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Tuitman’s algorithm

e Given C/Fq, how can we efficiently compute the zeta function of C?
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Tuitman’s algorithm

e Given C/Fq, how can we efficiently compute the zeta function of C?
o Kedlaya: hyperelliptic curves.

@ Subsequently generalized to larger classes of curves by Gaudry—Giirel,
(Castryck—)Denef-Vercauteren, ...
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Tuitman’s algorithm

Given C/Fq, how can we efficiently compute the zeta function of C?

Kedlaya: hyperelliptic curves.

Subsequently generalized to larger classes of curves by Gaudry—Giirel,
(Castryck—)Denef-Vercauteren, ...

e Tuitman: arbitrary* curves C equipped with a map @ : C — PL.
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Tuitman’s algorithm

Given C/Fq, how can we efficiently compute the zeta function of C?

Kedlaya: hyperelliptic curves.

Subsequently generalized to larger classes of curves by Gaudry—Giirel,
(Castryck—)Denef-Vercauteren, ...

Tuitman: arbitrary* curves C equipped with a map @ : C — P

e Tuitman's algorithm requires a /ift of (C, %) to (C,¢) defined over K
with some technical conditions.
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The lifting problem

Fix a number field K, with Ok /p = Fj.
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The lifting problem

Fix a number field K, with Ok /p =TF,. Consider a planar curve over Fq
defined by

f(x,y) = 7d(X)yd +?d71(X)yd71 + ...+ fo(x) =0,

with d < 5 and denote by C the non-singular model. Let % be projection
onto x and assume that @ is simply branched.
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The lifting problem

Fix a number field K, with Ok /p =TF,. Consider a planar curve over Fq
defined by

F(x,y) = Fa(x)y? + Fa_1(x)y? ™t + ... + Fo(x) = 0,

with d < 5 and denote by C the non-singular model. Let % be projection
onto x and assume that @ is simply branched. The lifting problem asks for
a non-singular curve C defined over K, together with a map ¢ : C — P!
such that
e the reduction of C mod p is isomorphic to C, in particular the genus
is preserved, and
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The lifting problem

Fix a number field K, with Ok /p =TF,. Consider a planar curve over Fq
defined by

F(x,y) = Fa(x)y? + Fa_1(x)y? ™t + ... + Fo(x) = 0,

with d < 5 and denote by C the non-singular model. Let % be projection
onto x and assume that @ is simply branched. The lifting problem asks for
a non-singular curve C defined over K, together with a map ¢ : C — P!
such that
e the reduction of C mod p is isomorphic to C, in particular the genus
is preserved, and

@ the reduction of ¢ mod p is @.
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Reduced bases

Let Fy[Clo (resp. F4[Cloo) be the integral closure of Fy[x] (resp. Fq[1/x])
inside Fq(C).
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Reduced bases

Let Fy[Clo (resp. F4[Cloo) be the integral closure of Fy[x] (resp. Fq[1/x])
inside Fq(C).

Theorem (Hess)

Let k be a field and k(C) a degree d function field. There exist unique
negative integers rn > r, > ... > rqy_1 for which there is a basis
1,a1,...,aq_1 of k|C|o over k[x] such that 1, x"aq,..., x4 1ay_1 is a
basis of k[C]oo over k[1/x].
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Reduced bases

Let Fy[Clo (resp. F4[Cloo) be the integral closure of Fy[x] (resp. Fq[1/x])
inside Fq(C).

Theorem (Hess)

Let k be a field and k(C) a degree d function field. There exist unique
negative integers rn > r, > ... > rqy_1 for which there is a basis
1,a1,...,aq_1 of k|C|o over k[x] such that 1, x"aq,..., x4 1ay_1 is a
basis of k[C]oo over k[1/x].

Compare with Minkowski reduced bases.
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Reduced bases

Let Fy[Clo (resp. F4[Cloo) be the integral closure of Fy[x] (resp. Fq[1/x])
inside Fq(C).

Theorem (Hess)

Let k be a field and k(C) a degree d function field. There exist unique
negative integers rn > r, > ... > rqy_1 for which there is a basis
1,a1,...,aq_1 of k|C|o over k[x] such that 1, x"aq,..., x4 1ay_1 is a
basis of k[C]oo over k[1/x].

Compare with Minkowski reduced bases. We call ¢, = —r; — 2 the Maroni
invariants of C with respect to . A corresponding basis is called a
reduced basis.
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Reduced bases

Let Fy[Clo (resp. F4[Cloo) be the integral closure of Fy[x] (resp. Fq[1/x])
inside Fq(C).

Theorem (Hess)

Let k be a field and k(C) a degree d function field. There exist unique
negative integers rn > r, > ... > rqy_1 for which there is a basis
1,a1,...,aq_1 of k|C|o over k[x] such that 1, x"aq,..., x4 1ay_1 is a
basis of k[C]oo over k[1/x].

Compare with Minkowski reduced bases. We call e; = —r; — 2 the Maroni
invariants of C with respect to . A corresponding basis is called a
reduced basis. We have

2g—2
0o —1<e <..<es;< %2

eept..tep1=g—d+1
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Liftable models in degree d =3

There is a model of C of the form
?:',(x)y3 + ?z(x)yzz + ?1(x)yz2 + ?O(x)z3 =0
inside A! x P! with Newton polygon (z = 1)

(07 3) (291 — e+ 2, 3)

(0,0) (262 —e1 +2,0)
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Liftable models in degree d =3

There is a model of C of the form
?3(x)y3 + ?z(x)yzz +f (x)yz2 + ?O(x)z3 =0
inside A! x P! with Newton polygon (z = 1)

(07 3) (291 — e+ 2, 3)

(0,0) (262 —e1 +2,0)

Such a model can be lifted naively to Ox. How to compute this explicitly?
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The Delone—Faddeev correspondence

A cubic ring R over Fq[x] is an Fq[x]-algebra, free of rank 3 as an
Fq[x]-module.
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The Delone—Faddeev correspondence

A cubic ring R over Fq[x] is an Fq[x]-algebra, free of rank 3 as an
Fq[x]-module.

Theorem (Delone, Faddeev)

There is a canonical bijection between cubic rings R over Fq[x], up to

isomorphism, and binary cubic forms over Fy[x], up to an action of
GLo(Fqlx]).

@ Change of basis of the ring R corresponds to the action of GL,.
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The Delone—Faddeev correspondence

A cubic ring R over Fq[x] is an Fq[x]-algebra, free of rank 3 as an
Fq[x]-module.

Theorem (Delone, Faddeev)

There is a canonical bijection between cubic rings R over Fq[x], up to

isomorphism, and binary cubic forms over Fy[x], up to an action of
GLo(Fqlx]).

@ Change of basis of the ring R corresponds to the action of GL,.

@ The bijection is very explicit and can be done on a computer.
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Lifting in degree d = 3

o Consider the cubic ring Fy[Clo over Fy[x].
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Lifting in degree d = 3

o Consider the cubic ring Fy[Clo over Fy[x].

@ Apply the Delone—Faddeev correspondence to Fq[f]o together with a
reduced basis to obtain a binary cubic form f(x;y, z).
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Lifting in degree d = 3

o Consider the cubic ring Fy[Clo over Fy[x].

@ Apply the Delone—Faddeev correspondence to Fq[f]o together with a
reduced basis to obtain a binary cubic form f(x;y, z).

e f(x;y,z) = 0 defines a model of C.
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Lifting in degree d = 3

o Consider the cubic ring Fy[Clo over Fy[x].

@ Apply the Delone—Faddeev correspondence to Fq[f]o together with a
reduced basis to obtain a binary cubic form f(x;y, z).

e f(x;y,z) = 0 defines a model of C.
@ This polynomial can be lifted to Ok naively.
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Lifting in degree d = 3

o Consider the cubic ring Fy[Clo over Fy[x].

@ Apply the Delone—Faddeev correspondence to Fq[f]o together with a
reduced basis to obtain a binary cubic form f(x;y, z).

e f(x;y,z) = 0 defines a model of C.
@ This polynomial can be lifted to Ok naively.

@ All of this can be done algorithmically, and we have implemented this
in Magma.
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Liftable models in degree d = 4

There is a model of C in Al x P? defined as a complete intersection by

Q1 y1,¥2,y3) = Qa(x; y1,¥2,y3) = 0,

where Q; has Newton polytope (y3 = 1)

(0a270) (262 _ bi7270)
(0,00 _________
K 2e3 — b;,0,0)
(07072) (261 - bia072)
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Liftable models in degree d = 4

There is a model of C in Al x P? defined as a complete intersection by

Q1 y1,¥2,y3) = Qa(x; y1,¥2,y3) = 0,

where Q; has Newton polytope (y3 = 1)

(0a270) (262 _ bi7270)
(0,00 _________
K 2e3 — b;,0,0)
(07072) (261 - bia072)

Here by < by are certain integers satisfying by + by = g — 5.
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Liftable models in degree d = 4

There is a model of C in Al x P? defined as a complete intersection by

Q1 y1,¥2,y3) = Qa(x; y1,¥2,y3) = 0,

where Q; has Newton polytope (y3 = 1)

(0a270) (262 _ bi7270)
(0,00 _________
K 2e3 — b;,0,0)
(07072) (261 - bia072)

Here by < by are certain integers satisfying b; + b = g — 5. Such a model
is naively liftable to Ox. How do we compute it?
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The Bhargava correspondence

Theorem (Bhargava)

There is a canonical bijection between pairs (R,S) where R is a quartic
ring over Fg[x] and S is a cubic resolvent of R, up to isomorphism, and
pairs (Q1, Q2) of ternary quadratic forms over IFq[x], up to an action of
GL3(Fylx]) x GLa(Fy[x]):
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ring over Fg[x] and S is a cubic resolvent of R, up to isomorphism, and
pairs (Q1, Q2) of ternary quadratic forms over IFq[x], up to an action of
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@ Change of basis of R (resp. S) corresponds to action of GL3 (resp.
GLy).
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The Bhargava correspondence

Theorem (Bhargava)

There is a canonical bijection between pairs (R,S) where R is a quartic
ring over Fg[x] and S is a cubic resolvent of R, up to isomorphism, and
pairs (Q1, Q2) of ternary quadratic forms over IFq[x], up to an action of
GL3(Fylx]) x GLa(Fy[x]):

@ Change of basis of R (resp. S) corresponds to action of GL3 (resp.
GLy).

o The cubic resolvent of Fo[C is of the form F,[C']o for some cubic
function field Fq(fl)/Fq(X).
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Lifting in degree d = 4

e Consider the ring F,[C]o and its resolvent S over F,[x].
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Lifting in degree d = 4

e Consider the ring F,[C]o and its resolvent S over F,[x].

@ Apply the Bhargava correspondence to (F4[Clo, S) together with
reduced bases for both to get two ternary quadratic forms Q1, Q2
over Fg[x].
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Lifting in degree d = 4

e Consider the ring F,[C]o and its resolvent S over F,[x].

@ Apply the Bhargava correspondence to (F4[Clo, S) together with
reduced bases for both to get two ternary quadratic forms Q1, Q2
over Fg[x].

e Q1 = Q, = 0 defines a model of C.
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Lifting in degree d = 4

e Consider the ring F,[C]o and its resolvent S over F,[x].

@ Apply the Bhargava correspondence to (F4[Clo, S) together with
reduced bases for both to get two ternary quadratic forms Q1, Q2
over Fg[x].

e Q1 = Q, = 0 defines a model of C.

@ These polynomials can be lifted to Ok naively.
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Lifting in degree d = 4

Consider the ring F4[Clo and its resolvent S over Fg[x].

Apply the Bhargava correspondence to (Fq[Clo, S) together with
reduced bases for both to get two ternary quadratic forms Q1, Q2
over Fg[x].

Q1 = Q2 = 0 defines a model of C.

These polynomials can be lifted to Ok naively.

All of this can be done algorithmically, and we have implemented it in
Magma.
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Closing remarks

@ The case d = 5 is very similar to the case d = 4. This time relying on
Bhargava's parametrization of quintic rings.
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Closing remarks

@ The case d = 5 is very similar to the case d = 4. This time relying on
Bhargava's parametrization of quintic rings.

@ Works well in practice, running time is dominated by Tuitman'’s
algorithm.
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Closing remarks

@ The case d = 5 is very similar to the case d = 4. This time relying on
Bhargava's parametrization of quintic rings.

@ Works well in practice, running time is dominated by Tuitman'’s
algorithm.

@ d > 7 is impossible by the non-unirationality of the Hurwitz spaces
Hg,g. Degree d = 6 is not known.
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Closing remarks

@ The case d = 5 is very similar to the case d = 4. This time relying on
Bhargava's parametrization of quintic rings.

@ Works well in practice, running time is dominated by Tuitman'’s
algorithm.

@ d > 7 is impossible by the non-unirationality of the Hurwitz spaces
Hg,g. Degree d = 6 is not known.

@ Computing these liftable models is possible over many fields, not just
finite fields.
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