

Then *J* has type (O_L, Φ) where $\sigma_i \in \Phi$ iff $f_i > 0$.

E.g. let m = 5 and N = 3 and a = (1, 2, 2).

Let $C \to \mathbb{P}^1$ have affine equation $y^5 = x(x-1)^2$.

This has f = (1, 0, 1, 0) and $\Phi = \{\sigma_1, \sigma_3\}$;

• • • • • • • • • • • •

Let *L* be a CM-field and let Φ be a CM-type of *L*.

If (L, Φ) is simple, then the class group of *L* is in bijection with the set of isomorphism classes of complex tori *A* of type (O_L, Φ) .

More generally:

- If a is a lattice in *L*, then $\mathbb{C}^n/\Phi(\mathfrak{a})$ is a complex torus of type (L, Φ) .
- If A is a complex torus of type (L, Φ), then there exists a lattice a of L such that A ≃ Cⁿ/Φ(a).
- If Φ is simple and \mathfrak{a} is a fractional ideal of *L*, then End($\mathbb{C}^n/\Phi(\mathfrak{a})$) $\simeq O_L$, so $\mathbb{C}^n/\Phi(\mathfrak{a})$ has type (O_L, Φ).
- If Φ is simple and a, b are fractional ideals of L, then Cⁿ/Φ(a) ≃ Cⁿ/Φ(b) iff a and b are in the same ideal class.

< 回 > < 三 > < 三 >

Defining a principal polarization

Let *L* be a CM-field with maximal totally real subfield L_0 .

Let $\xi \in L$ be such that $L = L_0(\xi)$, $\xi^2 \in L_0$, and $D_{L/\mathbb{Q}} \cdot \mathfrak{a}\overline{\mathfrak{a}} = \langle \xi^{-1} \rangle$, for some fractional ideal \mathfrak{a} of L;

The Riemann form $\mathbb{E}: L \times L \to \mathbb{C}$, is given, for $x, y \in L$, by

$$\mathbb{E}(\Phi(x), \Phi(y)) = \operatorname{tr}_{L/\mathbb{Q}}(\xi x \overline{y}), \text{ for } x, y \in L$$
$$\mathbb{E}(z, w) = \sum_{i=1}^{n} \phi_i(\xi) (\overline{z}_i w_i - z_i \overline{w}_i), \text{ for } z, w \in \mathbb{C}^n.$$

Theorem: Van Wamelen

If $\operatorname{Im}(\phi(\xi)) > 0$ for $\phi \in \Phi$ then \mathbb{E} defines a principal polarization of type (L, Φ) on $\mathbb{C}^n / \Phi(\mathfrak{a})$.

Furthermore, if (L, Φ) is a simple CM-type, then all principal polarizations of type (L, Φ) on $\mathbb{C}^n/\Phi(\mathfrak{a})$ are given by such a ξ .

Pries (CSU)

Van Wamelen's algorithm

Algorithm

- Find an ideal \mathfrak{a} of *L* which represents each ideal class \mathfrak{A} such that $\mathfrak{A}\overline{\mathfrak{A}}$ is the ideal class of the codifferent $D_{L/\mathbb{Q}}^{-1}$ of *L* over \mathbb{Q} .
- ② For each \mathfrak{a} as in (1), find $b \in O_{L_0}$ satisfying $\langle b \rangle = D_{L/\mathbb{Q}} \cdot \mathfrak{a}\overline{\mathfrak{a}}$.
- If there exists a unit $u \in U_L$ such that $ub = -\overline{ub}$, set $\xi_0 = (ub)^{-1}$.
- Find representatives $u^+ \in U_{L_0}$ of the cosets of $N_{L/L_0}(U_L)$ in U_{L_0} . For each u^+ , if Im($\phi(u^+ \xi_0)$) > 0 for each $\phi \in \Phi$, set $\xi = u^+ \xi_0$.

Then ξ defines a principal polarization of type Φ on $\mathbb{C}^n/\Phi(\mathfrak{a})$. If (L, Φ) is simple, then this algorithm finds all isomorphism classes of p.p.'s abelian varieties A of type (\mathcal{O}_L, Φ) .

Corollary

Let Φ be a CM-type of *L*. An element $\beta \in O_L$ defines a principal polarization on $A_{\Phi} = \mathbb{C}^n / \Phi(O_L)$ of CM-type (L, Φ) if and only if

- **()** β generates the codifferent $D_{L/\mathbb{O}}^{-1}$;
- $\ \ \, {\bf 2}\ \ \, \beta=-\overline{\beta};$
- **③** Im($\phi(\beta)$) > 0, for each $\phi ∈ Φ$.

Two elements β , β' satisfying the above conditions yield isomorphic principally polarized abelian varieties if and only if there exists a unit $u \in U_L$ such that $\beta = u\bar{u}\beta'$.

Furthermore, if the CM-type Φ is simple, then all principal polarizations of A_{Φ} of CM-type (O_L, Φ) arise this way.

イロト イヨト イヨト イ

Example: computation of principal polarization

Let $F = \mathbb{Q}(\zeta_m)$ and $F_0 = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$.

We can explicitly compute $\beta_0 \in \mathcal{O}_F$ satisfying conditions (1) and (2).

Lemma: let *m* be an odd prime

The element β_0 below generates the codifferent $D_{F/\mathbb{O}}^{-1}$ and $\beta_0 = -\overline{\beta}_0$:

$$\beta_0 = m/(\zeta_m^{(m+1)/2} - \zeta_m^{(m-1)/2}).$$

Reason: β_0 is on the imaginary axis so (2) true.

For *m* an odd prime, the *m*th cyc. poly. is $c_m(x) = (x^m - 1)/(x - 1)$.

The codifferent $D_{F/\mathbb{O}}^{-1}$ is generated by $\langle c'_m(\zeta_m) \rangle$,

Compute $c'_m(\zeta_m) = m\zeta_m^{-1}/(\zeta_m - 1)$ and β_0 is an associate of this.

Example: computation of principal polarization page 2

We still need to deal with condition (3): $\operatorname{Im}(\phi(\beta)) > 0$, for each $\phi \in \Phi$.

Strategy: observe the signs of $Im(\phi(\beta_0))$. Find a totally real unit *u* s.t. $\beta = u\beta_0$ has the right signs.

Is this always possible?

Example

Let m = 5. Let $F = \mathbb{Q}(\zeta_5)$. Let $F_0 = \mathbb{Q}(\zeta_5)$. Then $\beta_0 = 5/(\zeta_5^3 - \zeta_5^2)$. Embeddings: $\sigma_j : F \to \mathbb{C}$, taking $\zeta_5 \mapsto \zeta_5^j$.

If
$$\Phi_1 = \{\sigma_1, \sigma_3\}$$
, set $u_1 = -1$ so that $\beta_1 = -\frac{5}{\zeta_5^3 - \zeta_5^2}$.

If
$$\Phi_2 = \{\sigma_1, \sigma_2\}$$
, set $u_2 = -\frac{\zeta_5^3 - \zeta_5^2}{\zeta_5 - \zeta_5^4}$ so that $\beta_2 = -\frac{5}{\zeta_5 - \zeta_5^4}$.

• • • • • • • • • • • •

Let *L* be a CM-field, with real subfield L_0 and $n = \deg(L_0/\mathbb{Q})$.

Fix an ordering τ_1, \ldots, τ_n of the real embeddings of L_0 .

Let U_{L_0} be the units of L_0 and let $u \in U_{L_0}$.

Define $\rho_{L_0} : U_{L_0} \to \{\pm 1\}^n$ by $\rho_{L_0}(u) = (\tau_i(u)/|\tau_i(u)|)_{1 \le i \le n}$.

Say L_0 has units of independent signs if ρ_{L_0} is surjective.

Also L_0 has units of almost independent signs if $|coker(\rho_{L_0})| = 2$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Connection with the narrow class group

Let *L* be a CM-field, with real subfield L_0 and $n = \deg(L_0/\mathbb{Q})$.

Fix an ordering τ_1, \ldots, τ_n of the real embeddings of L_0 .

We say that $\alpha \in L_0$ is *totally positive* if $\tau_i(\alpha) > 0$ for $1 \le i \le n$.

The narrow class group is $cl_{L_0^+} = I_{L_0}/P_{L_0}^+$, where $P_{L_0}^+$ is the group of principal ideals generated by a totally positive element.

There is a surjection $v_{L_0} : cl_{L_0}^+ \to cl_{L_0}$.

Then L_0 has units of independent signs iff v_{L_0} is an isomorphism.

Fact: The narrow class number $h_{L_0}^+$ is odd (resp. 1) iff the class number h_{L_0} is odd (resp. 1) and L_0 has units with independent signs.

Also L_0 has units of almost independent signs iff $|\ker(v_{L_0})| = 2$.

Let L/L_0 be a CM-extension.

If (L, Φ) is a CM-type, there is a p.p. CM-abelian variety of that type.

Proposition

Suppose L_0 has units of independent signs.

- If (L, Φ) is simple, then there exists a p.p. CM-abelian variety A of type (O_L, Φ). Also A has at most one principal polarization, up to isomorphism.
- Suppose, in addition, that *L* has class number 1. Then for any simple CM-type (*L*, Φ), there exists a unique p.p. CM-abelian variety of type (*O_L*, Φ), up to isomorphism.

• • • • • • • • • • • •

Proof

There exists a fractional ideal \mathfrak{a} in L and $\beta_0 \in O_L$ satisfying (1) β_0 generates $D_{L/\mathbb{Q}}\mathfrak{a}\overline{\mathfrak{a}}$ and (2) $\beta_0 = -\overline{\beta}_0$. If L_0 has units of independent signs, then there exists $u_0 \in U_{L_0}$ s.t. $\beta = u_0\beta_0$ satisfies (3) $\operatorname{Im}(\phi(\beta)) > 0$, for each $\phi \in \Phi$. Then $\beta \in O_L$ defines a p.p. of type (L, Φ) on $A = \mathbb{C}^n / \Phi(\mathfrak{a})$.

If (L, Φ) is simple, all p.p.'s of type (L, Φ) on $\mathbb{C}^n/\Phi(\mathfrak{a})$ arise from some $\beta \in O_L$ satisfying (1)–(3). If $\beta, \beta' \in O_L$ satisfy (1)–(3), then $\beta' = u^+\beta$ for some totally positive unit $u^+ \in U_{L_0}^+$. Since L_0 has units of independent signs, $U_{L_0}^+ = N_{L/L_0}(U_L)$. So $u^+ = N(u)$ for some unit $u \in U_L$, thus β, β' define isomorphic p.p.'s on A.

If *L* has class number 1, then any CM-abelian variety of type (L, Φ) is isomorphic to $A_{\Phi} = \mathbb{C}^n / \Phi(O_L)$.

イロト イヨト イヨト イヨト

Class groups of cyclotomic fields

For example, let *m* be a positive odd integer. Take *L* to be the cyclotomic field $F = \mathbb{Q}(\zeta_m)$, which is a CM-field. Its real subfield is $F_0 = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$, with degree $n = \phi(m)/2$ over \mathbb{Q} .

By Lang: if (F, Φ) is a simple CM-type, then there is a bijection between isomorphism classes of complex tori of type (\mathcal{O}_F, Φ) and elements of the class group cl_F of F.

Restriction

Assume that F has class number 1 (i.e., O_F has unique factorization).

This also implies that F_0 has class number 1.

Finite list of odd *m*: Primes: 3,5,7,9,11,13,17,19,25,27 Prime powers: 9,25,27 Not prime powers: 15,21,33,35,45

Let *t* be the number of finite primes ramified in L/L_0 .

Found in Conner/Hurrelbrink

Suppose L_0 is a totally real field, and L/L_0 is a CM-extension. Then h_L is odd if and only if either (1) $h_{L_0}^+$ is odd and t = 1, or (2) h_{L_0} is odd, $h_{L_0}^+ = 2h_{L_0}$ and t = 0.

Conclusion: taking L_0 to be $F_0 = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$. For the prime powers 3, 5, 7, 9, 11, 13, 17, 19, 25, 27, F_0 has narrow class number 1 and units of independent signs.

For not prime powers 15,21,33,35,45, F_0 has narrow class number 2 and units of almost independent signs.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Main result on integral Shimura data for *m* prime

Suppose $F = \mathbb{Q}(\zeta_m)$ has class number 1. Let $\gamma = (m, N, a)$. For simplicity, let *m* be an odd prime (e.g. m = 3, 5, 7, 11, 13, 17, 19).

Let $N \ge 3$ and let *a* be an arbitrary inertia type. Let r = N - 2.

LMPT part 1

Then the Hurwitz space Z_{γ} has a distinguished point *P*.

```
It represents an admissible \mu_m-cover h : C \to T, where T is a tree of r projective lines
```

and *C* is a curve of compact type, with *r* irreducible components C_1, \ldots, C_r , each of which is a curve of genus (m-1)/2 admitting a μ_m -cover of \mathbb{P}^1 branched at 3 points.

<ロト </p>

Main result on integral Shimura data for *m* prime

Let $A_j = \text{Jac}(C_j)$. Then each A_j is a p.p. abelian variety of dimension (m-1)/2 with $\text{End}(A_j) \simeq O_F$.

Let Φ_i be the CM-type of A_j . **Assume** (F, Φ_i) is simple for each *j*.

This condition is automatic for m = 3, 5, 11, 17 (also for m = 9, 25, 27).

Let $\beta_j \in \mathbb{C}$ be the value defined earlier for Φ_j .

LMPT part 2

The integral Shimura datum for the component of *S* containing Z_{γ} is:

- the *F*-vector space $V = F^r$, together with the standard O_F -lattice $\Lambda = (O_F)^r \subseteq V$;
- the Hermitian form (·, ·) on V, which takes integral values on Λ, defined by

$$\langle x, y \rangle = \operatorname{tr}_{F/\mathbb{Q}}(xB\overline{y}^{T}) \text{ for } B = \operatorname{diag}[\beta_1, \dots \beta_r] \in \operatorname{GL}_r(F) = \operatorname{GL}(V).$$

For i = 1, 2, let $C_i \to \mathbb{P}^1$ be a μ_m -cover, branched at N_i points. Clutch C_1 and C_2 together, by identifying last (resp. first) ramified point of C_1 (resp. C_2) in an ordinary double point.

Get μ_m -cover $C_3 \to \mathbb{P}^1$, with C_3 singular.

BLR: $Jac(C_3) \simeq Jac(C_1) \times Jac(C_2)$, with product polarization.

If **admissible**, meaning that $a_1(N) \equiv -a_2(1) \mod m$, then $C_3 \to \mathbb{P}^1$ deforms to a μ_m -cover of smooth curves.

Conversely, for $N \ge 4$, Hurwitz spaces are affine so Z_{γ} contains a distinguished point that arises from clutching and represents cover of curves of compact type.

< 日 > < 同 > < 回 > < 回 > < □ > <

Example: m = 5, N = 4, and a = (1, 2, 3, 4)

Let Z_{γ} be the Hurwitz family for $\gamma = (5, 4, (1, 2, 3, 4))$. Recall $\beta_1 = -\frac{5}{\zeta_5^3 - \zeta_5^2}$ The family Z_{γ} has a distinguished point as follows:

For j = 1, 2, let $C_j \to \mathbb{P}^1$ be a μ_5 -cover with N = 3 s.t. when j = 1, let a = (1, 2, 2). This has f = (1, 0, 1, 0) and $\Phi = \{\sigma_1, \sigma_3\}$; when j = 2, let a = (3, 3, 4). This has f = (0, 1, 0, 1) and $\Phi = \{\sigma_2, \sigma_4\}$.

The p.p. on $Jac(C_j)$ is given by $-\beta_1$ for j = 1 and by β_1 for j = 2.

The integral Shimura data for S_{γ} has lattice \mathcal{O}_{F}^{2} and Hermitian form given by the matrix $B = \text{diag}[-\beta_{1}, \beta_{1}]$.

Remark: there is a second distinguished point of Z_{γ} and its Hermitian form is equivalent to this one.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Not every type is simple:

e.g., $(\mathbb{Q}(\zeta_7), \{\sigma_1, \sigma_2, \sigma_4\})$ is not simple since it is induced from $\mathbb{Q}(\sqrt{-7})$.

Let *m* be an odd prime power and $F = \mathbb{Q}(\zeta_m)$.

Since $(\mathbb{Z}/m\mathbb{Z})^*$ is cyclic, complex conjugation is the unique automorphism of *F* of order 2.

The CM-fields in *F* are the fixed fields F^H for $H \subset (\mathbb{Z}/m)^*$ of odd order. A CM-type Φ of *F* is induced from F^H iff Φ is a union of cosets of *H*.

Similar issues occur when m = 13 or m = 19.

< 回 ト < 三 ト < 三

Let $F = \mathbb{Q}(\zeta_m)$ and let Φ be a CM-type for F.

Suppose m = 4 or m is a Fermat prime or twice a Fermat prime. (e.g., m = 4 and m = 3,5,17 and m = 6,10). Then (E, Φ) is simple because E has no proper non-trivial CM-field

Then (F, Φ) is simple because F has no proper non-trivial CM-fields.

Suppose m = 9 or $m \equiv 3 \mod 8$ is prime s.t. w = (m-1)/2 is prime. (e.g. m = 9 and m = 11,59,83,107,179,227,...). Then Φ is simple.

Reason: The squares are the unique $H \subset (\mathbb{Z}/m\mathbb{Z})^*$ of odd order. Φ is not a union of cosets of H iff it contains both a square and a non-square.

Show Φ contains 1 and either 2 or -4.

Under the conditions, -1 and 2 are not squares mod *m*, so Φ is simple.

A similar computation shows (F, Φ) is simple when m = 25 or m = 27.

Integral Shimura data for all cases when m = 3

Let m = 3 and $F = \mathbb{Q}(\zeta_3)$. Let $N \ge 4$ and $g \ge 2$.

Let (f_1, f_2) be an arbitrary trielliptic signature for g. (meaning $f_1 + f_2 = g$ and $0 \le \max(f_1, f_2) \le 2\min(f_1, f_2) + 1$). Inertia type a has 1 (resp. 2) with mult. $2f_1 - f_2 + 1$ (resp. $2f_2 - f_1 + 1$).

Let $\beta_1 = -\sqrt{-3}$ and $\beta_2 = \sqrt{-3}$.

Example: all families with m = 3

Let $B \in GL_g(\mathcal{O}_F)$ be diagonal with f_1 entries of β_2 and f_2 entries of β_1 .

For the family $Z_{\gamma} = Z(3, N, a)$ with signature (f_1, f_2) , let *S* be the component of the Shimura variety containing the Torelli image of Z_{γ} .

Then the integral Shimura datum of *S* has lattice $(O_F)^g$ with Hermitian form defined by $\langle x, y \rangle = \operatorname{tr}_{F/Q}(xB\bar{y}^T)$.

This includes the three special families M[3], M[6], and M[10].

Pries (CSU)

Examples when m = 5

Let $F = \mathbb{Q}(\zeta_m)$. For m = 5, let $\beta_1 = -\frac{5}{\zeta_5^3 - \zeta_5^2}$ and $\beta_2 = \sigma_2(\beta_1)$. For the two Moonen special families M = Z(m, N, a) below, let r = N - 2, and with $B \in \operatorname{GL}_r(\mathcal{O}_F)$ as given, the integral Shimura datum of M is the lattice $(\mathcal{O}_F)^r$ together with the Hermitian form

$$\langle x,y\rangle = \operatorname{tr}_{F/Q}(xB\bar{y}^T).$$

Μ	(<i>m</i> , <i>N</i> , <i>a</i>)	В
<i>M</i> [11]	(5,4,(1,3,3,3))	$diag[\beta_1,\beta_2]$
<i>M</i> [16]	(5,5,(2,2,2,2,2))	$diag[-\beta_1,-\beta_2,-\beta_2]$

As a short-hand, this is the admissible distinguished point:

М	(<i>m</i> , <i>N</i> , <i>a</i>)	distinguished
<i>M</i> [11]	(5,4,(1,3,3,3))	(1,3,1)+(4,3,3)
<i>M</i> [16]	(5,5,(2,2,2,2,2))	(2,2,1)+(4,2,4)+(1,2,2)

We want to generalize to other *m* s.t. $F = \mathbb{Q}(\zeta_m)$ has class number 1.

So far, we can find integral Shimura data under conditions on the inertia type *a*.

Complications

(i) Some families do not have any distinguished points of compact type. E.g., M[12], with m = 6, N = 4, and a = (1, 1, 1, 3).

(ii) Some distinguished points of compact type involve induced covers. E.g. M[18] when m = 10, N = 4, and a = (3,5,6,6). (The cover is disconnected over a component of the tree)

(iii) Some distinguished points involve non-simple CM-types E.g. M[17] when m = 7, N = 4, and a = (2,4,4,4).

Despite these complications, we can handle families with arbitrary number of branch points N

[A] when m = 2m' (e.g. m = 6, 10, 22, 34) E.g., we found the integral Shimura data for M[18], where m = 10, N = 4, and a = (3,5,6,6). Here g = 6 and f = (1,1,0,1,0,0,2,0,1).

[B] when *m* is a prime power (e.g. m = 9,25,27) and

[C] when the family has a point representing a curve with extra automorphisms (e.g., m = 7, 13, 19, 8, 16) E.g., we found the Shimura data for M[17], where m = 7, N = 4, and a = (2, 4, 4, 4). Here g = 6 and f = (1, 2, 0, 2, 0, 1).

Remark: our results for [C] use more algebraic number theory and circumvent the problem (iii) of non-simple CM-types.

Thanks!

æ

イロン 不聞と 不良と 不良とう