Lifting low-gonal curves for use in Tuitman's algorithm

Wouter Castryck and Floris Vermeulen

KU Leuven

July 2020

Castryck and Vermeulen (KU Leuven)

Lifting low-gonal curves

July 2020 1 / 11

• Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of \overline{C} ?

- Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of \overline{C} ?
- Kedlaya: hyperelliptic curves.

- Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of \overline{C} ?
- Kedlaya: hyperelliptic curves.
- Subsequently generalized to larger classes of curves by Gaudry–Gürel, (Castryck–)Denef–Vercauteren, ...

- Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of \overline{C} ?
- Kedlaya: hyperelliptic curves.
- Subsequently generalized to larger classes of curves by Gaudry–Gürel, (Castryck–)Denef–Vercauteren, ...
- Tuitman: arbitrary* curves \overline{C} equipped with a map $\overline{\varphi}: \overline{C} \to \mathbb{P}^1$.

- Given $\overline{C}/\mathbb{F}_q$, how can we efficiently compute the zeta function of \overline{C} ?
- Kedlaya: hyperelliptic curves.
- Subsequently generalized to larger classes of curves by Gaudry–Gürel, (Castryck–)Denef–Vercauteren, ...
- Tuitman: arbitrary* curves \overline{C} equipped with a map $\overline{\varphi}: \overline{C} \to \mathbb{P}^1$.
- Tuitman's algorithm requires a *lift* of (*C*, φ) to (*C*, φ) defined over *K* with some technical conditions.

The lifting problem

Fix a number field *K*, with $\mathcal{O}_K/p = \mathbb{F}_q$.

(日)

The lifting problem

Fix a number field K, with $\mathcal{O}_K/p = \mathbb{F}_q$. Consider a planar curve over \mathbb{F}_q defined by

$$\overline{f}(x,y) = \overline{f}_d(x)y^d + \overline{f}_{d-1}(x)y^{d-1} + \dots + \overline{f}_0(x) = 0,$$

with $d \leq 5$ and denote by \overline{C} the non-singular model. Let $\overline{\varphi}$ be projection onto x and assume that $\overline{\varphi}$ is simply branched.

Fix a number field K, with $\mathcal{O}_K/p = \mathbb{F}_q$. Consider a planar curve over \mathbb{F}_q defined by

$$\overline{f}(x,y) = \overline{f}_d(x)y^d + \overline{f}_{d-1}(x)y^{d-1} + \dots + \overline{f}_0(x) = 0,$$

with $d \leq 5$ and denote by \overline{C} the non-singular model. Let $\overline{\varphi}$ be projection onto x and assume that $\overline{\varphi}$ is simply branched. The lifting problem asks for a non-singular curve C defined over K, together with a map $\varphi : C \to \mathbb{P}^1$ such that

• the reduction of C mod p is isomorphic to \overline{C} , in particular the genus is preserved, and

Fix a number field K, with $\mathcal{O}_K/p = \mathbb{F}_q$. Consider a planar curve over \mathbb{F}_q defined by

$$\overline{f}(x,y) = \overline{f}_d(x)y^d + \overline{f}_{d-1}(x)y^{d-1} + \dots + \overline{f}_0(x) = 0,$$

with $d \leq 5$ and denote by \overline{C} the non-singular model. Let $\overline{\varphi}$ be projection onto x and assume that $\overline{\varphi}$ is simply branched. The lifting problem asks for a non-singular curve C defined over K, together with a map $\varphi : C \to \mathbb{P}^1$ such that

- the reduction of C mod p is isomorphic to \overline{C} , in particular the genus is preserved, and
- the reduction of $\varphi \mod p$ is $\overline{\varphi}$.

.

Theorem (Hess)

Let k be a field and k(C) a degree d function field. There exist unique negative integers $r_1 \ge r_2 \ge \ldots \ge r_{d-1}$ for which there is a basis $1, \alpha_1, \ldots, \alpha_{d-1}$ of $k[C]_0$ over k[x] such that $1, x^{r_1}\alpha_1, \ldots, x^{r_{d-1}}\alpha_{d-1}$ is a basis of $k[C]_\infty$ over k[1/x].

Theorem (Hess)

Let k be a field and k(C) a degree d function field. There exist unique negative integers $r_1 \ge r_2 \ge \ldots \ge r_{d-1}$ for which there is a basis $1, \alpha_1, \ldots, \alpha_{d-1}$ of $k[C]_0$ over k[x] such that $1, x^{r_1}\alpha_1, \ldots, x^{r_{d-1}}\alpha_{d-1}$ is a basis of $k[C]_\infty$ over k[1/x].

Compare with Minkowski reduced bases.

Theorem (Hess)

Let k be a field and k(C) a degree d function field. There exist unique negative integers $r_1 \ge r_2 \ge \ldots \ge r_{d-1}$ for which there is a basis $1, \alpha_1, \ldots, \alpha_{d-1}$ of $k[C]_0$ over k[x] such that $1, x^{r_1}\alpha_1, \ldots, x^{r_{d-1}}\alpha_{d-1}$ is a basis of $k[C]_\infty$ over k[1/x].

Compare with Minkowski reduced bases. We call $e_i = -r_i - 2$ the Maroni invariants of \overline{C} with respect to $\overline{\varphi}$. A corresponding basis is called a reduced basis.

Theorem (Hess)

Let k be a field and k(C) a degree d function field. There exist unique negative integers $r_1 \ge r_2 \ge \ldots \ge r_{d-1}$ for which there is a basis $1, \alpha_1, \ldots, \alpha_{d-1}$ of $k[C]_0$ over k[x] such that $1, x^{r_1}\alpha_1, \ldots, x^{r_{d-1}}\alpha_{d-1}$ is a basis of $k[C]_\infty$ over k[1/x].

Compare with Minkowski reduced bases. We call $e_i = -r_i - 2$ the Maroni invariants of \overline{C} with respect to $\overline{\varphi}$. A corresponding basis is called a reduced basis. We have

•
$$-1 \le e_1 \le ... \le e_{d-1} \le \frac{2g-2}{d}$$
,

• $e_1 + \ldots + e_{d-1} = g - d + 1$.

- 4 目 ト - 4 日 ト

There is a model of \overline{C} of the form

$$\overline{f}_3(x)y^3 + \overline{f}_2(x)y^2z + \overline{f}_1(x)yz^2 + \overline{f}_0(x)z^3 = 0$$

inside $\mathbb{A}^1 \times \mathbb{P}^1$ with Newton polygon (z=1)

There is a model of \overline{C} of the form

$$\overline{f}_3(x)y^3 + \overline{f}_2(x)y^2z + \overline{f}_1(x)yz^2 + \overline{f}_0(x)z^3 = 0$$

inside $\mathbb{A}^1 imes \mathbb{P}^1$ with Newton polygon (z = 1)

Such a model can be lifted naively to $\mathcal{O}_{\mathcal{K}}$. How to compute this explicitly?

A cubic ring R over $\mathbb{F}_q[x]$ is an $\mathbb{F}_q[x]$ -algebra, free of rank 3 as an $\mathbb{F}_q[x]$ -module.

A cubic ring R over $\mathbb{F}_q[x]$ is an $\mathbb{F}_q[x]$ -algebra, free of rank 3 as an $\mathbb{F}_q[x]$ -module.

Theorem (Delone, Faddeev)

There is a canonical bijection between cubic rings R over $\mathbb{F}_q[x]$, up to isomorphism, and binary cubic forms over $\mathbb{F}_q[x]$, up to an action of $GL_2(\mathbb{F}_q[x])$.

• Change of basis of the ring *R* corresponds to the action of GL₂.

A cubic ring R over $\mathbb{F}_q[x]$ is an $\mathbb{F}_q[x]$ -algebra, free of rank 3 as an $\mathbb{F}_q[x]$ -module.

Theorem (Delone, Faddeev)

There is a canonical bijection between cubic rings R over $\mathbb{F}_q[x]$, up to isomorphism, and binary cubic forms over $\mathbb{F}_q[x]$, up to an action of $GL_2(\mathbb{F}_q[x])$.

- Change of basis of the ring *R* corresponds to the action of GL₂.
- The bijection is very explicit and can be done on a computer.

• Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.

A D > A A > A > A

- Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.
- Apply the Delone–Faddeev correspondence to 𝔽_q[*C*]₀ together with a reduced basis to obtain a binary cubic form *f*(x; y, z).

- Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.
- Apply the Delone–Faddeev correspondence to 𝔽_q[*C*]₀ together with a reduced basis to obtain a binary cubic form *f*(x; y, z).
- $\overline{f}(x; y, z) = 0$ defines a model of \overline{C} .

- Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.
- Apply the Delone–Faddeev correspondence to 𝔽_q[*C*]₀ together with a reduced basis to obtain a binary cubic form *f*(x; y, z).
- $\overline{f}(x; y, z) = 0$ defines a model of \overline{C} .
- This polynomial can be lifted to $\mathcal{O}_{\mathcal{K}}$ naively.

- Consider the cubic ring $\mathbb{F}_q[\overline{C}]_0$ over $\mathbb{F}_q[x]$.
- Apply the Delone–Faddeev correspondence to F_q[C]₀ together with a reduced basis to obtain a binary cubic form f(x; y, z).
- $\overline{f}(x; y, z) = 0$ defines a model of \overline{C} .
- This polynomial can be lifted to $\mathcal{O}_{\mathcal{K}}$ naively.
- All of this can be done algorithmically, and we have implemented this in Magma.

There is a model of \overline{C} in $\mathbb{A}^1 \times \mathbb{P}^2$ defined as a complete intersection by

$$\overline{Q}_1(x;y_1,y_2,y_3)=\overline{Q}_2(x;y_1,y_2,y_3)=0,$$

where \overline{Q}_i has Newton polytope $(y_3 = 1)$

There is a model of \overline{C} in $\mathbb{A}^1 \times \mathbb{P}^2$ defined as a complete intersection by

$$\overline{Q}_1(x;y_1,y_2,y_3)=\overline{Q}_2(x;y_1,y_2,y_3)=0,$$

where \overline{Q}_i has Newton polytope ($y_3 = 1$)

Here $b_1 \leq b_2$ are certain integers satisfying $b_1 + b_2 = g - 5$.

There is a model of \overline{C} in $\mathbb{A}^1 \times \mathbb{P}^2$ defined as a complete intersection by

$$\overline{Q}_1(x;y_1,y_2,y_3)=\overline{Q}_2(x;y_1,y_2,y_3)=0,$$

where \overline{Q}_i has Newton polytope ($y_3 = 1$)

Here $b_1 \leq b_2$ are certain integers satisfying $b_1 + b_2 = g - 5$. Such a model is naively liftable to $\mathcal{O}_{\mathcal{K}}$. How do we compute it?

Theorem (Bhargava)

There is a canonical bijection between pairs (R, S) where R is a quartic ring over $\mathbb{F}_q[x]$ and S is a cubic resolvent of R, up to isomorphism, and pairs (Q_1, Q_2) of ternary quadratic forms over $\mathbb{F}_q[x]$, up to an action of $GL_3(\mathbb{F}_q[x]) \times GL_2(\mathbb{F}_q[x])$.

Theorem (Bhargava)

There is a canonical bijection between pairs (R, S) where R is a quartic ring over $\mathbb{F}_q[x]$ and S is a cubic resolvent of R, up to isomorphism, and pairs (Q_1, Q_2) of ternary quadratic forms over $\mathbb{F}_q[x]$, up to an action of $GL_3(\mathbb{F}_q[x]) \times GL_2(\mathbb{F}_q[x])$.

• Change of basis of *R* (resp. *S*) corresponds to action of GL₃ (resp. GL₂).

Theorem (Bhargava)

There is a canonical bijection between pairs (R, S) where R is a quartic ring over $\mathbb{F}_q[x]$ and S is a cubic resolvent of R, up to isomorphism, and pairs (Q_1, Q_2) of ternary quadratic forms over $\mathbb{F}_q[x]$, up to an action of $GL_3(\mathbb{F}_q[x]) \times GL_2(\mathbb{F}_q[x])$.

- Change of basis of R (resp. S) corresponds to action of GL_3 (resp. GL_2).
- The cubic resolvent of $\mathbb{F}_q[\overline{C}]_0$ is of the form $\mathbb{F}_q[\overline{C}']_0$ for some cubic function field $\mathbb{F}_q(\overline{C}')/\mathbb{F}_q(x)$.

• Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.

< ∃ > <

- Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.
- Apply the Bhargava correspondence to (𝔽_q[C]₀, S) together with reduced bases for both to get two ternary quadratic forms Q
 ₁, Q
 ₂ over 𝔽_q[x].

- Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.
- Apply the Bhargava correspondence to (𝔽_q[C]₀, S) together with reduced bases for both to get two ternary quadratic forms Q
 ₁, Q
 ₂ over 𝔽_q[x].
- $\overline{Q}_1 = \overline{Q}_2 = 0$ defines a model of \overline{C} .

- Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.
- Apply the Bhargava correspondence to (𝔽_q[C]₀, S) together with reduced bases for both to get two ternary quadratic forms Q
 ₁, Q
 ₂ over 𝔽_q[x].
- $\overline{Q}_1 = \overline{Q}_2 = 0$ defines a model of \overline{C} .
- These polynomials can be lifted to $\mathcal{O}_{\mathcal{K}}$ naively.

- Consider the ring $\mathbb{F}_q[\overline{C}]_0$ and its resolvent S over $\mathbb{F}_q[x]$.
- Apply the Bhargava correspondence to (𝔽_q[C]₀, S) together with reduced bases for both to get two ternary quadratic forms Q
 ₁, Q
 ₂ over 𝔽_q[x].
- $\overline{Q}_1 = \overline{Q}_2 = 0$ defines a model of \overline{C} .
- These polynomials can be lifted to $\mathcal{O}_{\mathcal{K}}$ naively.
- All of this can be done algorithmically, and we have implemented it in Magma.

• The case d = 5 is very similar to the case d = 4. This time relying on Bhargava's parametrization of quintic rings.

- The case d = 5 is very similar to the case d = 4. This time relying on Bhargava's parametrization of quintic rings.
- Works well in practice, running time is dominated by Tuitman's algorithm.

- The case d = 5 is very similar to the case d = 4. This time relying on Bhargava's parametrization of quintic rings.
- Works well in practice, running time is dominated by Tuitman's algorithm.
- $d \ge 7$ is impossible by the non-unirationality of the Hurwitz spaces $\mathcal{H}_{d,g}$. Degree d = 6 is not known.

- The case d = 5 is very similar to the case d = 4. This time relying on Bhargava's parametrization of quintic rings.
- Works well in practice, running time is dominated by Tuitman's algorithm.
- $d \ge 7$ is impossible by the non-unirationality of the Hurwitz spaces $\mathcal{H}_{d,g}$. Degree d = 6 is not known.
- Computing these liftable models is possible over many fields, not just finite fields.