Lifting low-gonal curves for use in Tuitman's algorithm

Wouter Castryck and Floris Vermeulen

KU Leuven

July 2020

Castryck and Vermeulen (KU Leuven) [Lifting low-gonal curves](#page-39-0) and the state of the July 2020 1/11

4 0 8

• Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of \overline{C} ?

4 **D F**

- Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of \overline{C} ?
- Kedlaya: hyperelliptic curves.

4 0 8

- Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of \overline{C} ?
- Kedlaya: hyperelliptic curves.
- Subsequently generalized to larger classes of curves by Gaudry-Gürel, (Castryck–)Denef–Vercauteren, ...

4 0 8

- Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of C?
- Kedlaya: hyperelliptic curves.
- Subsequently generalized to larger classes of curves by Gaudry–Gürel, (Castryck–)Denef–Vercauteren, ...
- Tuitman: arbitrary* curves $\overline{\mathsf{C}}$ equipped with a map $\overline{\varphi}:\overline{\mathsf{C}}\to \mathbb{P}^1.$

- Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of C?
- Kedlaya: hyperelliptic curves.
- Subsequently generalized to larger classes of curves by Gaudry–Gürel, (Castryck–)Denef–Vercauteren, ...
- Tuitman: arbitrary* curves $\overline{\mathsf{C}}$ equipped with a map $\overline{\varphi}:\overline{\mathsf{C}}\to \mathbb{P}^1.$
- **•** Tuitman's algorithm requires a lift of $(\overline{C}, \overline{\varphi})$ to (C, φ) defined over K with some technical conditions.

The lifting problem

Fix a number field K, with $\mathcal{O}_K/p = \mathbb{F}_q$.

K ロ ▶ K 倒 ▶

 \rightarrow \rightarrow \rightarrow

The lifting problem

Fix a number field K, with $\mathcal{O}_K/p = \mathbb{F}_q$. Consider a planar curve over \mathbb{F}_q defined by

$$
\overline{f}(x, y) = \overline{f}_d(x) y^d + \overline{f}_{d-1}(x) y^{d-1} + \dots + \overline{f}_0(x) = 0,
$$

with $d \leq 5$ and denote by \overline{C} the non-singular model. Let $\overline{\varphi}$ be projection onto x and assume that $\overline{\varphi}$ is simply branched.

Fix a number field K, with $\mathcal{O}_K/p = \mathbb{F}_q$. Consider a planar curve over \mathbb{F}_q defined by

$$
\overline{f}(x, y) = \overline{f}_d(x) y^d + \overline{f}_{d-1}(x) y^{d-1} + \dots + \overline{f}_0(x) = 0,
$$

with $d \leq 5$ and denote by \overline{C} the non-singular model. Let $\overline{\varphi}$ be projection onto x and assume that $\overline{\varphi}$ is simply branched. The lifting problem asks for a non-singular curve $\,$ defined over $\,$ t, together with a map $\varphi : \, \mathcal{C} \rightarrow \mathbb{P}^1 \,$ such that

• the reduction of C mod p is isomorphic to \overline{C} , in particular the genus is preserved, and

Fix a number field K, with $\mathcal{O}_K/p = \mathbb{F}_q$. Consider a planar curve over \mathbb{F}_q defined by

$$
\overline{f}(x,y)=\overline{f}_d(x)y^d+\overline{f}_{d-1}(x)y^{d-1}+\ldots+\overline{f}_0(x)=0,
$$

with $d \leq 5$ and denote by \overline{C} the non-singular model. Let $\overline{\varphi}$ be projection onto x and assume that $\overline{\varphi}$ is simply branched. The lifting problem asks for a non-singular curve $\,$ defined over $\,$ t, together with a map $\varphi : \, \mathcal{C} \rightarrow \mathbb{P}^1 \,$ such that

- the reduction of C mod p is isomorphic to \overline{C} , in particular the genus is preserved, and
- the reduction of φ mod p is $\overline{\varphi}$.

4 **D F**

化医头头

Theorem (Hess)

Let k be a field and $k(C)$ a degree d function field. There exist unique negative integers $r_1 \ge r_2 \ge \ldots \ge r_{d-1}$ for which there is a basis $1,\alpha_1,\ldots,\alpha_{d-1}$ of k[C] $_0$ over k[x] such that $1,x^{r_1}\alpha_1,\ldots,x^{r_{d-1}}\alpha_{d-1}$ is a basis of k[C]_∞ over k[1/x].

Theorem (Hess)

Let k be a field and $k(C)$ a degree d function field. There exist unique negative integers $r_1 \ge r_2 \ge \ldots \ge r_{d-1}$ for which there is a basis $1,\alpha_1,\ldots,\alpha_{d-1}$ of k[C] $_0$ over k[x] such that $1,x^{r_1}\alpha_1,\ldots,x^{r_{d-1}}\alpha_{d-1}$ is a basis of k[C]_∞ over k[1/x].

Compare with Minkowski reduced bases.

Theorem (Hess)

Let k be a field and $k(C)$ a degree d function field. There exist unique negative integers $r_1 \ge r_2 \ge \ldots \ge r_{d-1}$ for which there is a basis $1,\alpha_1,\ldots,\alpha_{d-1}$ of k[C] $_0$ over k[x] such that $1,x^{r_1}\alpha_1,\ldots,x^{r_{d-1}}\alpha_{d-1}$ is a basis of k[C]_∞ over k[1/x].

Compare with Minkowski reduced bases. We call $e_i = -r_i - 2$ the Maroni *invariants* of \overline{C} with respect to $\overline{\varphi}$. A corresponding basis is called a reduced basis.

Theorem (Hess)

Let k be a field and $k(C)$ a degree d function field. There exist unique negative integers $r_1 \ge r_2 \ge \ldots \ge r_{d-1}$ for which there is a basis $1,\alpha_1,\ldots,\alpha_{d-1}$ of k[C] $_0$ over k[x] such that $1,x^{r_1}\alpha_1,\ldots,x^{r_{d-1}}\alpha_{d-1}$ is a basis of k[C]_∞ over k[1/x].

Compare with Minkowski reduced bases. We call $e_i = -r_i - 2$ the Maroni *invariants* of \overline{C} with respect to $\overline{\varphi}$. A corresponding basis is called a reduced basis. We have

$$
\bullet \ -1 \leq e_1 \leq ... \leq e_{d-1} \leq \tfrac{2g-2}{d},
$$

 $e_1 + ... + e_{d-1} = g - d + 1.$

There is a model of \overline{C} of the form

$$
\overline{f}_3(x)y^3 + \overline{f}_2(x)y^2z + \overline{f}_1(x)yz^2 + \overline{f}_0(x)z^3 = 0
$$

inside $\mathbb{A}^1\times \mathbb{P}^1$ with Newton polygon $(z=1)$

There is a model of \overline{C} of the form

$$
\overline{f}_3(x)y^3 + \overline{f}_2(x)y^2z + \overline{f}_1(x)yz^2 + \overline{f}_0(x)z^3 = 0
$$

inside $\mathbb{A}^1\times \mathbb{P}^1$ with Newton polygon $(z=1)$

Such a model can be lifted naively to \mathcal{O}_K . How to compute this explicitly?

A cubic ring R over $\mathbb{F}_q[x]$ is an $\mathbb{F}_q[x]$ -algebra, free of rank 3 as an $\mathbb{F}_q[x]$ -module.

4 **D F**

A cubic ring R over $\mathbb{F}_q[x]$ is an $\mathbb{F}_q[x]$ -algebra, free of rank 3 as an $\mathbb{F}_q[x]$ -module.

Theorem (Delone, Faddeev)

There is a canonical bijection between cubic rings R over $\mathbb{F}_q[x]$, up to isomorphism, and binary cubic forms over $\mathbb{F}_q[x]$, up to an action of $GL_2(\mathbb{F}_q[x])$.

• Change of basis of the ring R corresponds to the action of GL_2 .

A cubic ring R over $\mathbb{F}_q[x]$ is an $\mathbb{F}_q[x]$ -algebra, free of rank 3 as an $\mathbb{F}_q[x]$ -module.

Theorem (Delone, Faddeev)

There is a canonical bijection between cubic rings R over $\mathbb{F}_q[x]$, up to isomorphism, and binary cubic forms over $\mathbb{F}_q[x]$, up to an action of $GL_2(\mathbb{F}_q[x])$.

- Change of basis of the ring R corresponds to the action of GL_2 .
- The bijection is very explicit and can be done on a computer.

• Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.

∢ □ ▶ ⊣ 倒 ▶

∋⊳⊣

- Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.
- Apply the Delone–Faddeev correspondence to $\mathbb{F}_q[\overline{C}]_0$ together with a reduced basis to obtain a binary cubic form $\overline{f}(x; y, z)$.

4 0 8

- Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.
- Apply the Delone–Faddeev correspondence to $\mathbb{F}_q[\overline{C}]_0$ together with a reduced basis to obtain a binary cubic form $\overline{f}(x; y, z)$.
- $\overline{f}(x; y, z) = 0$ defines a model of \overline{C} .

- Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.
- Apply the Delone–Faddeev correspondence to $\mathbb{F}_q[\overline{C}]_0$ together with a reduced basis to obtain a binary cubic form $\overline{f}(x; y, z)$.
- $\overline{f}(x; y, z) = 0$ defines a model of \overline{C} .
- This polynomial can be lifted to \mathcal{O}_K naively.

- Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.
- Apply the Delone–Faddeev correspondence to $\mathbb{F}_q[\overline{C}]_0$ together with a reduced basis to obtain a binary cubic form $\overline{f}(x; y, z)$.
- $\overline{f}(x; y, z) = 0$ defines a model of \overline{C} .
- This polynomial can be lifted to \mathcal{O}_K naively.
- All of this can be done algorithmically, and we have implemented this in Magma.

There is a model of $\overline{\mathsf{C}}$ in $\mathbb{A}^{1}\times\mathbb{P}^{2}$ defined as a complete intersection by

$$
\overline{Q}_1(x;y_1,y_2,y_3)=\overline{Q}_2(x;y_1,y_2,y_3)=0,
$$

where \overline{Q}_i has Newton polytope $(y_3 = 1)$

There is a model of $\overline{\mathsf{C}}$ in $\mathbb{A}^{1}\times\mathbb{P}^{2}$ defined as a complete intersection by

$$
\overline{Q}_1(x;y_1,y_2,y_3)=\overline{Q}_2(x;y_1,y_2,y_3)=0,
$$

where \overline{Q}_i has Newton polytope ($y_3 = 1$)

Here $b_1 \leq b_2$ are certain integers satisfying $b_1 + b_2 = \mathfrak{g} - 5$.

つひひ

There is a model of $\overline{\mathsf{C}}$ in $\mathbb{A}^{1}\times\mathbb{P}^{2}$ defined as a complete intersection by

$$
\overline{Q}_1(x;y_1,y_2,y_3)=\overline{Q}_2(x;y_1,y_2,y_3)=0,
$$

where \overline{Q}_i has Newton polytope $(y_3 = 1)$

Here $b_1 \leq b_2$ are certain integers satisfying $b_1 + b_2 = g - 5$. Such a model is naively liftable to \mathcal{O}_K . How do we compute it?

つひい

Theorem (Bhargava)

There is a canonical bijection between pairs (R, S) where R is a quartic ring over $\mathbb{F}_q[x]$ and S is a cubic resolvent of R, up to isomorphism, and pairs (Q_1, Q_2) of ternary quadratic forms over $\mathbb{F}_q[x]$, up to an action of $GL_3(\mathbb{F}_q[x])\times GL_2(\mathbb{F}_q[x])$.

Theorem (Bhargava)

There is a canonical bijection between pairs (R, S) where R is a quartic ring over $\mathbb{F}_q[x]$ and S is a cubic resolvent of R, up to isomorphism, and pairs (Q_1, Q_2) of ternary quadratic forms over $\mathbb{F}_q[x]$, up to an action of $GL_3(\mathbb{F}_q[x])\times GL_2(\mathbb{F}_q[x])$.

• Change of basis of R (resp. S) corresponds to action of GL_3 (resp. $GL₂$).

Theorem (Bhargava)

There is a canonical bijection between pairs (R, S) where R is a quartic ring over $\mathbb{F}_q[x]$ and S is a cubic resolvent of R, up to isomorphism, and pairs (Q_1, Q_2) of ternary quadratic forms over $\mathbb{F}_q[x]$, up to an action of $GL_3(\mathbb{F}_q[x])\times GL_2(\mathbb{F}_q[x])$.

- Change of basis of R (resp. S) corresponds to action of GL_3 (resp. $GL₂$).
- The cubic resolvent of $\mathbb{F}_q[\overline{\mathcal{C}}]_0$ is of the form $\mathbb{F}_q[\overline{\mathcal{C}}']_0$ for some cubic function field $\mathbb{F}_q(\overline{\mathcal{C}}')/\mathbb{F}_q(x)$.

• Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.

4 **D F**

B K

- Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.
- Apply the Bhargava correspondence to $(\mathbb{F}_q[\overline{C}]_0, S)$ together with reduced bases for both to get two ternary quadratic forms \overline{Q}_1 , \overline{Q}_2 over $\mathbb{F}_q[x]$.

- Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.
- Apply the Bhargava correspondence to $(\mathbb{F}_q[\overline{C}]_0, S)$ together with reduced bases for both to get two ternary quadratic forms \overline{Q}_1 . \overline{Q}_2 over $\mathbb{F}_q[x]$.
- $\overline{Q}_1 = \overline{Q}_2 = 0$ defines a model of \overline{C} .

- Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.
- Apply the Bhargava correspondence to $(\mathbb{F}_q[\overline{C}]_0, S)$ together with reduced bases for both to get two ternary quadratic forms \overline{Q}_1 , \overline{Q}_2 over $\mathbb{F}_q[x]$.
- $\overline{Q}_1 = \overline{Q}_2 = 0$ defines a model of \overline{C} .
- These polynomials can be lifted to \mathcal{O}_K naively.

- Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.
- Apply the Bhargava correspondence to $(\mathbb{F}_q[\overline{C}]_0, S)$ together with reduced bases for both to get two ternary quadratic forms \overline{Q}_1 , \overline{Q}_2 over $\mathbb{F}_q[x]$.
- $\overline{Q}_1 = \overline{Q}_2 = 0$ defines a model of \overline{C} .
- These polynomials can be lifted to \mathcal{O}_K naively.
- All of this can be done algorithmically, and we have implemented it in Magma.

• The case $d = 5$ is very similar to the case $d = 4$. This time relying on Bhargava's parametrization of quintic rings.

4 **D F**

- The case $d = 5$ is very similar to the case $d = 4$. This time relying on Bhargava's parametrization of quintic rings.
- Works well in practice, running time is dominated by Tuitman's algorithm.

4 **D F**

- The case $d = 5$ is very similar to the case $d = 4$. This time relying on Bhargava's parametrization of quintic rings.
- Works well in practice, running time is dominated by Tuitman's algorithm.
- \bullet d \geq 7 is impossible by the non-unirationality of the Hurwitz spaces $\mathcal{H}_{d,g}$. Degree $d=6$ is not known.

4 0 8

- • The case $d = 5$ is very similar to the case $d = 4$. This time relying on Bhargava's parametrization of quintic rings.
- Works well in practice, running time is dominated by Tuitman's algorithm.
- \bullet d \geq 7 is impossible by the non-unirationality of the Hurwitz spaces $\mathcal{H}_{d,g}$. Degree $d=6$ is not known.
- Computing these liftable models is possible over many fields, not just finite fields.