Principal polarizations and Shimura data for families of cyclic covers of the projective line

Dr. Rachel Pries, Colorado State University
Fourteenth Algorithmic Number Theory Symposium, ANTS-XIV, (virtually) at University of Auckland, New Zealand

Thanks to organizers for invitation
Work in progress:
Joint with Wanlin Li, Elena Mantovan, and Yunqing Tang

The synergy between curves and abelian varieties

Let's say you want to study elliptic curves or more generally curves of genus g where $1 \leq g \leq 3$.

Very helpful fact:

If $1 \leq g \leq 3$, then almost every principally polarized abelian variety A of dimension g is the Jacobian of a smooth curve of genus $g .(* 1)\left({ }^{*} 2\right)$

There is more information about abelian varieties than about curves. For many years, I leveraged this fact to prove things about curves, even about curves of arbitrarily large genus.

This project is an opportunity for the curves to give back.

Technical notes:

(*1) If not, then A is the Jacobian of a curve of compact type.
(*2) Geometric statement: the image of the Torelli morphism $\mathcal{M}_{g} \rightarrow \mathcal{A}_{g}$ is open and dense if $1 \leq g \leq 3$.

Bird's eye view

We study curves that are cyclic covers of the projective line \mathbb{P}^{1}. Their invariants: degree m, number of branch points N, genus g, etc. Hurwitz spaces parametrize (families of) curves with same invariants.

The Jacobians of the curves are p.p. abelian varieties. Their invariants: dimension g, endomorphisms, signature. Shimura varieties parametrize (families of) abelian varieties with same invariants.

Main result:

Under a condition on the class number of $\mathbb{Q}\left(\zeta_{m}\right)$, for an arbitrary N, we determine the Hermitian form and integral Shimura datum of the component of the Shimura variety containing the Torelli locus.

General strategy: identify point in family whose Jacobian has CM; explicitly compute this Jacobian, as \mathbb{C}^{g} / Λ; write down Hermitian form coming from its polarization as a Jacobian,

If we stick to the slides, this is the order of topics:

Key ingredients: boundaries of Hurwitz spaces, narrow class numbers of cyclotomic fields, an algorithm of Van Wamelen about principal polarizations for abelian varieties with complex multiplication.
(1) (Moduli spaces of) cyclic covers of \mathbb{P}^{1}.
(2) Algebraic Number Theory:
complex multiplication, principal polarizations, independent units, narrow class groups.
(3) Main result
(4) Examples
(5) Simple types and future directions

Introduction - cyclic covers of the projective line

Degree m cyclic cover $X \rightarrow \mathbb{P}^{1}$ with N branch points not ramified at ∞ has affine equation

$$
x: y^{m}=\prod_{i=1}^{N}\left(x-b_{i}\right)^{a_{i}} .
$$

(Note - the singularities are no big deal - there is a unique smooth projective curve which has this affine equation away from $\left\{b_{i}\right\}$.) Inertia type $\left(a_{1}, \ldots, a_{N}\right)$ with $\sum a_{i} \equiv 0 \bmod m$ and $\operatorname{gcd}\left(a_{1}, \ldots, a_{N}, m\right)=1$.

Fix monodromy datum $\gamma=(m, N, a)$. The genus of X is:

$$
g=g(\gamma)=1+\frac{1}{2}\left((N-2) m-\sum_{i=1}^{N} \operatorname{gcd}(a(i), m)\right) .
$$

The signature of the Jacobian

Given the curve $X: y^{m}=\prod_{i=1}^{N}\left(x-b_{i}\right)^{a_{i}}$.
The $\operatorname{Jacobian} \operatorname{Jac}(X)$ is a principally polarized abelian variety of dimension g with an action by $\mathbb{Z}\left[\mu_{m}\right]$.

Decompose $H^{0}\left(X, \Omega^{1}\right) \simeq \oplus_{i=1}^{m-1} L_{i}$, where L_{i} is the eigenspace given by $\omega \in L_{i}$ iff $\zeta \cdot \omega=\zeta^{i} \omega$.

The signature type is $f=\left(f_{1}, \ldots, f_{m-1}\right)$, where $f_{i}=\operatorname{dim}\left(L_{i}\right)$. Note $g=\sum_{i=1}^{m-1} f_{i}$.

Kani: formula for each f_{i} in terms of a.

$$
f_{i}=-1+\sum_{j=1}^{N}\left\langle\frac{-i a_{j}}{m}\right\rangle
$$

The data of a is equivalent to the data of f, up to equivalence.

An example that will show up throughout the talk

Degree $m=5$. Number of branch points $N=4$.
Choose inertia type $a=(1,2,3,4)$. Then genus $g=4$.
$x: y^{5}=\left(x-b_{1}\right)\left(x-b_{2}\right)^{2}\left(x-b_{3}\right)^{3}\left(x-b_{4}\right)^{4}$.
Easier equation: $X: y^{5}=x(x-1)^{2}(x-t)^{3}$.
Signature $f=(1,1,1,1)$ since $f_{i}=-1+\left\langle\frac{-i}{5}\right\rangle+\left\langle\frac{-2 i}{5}\right\rangle+\left\langle\frac{-3 i}{5}\right\rangle+\left\langle\frac{-4 i}{5}\right\rangle$.
In \mathscr{M}_{4}, the family of these curves has dimension 1 .
In \mathcal{A}_{4}, the family of p.p. abelian varieties with an action of $\mathbb{Z}\left[\zeta_{5}\right]$ with signature f has dimension 2.

Overview - moduli spaces. Let $\gamma=(m, N, a)$.

Hurwitz space: Z_{γ} is moduli space of μ_{m}-covers with type γ.
Z_{γ} is irreducible. There is a morphism $Z_{\gamma} \rightarrow \mathcal{M}_{g}$.
Also, γ determines a PEL-type Shimura variety $\mathrm{Sh}(m, f)$. Its points represent p.p. abelian varieties with an action of $\mathbb{Z}\left[\mu_{m}\right]$ of signature f. It can have many components.

Let S_{γ} be the component containing the image of Z_{γ} under the Torelli morphism T. There is a morphism $S_{\gamma} \rightarrow \mathcal{A}_{g}$.

Goal

Determine the integral Shimura datum for S_{γ}.

What is the integral Shimura datum?

Integral Shimura datum for \mathcal{A}_{g} : (i) vector space $V=\mathbb{Q}^{2 g}$;
(ii) lattice $\Lambda=\mathbb{Z}^{2 g}$;
(iii) standard symplectic form $\Psi: V \times V \rightarrow \mathbb{Q}$, integral on \wedge.

Group $G=\operatorname{GSp}(V, \Psi)$ is the group of symplectic similitudes over \mathbb{Q}. Homomorphisms $h: \operatorname{Res}_{\mathbb{C} / \mathbb{R}} \mathbb{G}_{m} \rightarrow G_{\mathbb{R}}$ that define Hodge structures.

Add action by $\mathbb{Q}\left[\mu_{m}\right]$: group $H=\mathrm{GL}_{\mathbb{Q}\left[\mu_{m}\right]}(V) \cap G$.
The data of signature f is equivalent to data of orbit of $\{h\}$ under $H(\mathbb{R})$.
Goal: integral Shimura datum for S_{γ}
(i) express V as a vector space over $F=\mathbb{Q}\left(\zeta_{m}\right)$;
(ii) find a O_{F}-lattice $\wedge \subset V$; and
(iii) explicitly find Hermitian form $\langle\cdot, \cdot\rangle$ on V, taking integral values on \wedge.

Digression on dimension

The dimension of the Hurwitz family grows linearly with g. $\operatorname{dim}\left(Z_{\gamma}\right)=N-3$

The dimension of the Shimura variety grows quadratically with g. For m odd, $\operatorname{dim}\left(S_{\gamma}\right)=\sum_{i=1}^{(m-1) / 2} f_{i} f_{m-i}$.

The monodromy type γ (and Z_{γ} and S_{γ}) are special if $\operatorname{dim}\left(Z_{\gamma}\right)=\operatorname{dim}\left(S_{\gamma}\right)$.
If special, then $T\left(Z_{\gamma}\right)$ is open and dense in S_{γ}; its points represent Jacobians of smooth curves.

Remark

Our method does not depend on whether γ is special or not. It applies regardless of the codimension of $T\left(Z_{\gamma}\right)$ in S_{γ}.

Moonen: Up to equivalence, there are exactly 20γ which are special. The example $\gamma=(5,4,(1,2,3,4))$ is not special.
$M[11]$ given by $\gamma=(5,4,(1,3,3,3))$ has $f=(1,2,0,1)$ and is special.

Algebraic number theory - Complex multiplication CM

Let L be a CM-field of degree $2 n$ over \mathbb{Q}.
Let L_{0} be its maximal totally real subfield; it has degree n over \mathbb{Q}.
A CM-type of L is an ordered set Φ of distinct embeddings $\phi_{i}: L \hookrightarrow \mathbb{C}$, for $1 \leq i \leq n$, no two of which are complex conjugate.

A CM-type of L is simple if it is not induced from the CM-type of a proper CM-subfield of L.

Let A be a complex torus such that $L \subset \operatorname{End}(A) \otimes \mathbb{Q}$.
We say that A is of type (L, Φ) if the complex representation of $\operatorname{End}(A) \otimes \mathbb{Q}$ on the tangent space of A is isomorphic to $\sum_{\phi \in \Phi} \phi$.

This implies that $\operatorname{dim}(A)=n$.
If, in addition, $\operatorname{End}(A) \simeq O_{L}$, we say A has type $\left(O_{L}, \Phi\right)$.

The example that everything depends on

Let m be prime and $L=\mathbb{Q}\left(\zeta_{m}\right)$.
Let $\sigma_{j}: L \rightarrow \mathbb{C}$ be the embedding taking $\zeta_{m} \mapsto\left(e^{2 \pi i / m}\right)^{j}$.

The Jacobian of a 3-branch point cover
Let $J=\operatorname{Jac}(C)$ where $C \rightarrow \mathbb{P}^{1}$ is a μ_{m}-cover with $N=3$ branch points.
Then J has type $\left(O_{L}, \Phi\right)$ where $\sigma_{j} \in \Phi$ iff $f_{j}>0$.
E.g. let $m=5$ and $N=3$ and $a=(1,2,2)$.

Let $C \rightarrow \mathbb{P}^{1}$ have affine equation $y^{5}=x(x-1)^{2}$.
This has $f=(1,0,1,0)$ and $\Phi=\left\{\sigma_{1}, \sigma_{3}\right\}$;

CM-theory as found in Lang

Let L be a CM-field and let Φ be a CM-type of L.
If (L, Φ) is simple, then the class group of L is in bijection with the set of isomorphism classes of complex tori A of type $\left(O_{L}, \Phi\right)$.

More generally:
(1) If \mathfrak{a} is a lattice in L, then $\mathbb{C}^{n} / \Phi(\mathfrak{a})$ is a complex torus of type (L, Φ).
(2) If A is a complex torus of type (L, Φ), then there exists a lattice \mathfrak{a} of L such that $A \simeq \mathbb{C}^{n} / \Phi(\mathfrak{a})$.
(3) If Φ is simple and \mathfrak{a} is a fractional ideal of L, then $\operatorname{End}\left(\mathbb{C}^{n} / \Phi(\mathfrak{a})\right) \simeq O_{L}$, so $\mathbb{C}^{n} / \Phi(\mathfrak{a})$ has type $\left(O_{L}, \Phi\right)$.
(4) If Φ is simple and $\mathfrak{a}, \mathfrak{b}$ are fractional ideals of L, then $\mathbb{C}^{n} / \Phi(\mathfrak{a}) \simeq \mathbb{C}^{n} / \Phi(\mathfrak{b})$ iff \mathfrak{a} and \mathfrak{b} are in the same ideal class.

Defining a principal polarization

Let L be a CM-field with maximal totally real subfield L_{0}.
Let $\xi \in L$ be such that $L=L_{0}(\xi), \xi^{2} \in L_{0}$, and $D_{L / \mathbb{Q}} \cdot \mathfrak{a} \overline{\mathfrak{a}}=\left\langle\xi^{-1}\right\rangle$, for some fractional ideal \mathfrak{a} of L;

The Riemann form $\mathbb{E}: L \times L \rightarrow \mathbb{C}$, is given, for $x, y \in L$, by

$$
\begin{gathered}
\mathbb{E}(\Phi(x), \Phi(y))=\operatorname{tr}_{L / \mathbb{Q}}(\xi x \bar{y}), \text { for } x, y \in L \\
\mathbb{E}(z, w)=\sum_{i=1}^{n} \phi_{i}(\xi)\left(\bar{z}_{i} w_{i}-z_{i} \bar{w}_{i}\right), \text { for } z, w \in \mathbb{C}^{n} .
\end{gathered}
$$

Theorem: Van Wamelen

If $\operatorname{Im}(\phi(\xi))>0$ for $\phi \in \Phi$ then \mathbb{E} defines a principal polarization of type (L, Φ) on $\mathbb{C}^{n} / \Phi(\mathfrak{a})$.

Furthermore, if (L, Φ) is a simple CM-type, then all principal polarizations of type (L, Φ) on $\mathbb{C}^{n} / \Phi(\mathfrak{a})$ are given by such a ξ.

Van Wamelen's algorithm

Algorithm

(1) Find an ideal \mathfrak{a} of L which represents each ideal class \mathfrak{A} such that $\mathfrak{A} \overline{\mathfrak{A}}$ is the ideal class of the codifferent $D_{L / \mathbb{Q}}^{-1}$ of L over \mathbb{Q}.
(2) For each \mathfrak{a} as in (1), find $b \in O_{L_{0}}$ satisfying $\langle b\rangle=D_{L / \mathbb{Q}} \cdot \mathfrak{a} \overline{\mathfrak{a}}$.
(3) If there exists a unit $u \in U_{L}$ such that $u b=-\overline{u b}$, set $\xi_{0}=(u b)^{-1}$.
(4) Find representatives $u^{+} \in U_{L_{0}}$ of the cosets of $N_{L / L_{0}}\left(U_{L}\right)$ in $U_{L_{0}}$. For each u^{+}, if $\operatorname{Im}\left(\phi\left(u^{+} \xi_{0}\right)\right)>0$ for each $\phi \in \Phi$, set $\xi=u^{+} \xi_{0}$.

Then ξ defines a principal polarization of type Φ on $\mathbb{C}^{n} / \Phi(\mathfrak{a})$. If (L, Φ) is simple, then this algorithm finds all isomorphism classes of p.p.'s abelian varieties A of type $\left(O_{L}, \Phi\right)$.

A special case

Corollary

Let Φ be a CM-type of L. An element $\beta \in O_{L}$ defines a principal polarization on $A_{\Phi}=\mathbb{C}^{n} / \Phi\left(O_{L}\right)$ of CM-type (L, Φ) if and only if
(1) β generates the codifferent $D_{L / \mathbb{Q}}^{-1}$;
(2) $\beta=-\bar{\beta}$;
(3) $\operatorname{Im}(\phi(\beta))>0$, for each $\phi \in \Phi$.

Two elements β, β^{\prime} satisfying the above conditions yield isomorphic principally polarized abelian varieties if and only if there exists a unit $u \in U_{L}$ such that $\beta=u \bar{u} \beta^{\prime}$.

Furthermore, if the CM-type Φ is simple, then all principal polarizations of A_{Φ} of CM-type $\left(O_{L}, \Phi\right)$ arise this way.

Example: computation of principal polarization

Let $F=\mathbb{Q}\left(\zeta_{m}\right)$ and $F_{0}=\mathbb{Q}\left(\zeta_{m}+\zeta_{m}^{-1}\right)$.
We can explicitly compute $\beta_{0} \in O_{F}$ satisfying conditions (1) and (2).

Lemma: let m be an odd prime

The element β_{0} below generates the codifferent $D_{F / \mathbb{Q}}^{-1}$ and $\beta_{0}=-\bar{\beta}_{0}$:

$$
\beta_{0}=m /\left(\zeta_{m}^{(m+1) / 2}-\zeta_{m}^{(m-1) / 2}\right)
$$

Reason: β_{0} is on the imaginary axis so (2) true.
For m an odd prime, the m th cyc. poly. is $c_{m}(x)=\left(x^{m}-1\right) /(x-1)$.
The codifferent $D_{F / \mathbb{Q}}^{-1}$ is generated by $\left\langle c_{m}^{\prime}\left(\zeta_{m}\right)\right\rangle$,
Compute $c_{m}^{\prime}\left(\zeta_{m}\right)=m \zeta_{m}^{-1} /\left(\zeta_{m}-1\right)$ and β_{0} is an associate of this.

Example: computation of principal polarization page 2

We still need to deal with condition (3): $\operatorname{Im}(\phi(\beta))>0$, for each $\phi \in \Phi$.
Strategy: observe the signs of $\operatorname{Im}\left(\phi\left(\beta_{0}\right)\right)$.
Find a totally real unit u s.t. $\beta=u \beta_{0}$ has the right signs.
Is this always possible?

Example

Let $m=5$. Let $F=\mathbb{Q}\left(\zeta_{5}\right)$. Let $F_{0}=\mathbb{Q}\left(\zeta_{5}\right)$. Then $\beta_{0}=5 /\left(\zeta_{5}^{3}-\zeta_{5}^{2}\right)$.
Embeddings: $\sigma_{j}: F \rightarrow \mathbb{C}$, taking $\zeta_{5} \mapsto \zeta_{5}^{j}$.
If $\Phi_{1}=\left\{\sigma_{1}, \sigma_{3}\right\}$, set $u_{1}=-1$ so that $\beta_{1}=-\frac{5}{\zeta_{5}^{3}-\zeta_{5}^{2}}$.
If $\Phi_{2}=\left\{\sigma_{1}, \sigma_{2}\right\}$, set $u_{2}=-\frac{\zeta_{5}^{3}-\zeta_{5}^{2}}{\zeta_{5}-\zeta_{5}^{4}}$ so that $\beta_{2}=-\frac{5}{\zeta_{5}-\zeta_{5}^{4}}$.

Units of independent signs

Let L be a CM-field, with real subfield L_{0} and $n=\operatorname{deg}\left(L_{0} / \mathbb{Q}\right)$.
Fix an ordering $\tau_{1}, \ldots, \tau_{n}$ of the real embeddings of L_{0}.
Let $U_{L_{0}}$ be the units of L_{0} and let $u \in U_{L_{0}}$.
Define $\rho_{L_{0}}: U_{L_{0}} \rightarrow\{ \pm 1\}^{n}$ by $\rho_{L_{0}}(u)=\left(\tau_{i}(u) /\left|\tau_{i}(u)\right|\right)_{1 \leq i \leq n}$.
Say L_{0} has units of independent signs if $\rho_{L_{0}}$ is surjective.
Also L_{0} has units of almost independent signs if $\left|\operatorname{coker}\left(\rho_{L_{0}}\right)\right|=2$.

Connection with the narrow class group

Let L be a CM-field, with real subfield L_{0} and $n=\operatorname{deg}\left(L_{0} / \mathbb{Q}\right)$.
Fix an ordering $\tau_{1}, \ldots, \tau_{n}$ of the real embeddings of L_{0}.
We say that $\alpha \in L_{0}$ is totally positive if $\tau_{i}(\alpha)>0$ for $1 \leq i \leq n$.
The narrow class group is $\mathrm{cl}_{L_{0}^{+}}=I_{L_{0}} / P_{L_{0}}^{+}$, where $P_{L_{0}}^{+}$is the group of principal ideals generated by a totally positive element.

There is a surjection $v_{L_{0}}: \mathrm{cl}_{L_{0}}^{+} \rightarrow \mathrm{cl}_{L_{0}}$.
Then L_{0} has units of independent signs iff $v_{L_{0}}$ is an isomorphism.
Fact: The narrow class number $h_{L_{0}}^{+}$is odd (resp. 1) iff the class number $h_{L_{0}}$ is odd (resp. 1) and L_{0} has units with independent signs.

Also L_{0} has units of almost independent signs iff $\left|\operatorname{ker}\left(v_{L_{0}}\right)\right|=2$.

Principal polarizations and independent signs

Let L / L_{0} be a CM-extension.
If (L, Φ) is a CM-type, there is a p.p. CM-abelian variety of that type.

Proposition

Suppose L_{0} has units of independent signs.
(1) If (L, Φ) is simple, then there exists a p.p. CM-abelian variety A of type $\left(O_{L}, \Phi\right)$. Also A has at most one principal polarization, up to isomorphism.
(2) Suppose, in addition, that L has class number 1. Then for any simple CM-type (L, Φ), there exists a unique p.p. CM-abelian variety of type (O_{L}, Φ), up to isomorphism.

Proof

There exists a fractional ideal \mathfrak{a} in L and $\beta_{0} \in O_{L}$ satisfying
(1) β_{0} generates $D_{L / \mathbb{Q}} \mathfrak{a} \overline{\mathfrak{a}}$ and (2) $\beta_{0}=-\bar{\beta}_{0}$.

If L_{0} has units of independent signs, then there exists $u_{0} \in U_{L_{0}}$ s.t.
$\beta=u_{0} \beta_{0}$ satisfies (3) $\operatorname{Im}(\phi(\beta))>0$, for each $\phi \in \Phi$.
Then $\beta \in O_{L}$ defines a p.p. of type (L, Φ) on $A=\mathbb{C}^{n} / \Phi(\mathfrak{a})$.
If (L, Φ) is simple, all p.p.'s of type (L, Φ) on $\mathbb{C}^{n} / \Phi(\mathfrak{a})$ arise from some $\beta \in O_{L}$ satisfying (1)-(3). If $\beta, \beta^{\prime} \in O_{L}$ satisfy (1)-(3), then $\beta^{\prime}=u^{+} \beta$ for some totally positive unit $u^{+} \in U_{L_{0}}^{+}$.
Since L_{0} has units of independent signs, $U_{L_{0}}^{+}=N_{L / L_{0}}\left(U_{L}\right)$. So $u^{+}=N(u)$ for some unit $u \in U_{L}$, thus β, β^{\prime} define isomorphic p.p.'s on A.

If L has class number 1 , then any CM-abelian variety of type (L, Φ) is isomorphic to $A_{\Phi}=\mathbb{C}^{n} / \Phi\left(O_{L}\right)$.

Class groups of cyclotomic fields

For example, let m be a positive odd integer.
Take L to be the cyclotomic field $F=\mathbb{Q}\left(\zeta_{m}\right)$, which is a CM-field.
Its real subfield is $F_{0}=\mathbb{Q}\left(\zeta_{m}+\zeta_{m}^{-1}\right)$, with degree $n=\phi(m) / 2$ over \mathbb{Q}.
By Lang: if (F, Φ) is a simple CM-type, then there is a bijection between isomorphism classes of complex tori of type $\left(O_{F}, \Phi\right)$ and elements of the class group cl_{F} of F.

Restriction

Assume that F has class number 1 (i.e., O_{F} has unique factorization).
This also implies that F_{0} has class number 1.
Finite list of odd m :
Primes: 3,5,7, 9, 11, 13, 17, 19, 25, 27
Prime powers: 9,25,27
Not prime powers: 15,21,33,35,45

The narrow class number of cyclotomic fields

Let t be the number of finite primes ramified in L / L_{0}.

Found in Conner/Hurrelbrink

Suppose L_{0} is a totally real field, and L / L_{0} is a CM-extension.
Then h_{L} is odd if and only if either
(1) $h_{L_{0}}^{+}$is odd and $t=1$, or
(2) $h_{L_{0}}$ is odd, $h_{L_{0}}^{+}=2 h_{L_{0}}$ and $t=0$.

Conclusion: taking L_{0} to be $F_{0}=\mathbb{Q}\left(\zeta_{m}+\zeta_{m}^{-1}\right)$.
For the prime powers $3,5,7,9,11,13,17,19,25,27$,
F_{0} has narrow class number 1 and units of independent signs.
For not prime powers $15,21,33,35,45$,
F_{0} has narrow class number 2 and units of almost independent signs.

Main result on integral Shimura data for m prime

Suppose $F=\mathbb{Q}\left(\zeta_{m}\right)$ has class number 1. Let $\gamma=(m, N, a)$.
For simplicity, let m be an odd prime (e.g. $m=3,5,7,11,13,17,19$).
Let $N \geq 3$ and let a be an arbitrary inertia type. Let $r=N-2$.

LMPT part 1

Then the Hurwitz space Z_{γ} has a distinguished point P.
It represents an admissible μ_{m}-cover $h: C \rightarrow T$, where T is a tree of r projective lines
and C is a curve of compact type, with r irreducible components $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$, each of which is a curve of genus $(m-1) / 2$ admitting a μ_{m}-cover of \mathbb{P}^{1} branched at 3 points.

Main result on integral Shimura data for m prime

Let $A_{j}=\operatorname{Jac}\left(C_{j}\right)$. Then each A_{j} is a p.p. abelian variety of dimension $(m-1) / 2$ with $\operatorname{End}\left(A_{j}\right) \simeq O_{F}$.

Let Φ_{j} be the CM-type of A_{j}. Assume (F, Φ_{j}) is simple for each j.
This condition is automatic for $m=3,5,11,17$ (also for $m=9,25,27$).
Let $\beta_{j} \in \mathbb{C}$ be the value defined earlier for Φ_{j}.

LMPT part 2

The integral Shimura datum for the component of S containing Z_{γ} is:

- the F-vector space $V=F^{r}$, together with the standard O_{F}-lattice $\Lambda=\left(O_{F}\right)^{r} \subseteq V$;
- the Hermitian form $\langle\cdot, \cdot\rangle$ on V, which takes integral values on \wedge, defined by

$$
\langle x, y\rangle=\operatorname{tr}_{F / \mathbb{Q}}\left(x B \bar{y}^{\top}\right) \text { for } B=\operatorname{diag}\left[\beta_{1}, \ldots \beta_{r}\right] \in \operatorname{GL}_{r}(F)=\operatorname{GL}(V) .
$$

Explanation of part 1: Clutching when m prime

For $i=1,2$, let $C_{i} \rightarrow \mathbb{P}^{1}$ be a μ_{m}-cover, branched at N_{i} points.
Clutch C_{1} and C_{2} together, by identifying last (resp. first) ramified point of C_{1} (resp. C_{2}) in an ordinary double point.

Get μ_{m}-cover $C_{3} \rightarrow \mathbb{P}^{1}$, with C_{3} singular.
$\operatorname{BLR}: \operatorname{Jac}\left(C_{3}\right) \simeq \operatorname{Jac}\left(C_{1}\right) \times \operatorname{Jac}\left(C_{2}\right)$, with product polarization.
If admissible, meaning that $a_{1}(N) \equiv-a_{2}(1) \bmod m$, then $C_{3} \rightarrow \mathbb{P}^{1}$ deforms to a μ_{m}-cover of smooth curves.

Conversely, for $N \geq 4$, Hurwitz spaces are affine so Z_{γ} contains a distinguished point that arises from clutching and represents cover of curves of compact type.

Example: $m=5, N=4$, and $a=(1,2,3,4)$

Let Z_{γ} be the Hurwitz family for $\gamma=(5,4,(1,2,3,4))$. Recall $\beta_{1}=-\frac{5}{\zeta_{5}^{3}-\zeta_{5}^{2}}$ The family Z_{γ} has a distinguished point as follows:

For $j=1,2$, let $C_{j} \rightarrow \mathbb{P}^{1}$ be a μ_{5}-cover with $N=3$ s.t. when $j=1$, let $a=(1,2,2)$. This has $f=(1,0,1,0)$ and $\Phi=\left\{\sigma_{1}, \sigma_{3}\right\}$; when $j=2$, let $a=(3,3,4)$. This has $f=(0,1,0,1)$ and $\Phi=\left\{\sigma_{2}, \sigma_{4}\right\}$.

The p.p. on $\operatorname{Jac}\left(C_{j}\right)$ is given by $-\beta_{1}$ for $j=1$ and by β_{1} for $j=2$.
The integral Shimura data for S_{γ} has lattice O_{F}^{2} and Hermitian form given by the matrix $B=\operatorname{diag}\left[-\beta_{1}, \beta_{1}\right]$.

Remark: there is a second distinguished point of Z_{γ} and its Hermitian form is equivalent to this one.

The simple condition

Not every type is simple:
e.g., $\left(\mathbb{Q}\left(\zeta_{7}\right),\left\{\sigma_{1}, \sigma_{2}, \sigma_{4}\right\}\right)$ is not simple since it is induced from $\mathbb{Q}(\sqrt{-7})$.

Let m be an odd prime power and $F=\mathbb{Q}\left(\zeta_{m}\right)$.
Since $(\mathbb{Z} / m \mathbb{Z})^{*}$ is cyclic, complex conjugation is the unique automorphism of F of order 2.

The CM-fields in F are the fixed fields F^{H} for $H \subset(\mathbb{Z} / m)^{*}$ of odd order. A CM-type Φ of F is induced from F^{H} iff Φ is a union of cosets of H.

Similar issues occur when $m=13$ or $m=19$.

When is life simple?

Let $F=\mathbb{Q}\left(\zeta_{m}\right)$ and let Φ be a CM-type for F.
Suppose $m=4$ or m is a Fermat prime or twice a Fermat prime. (e.g., $m=4$ and $m=3,5,17$ and $m=6,10$).

Then (F, Φ) is simple because F has no proper non-trivial CM-fields.
Suppose $m=9$ or $m \equiv 3 \bmod 8$ is prime s.t. $w=(m-1) / 2$ is prime. (e.g. $m=9$ and $m=11,59,83,107,179,227, \ldots$).

Then Φ is simple.
Reason: The squares are the unique $H \subset(\mathbb{Z} / m \mathbb{Z})^{*}$ of odd order.
Φ is not a union of cosets of H iff it contains both a square and a non-square.
Show Φ contains 1 and either 2 or -4 .
Under the conditions, -1 and 2 are not squares $\bmod m$, so Φ is simple.
A similar computation shows (F, Φ) is simple when $m=25$ or $m=27$.

Integral Shimura data for all cases when $m=3$

Let $m=3$ and $F=\mathbb{Q}\left(\zeta_{3}\right)$. Let $N \geq 4$ and $g \geq 2$.
Let $\left(f_{1}, f_{2}\right)$ be an arbitrary trielliptic signature for g. (meaning $f_{1}+f_{2}=g$ and $0 \leq \max \left(f_{1}, f_{2}\right) \leq 2 \min \left(f_{1}, f_{2}\right)+1$). Inertia type a has 1 (resp. 2) with mult. $2 f_{1}-f_{2}+1$ (resp. $2 f_{2}-f_{1}+1$).

Let $\beta_{1}=-\sqrt{-3}$ and $\beta_{2}=\sqrt{-3}$.
Example: all families with $m=3$
Let $B \in \mathrm{GL}_{g}\left(O_{F}\right)$ be diagonal with f_{1} entries of β_{2} and f_{2} entries of β_{1}.
For the family $Z_{\gamma}=Z(3, N, a)$ with signature $\left(f_{1}, f_{2}\right)$, let S be the component of the Shimura variety containing the Torelli image of Z_{γ}.

Then the integral Shimura datum of S has lattice $\left(O_{F}\right)^{g}$ with Hermitian form defined by $\langle x, y\rangle=\operatorname{tr}_{F / Q}\left(x B \bar{y}^{T}\right)$.

This includes the three special families M[3], M[6], and M[10].

Examples when $m=5$

Let $F=\mathbb{Q}\left(\zeta_{m}\right)$.
For $m=5$, let $\beta_{1}=-\frac{5}{\zeta_{5}^{3}-\zeta_{5}^{2}}$ and $\beta_{2}=\sigma_{2}\left(\beta_{1}\right)$.
For the two Moonen special families $M=Z(m, N, a)$ below, let $r=N-2$, and with $B \in \operatorname{GL}_{r}\left(O_{F}\right)$ as given, the integral Shimura datum of M is the lattice $\left(O_{F}\right)^{r}$ together with the Hermitian form

$$
\langle x, y\rangle=\operatorname{tr}_{F / Q}\left(x B \bar{y}^{T}\right)
$$

M	(m, N, a)	B
$M[11]$	$(5,4,(1,3,3,3))$	$\operatorname{diag}\left[\beta_{1}, \beta_{2}\right]$
$M[16]$	$(5,5,(2,2,2,2,2))$	$\operatorname{diag}\left[-\beta_{1},-\beta_{2},-\beta_{2}\right]$

As a short-hand, this is the admissible distinguished point:

M	(m, N, a)	distinguished
$M[11]$	$(5,4,(1,3,3,3))$	$(1,3,1)+(4,3,3)$
$M[16]$	$(5,5,(2,2,2,2,2))$	$(2,2,1)+(4,2,4)+(1,2,2)$

Generalizations

We want to generalize to other m s.t. $F=\mathbb{Q}\left(\zeta_{m}\right)$ has class number 1 .
So far, we can find integral Shimura data under conditions on the inertia type a.

Complications

(i) Some families do not have any distinguished points of compact type. E.g., $M[12]$, with $m=6, N=4$, and $a=(1,1,1,3)$.
(ii) Some distinguished points of compact type involve induced covers. E.g. $M[18]$ when $m=10, N=4$, and $a=(3,5,6,6)$.
(The cover is disconnected over a component of the tree)
(iii) Some distinguished points involve non-simple CM-types
E.g. $M[17]$ when $m=7, N=4$, and $a=(2,4,4,4)$.

Preview of future work

Despite these complications, we can handle families with arbitrary number of branch points N
[A] when $m=2 m^{\prime}$ (e.g. $m=6,10,22,34$)
E.g., we found the integral Shimura data for M[18], where $m=10$, $N=4$, and $a=(3,5,6,6)$. Here $g=6$ and $f=(1,1,0,1,0,0,2,0,1)$.
[$B]$ when m is a prime power (e.g. $m=9,25,27$) and
[C] when the family has a point representing a curve with extra automorphisms (e.g., $m=7,13,19,8,16$)
E.g., we found the Shimura data for $M[17]$, where $m=7, N=4$, and $a=(2,4,4,4)$. Here $g=6$ and $f=(1,2,0,2,0,1)$.

Remark: our results for [C] use more algebraic number theory and circumvent the problem (iii) of non-simple CM-types.

