
Canonical form of positive definite matrix

Anna Haensch

Duquesne University

John Voight

Dartmouth College

Mathieu Dutour Sikirić

Rudjer Bos̆ković Institute

Wessel van Woerden

CWI Amsterdam

I. The automorphism

and isomorphism

problems

The graph isomorphism problem

I We consider vertex colored graphs G on n vertices with each
vertex i ∈ {1, . . . , n} having a color cG (i).

I Suppose that we have a graph G on n vertices {1, . . . , n}, we
want to compute its automorphism group Aut(G).
g is formed of all elements in Sym(n) such that

{g(i), g(j)} ∈ E (G) if and only if {i , j} ∈ E (G)

and c(g(i)) = c(i) for 1 ≤ i ≤ n.

I Suppose that G1 and G2 are two graphs on n vertices
{1, . . . , n}, we want to test if G1 and G2 are isomorphic, i.e. if
there is g ∈ Sym(n) such that

{g(i), g(j)} ∈ E (G2) if and only if {i , j} ∈ E (G1)

and cG2(g(i)) = cG1(i).

Complexity: Theoretical and Practical

Theoretical

I The theoretical complexity of the Graph isomorphism problem
was unknown for a long time.

I Then in 2015 following happened
I László Babai, Graph Isomorphism in Quasipolynomial Time,

arXiv:1512.03547

that is running time is exp((log n)O(1)).

Practical

I Since the 70s we have very efficient graph isomorphism
programs.

I They can compute the automorphisms of graphs with
thousands of vertices.

I Some hard graphs from Projective planes with about 100
vertices can be problematic.

The program nauty

I The program nauty by Brendan McKay solves the graph
isomorphism and the automorphism problems.

http://cs.anu.edu.au/people/bdm/nauty/

I nauty is extremely efficient in doing those computations.

I nauty can deal with directed graph but this is not
recommended.

I nauty can deal with vertex colors.

I nauty iterates over all n! permutation but it prunes the
search tree so as to obtain a fast running time.

I nauty has exponential runtime in worst case.

I There are alternatives such as bliss or traces with the
same performance features.

http://cs.anu.edu.au/people/bdm/nauty/

II. Vertex colored

graph reductions

The reduction to a graph

Why focus on graph?
I We have many other combinatorial problems:

I subset of vertex-set of a graph,
I set system,
I edge weighted graph,
I plane graph,
I partially ordered set, etc.

I If M is a “combinatorial structure”, then we have to define a
graph G (M), such that:

I If M1 and M2 are two “combinatorial structure”, then M1 and
M2 are isomorphic if and only if G (M1) and G (M2) are
isomorphic.

I If M is a “combinatorial structure”, then Aut(M) is isomorphic
to Aut(G (M)).

Subset of vertex-set of a graph

I Suppose that we have a graph G , two subsets S1, S2 of G , we
want to know if there is an automorphism φ of G such that
φ(S1) = S2.

1 2

3 45

6

S1 = {1, 2, 4}
S2 = {3, 5, 6}

I The method is to define two graphs associated to it:

1 2

3 45

6

0 1 2

3 45

6

0

Set systems

I Suppose we have some subsets S1, . . . , Sr of {1, . . . , n}. We
want to find the permutations of {1, . . . , n}, which permutes
the Si .

I We define a graph with n + r vertices j and Si with j adjacent
to Si if and only if j ∈ Si

I Example S = {{1, 2, 3}, {1, 5, 6}, {3, 4, 5}, {2, 4, 6}}:

S S S1 2 3 4

1 2 3 4 5 6

S

Edge colored graphs I

I G is a graph with vertex-set (vi)1≤i≤N , edges are colored with
k colors C1, . . . , Ck :

1 2

3 45

6

I We want to find automorphisms preserving the graph and the
edge colors.

I We form the graph with vertex-set (vi ,Cj) and
I edges between (vi ,Cj) and (vi ,Cj′)
I edges between (vi ,Cj) and (vi ′ ,Cj) if there is an edge between

vi and vi ′ of color Cj

We get a graph with kN vertices.

Edge colored graphs II

I The picture obtained is:

I Actually, one can do better, if the binary expression of j is
b1 . . . br with bi = 0 or 1 then we form the graph with
vertex-set (vi , l), 1 ≤ l ≤ r and

I edges between (vi , l) and (vi , l
′)

I edges between (vi , l) and (vi ′ , l) if the binary number bl of the
expression of Cj is 1.

This makes a graph with dlog2(k)eN vertices.

Plane graphs

I If G is a simple 3-connected plane graph then the skeleton
determine the embedding, we can forget the faces.

I If G has multiple edge and/or is not 3-connected we consider
the graph formed by its vertices, edges and faces with
adjacency given by incidence

1 2

3

4

5 6

7

8

I This idea extends to partially ordered sets, face lattices, etc.

III. Canonical forms

Canonical form

I One possible canonical form of a graph is obtained by taking
the lexicographic minimum of all possible adjacency matrix of
a given graph.

I Partition backtrack algorithms provide a way to get a
canonical form of a given graph. This will varies from program
to program and with chosen options.

I Suppose that one has N different graphs from which we want
to select the non-isomorphic ones:

I If one do isomorphism tests then at worst we have N(N−1)
2

tests.
I If one computes canonical forms, then we have N canonical

form computation and then string equality tests.

This is a key to many computer enumeration goals.

I The runtime of canonical form computation is about the same
as computing the automorphism group.

I The problem is how to lift the canonical form of the graph to
the canonical form of the original object.

IV. Positive definite form

Problem setting

I For given n ≥ 2 define Sn
>0 the set of positive definite

quadratic forms.

I The group GLn(Z) acts on Sn
>0 by

(P,A)→ PtAP

Quadratic forms are used in lattice theory for covering,
packing, etc.

I For a column vector x ∈ Rn define A[x] = x tAx

I A canonical form function is just as useful in this field of
computational mathematics.

I There is an existing program (AUTO/ISOM) by Plesken &
Souvignier for computing the stabilizer and isomorphism.

Minkowski Approach
I Minkowski reduction consists of considering shortest vectors

and successive minima of quadratic forms.
I In a fixed dimension n it yields a polyhedral domain Mn on

which we can map any positive definite form by an arithmetic
equivalence.

Dimension Nr. facets Nr. Ext. Rays
1 1 1
2 3 3
3 9 11
4 26 109
5 117 4105
6 1086 ?

I For a generic form, we have a unique form in this domain. By
ordering the facets of the Minkowski domain, we can obtain a
unique form.

I Practical implementation of the Minkowski reduction have
been done up to dimension 4, so much fewer to what we
really need.

Invariant vector configurations

I We need an invariant vector function V such that for every
positive definite n × n-dimensional form A we have

I V (A) is a set of vector of Zn that Z-spans Zn.
I If P ∈ GLn(Z) then V (P tAP) = P−1V (A).

I For A ∈ Sn
>0 and λ > 0 define

Minλ(A) = {x ∈ Zn s.t.A[x] ≤ λ} ,

min(A) = minx∈Zn−{0} A[x] and Min(A) = Minmin(A)(A).

I Define

Vmin(A) = {smallest λ s.t. Minλ(A) Z-spans Zn}

I For example for the matrix Aλ =

(
1 0
0 λ

)
this gives us

Vmin(A) = {±e2} ∪
{
±e1,±2e1, . . . ,±

⌊√
λ
⌋
e1
}

Invariant family for well-rounded lattices

I Suppose that A is well-rounded.

I Let v1, . . . , vn be a Z-basis of the full rank lattice Lmin(A)
spanned by Min(A) and let B ∈ Mn×n(Z) be the matrix with
columns v1, . . . , vn. We then define

Vwr-cvp(A) := Min(A)∪
⋃

c∈Zn/Lmin(A)

(
c − B CVP(BtAB,B−1c)

)
.

(1)

I The set Vwr-cvp(A) consists of the union of the shortest
vectors together with the set of points in each coset closest to
the origin.

I The advantage of this construction is that the size of
Vwr-cvp(A) is bounded from above by nO(n).

Using the subspace filtration
I Compute the set Min(A) and the saturated sublattice

L1 := satspan(Min(A)) spanned by these vectors.
I Compute a Z-basis v1, . . . , vr of L1, where r is its rank. Let

B1 ∈ Mn,r (R) be the matrix with columns v1, . . . , vr , and let
A1 := BT

1 AB1 ∈ Sr>0. Note that A1 is well-rounded by
construction.

I Let
proj : Zn → Rn

be the orthogonal projection with respect to A away from L1.
I Compute a basis w1, . . . ,wn−r of L2 := proj(Zn) and let

B2 ∈ Mn,(n−r)(R) the matrix with columns w1, . . . ,wn−r . Let
A2 = Bt

2A2B2.
I If r = n, let Vcvp(A2) := ∅; otherwise, compute Vcvp(A2)

recursively and then define

Vcvp(A) := B1Vwr-cvp(A1) ∪
⋃

v∈B2Vcvp(A2)

CVP(A, v).

Properties of Vcvp(A)

I It is an invariant vector family.

I We have
Vcvp(Aλ) = {±e1} ∪ {±e2}

I We have a bound
|Vcvp(A)| ≤ nO(n)

I Theorem: Given as input a positive definite symmetric matrix
A and a corresponding characteristic vector set V(A) we can
compute a canonical form for A in time
exp(O(log(N)c)) · sO(1) where N is the input size of V(A), s
is the input size of A and c > 1 is some fixed constant.

I Remark: One invariant vector family of size at most 2(2n − 1)
can be built by taking all the relevant vectors of the Voronoi
cell. This can be computed in time nO(n).

Using invariant vector families

I We choose a specific invariant vector functions V .

I For A ∈ Sn
>0 define the edge weighted graph G (A) over V (A)

with edge weight w(v , v ′) = v ′AvT .

I The edge weighted graph can be converted into a vertex
colored graph G2(A).

I The vertices of G (A) correspond to disjoint sets of vertices in
G2(A).

I Thus we can order the sets of vertices in G2(A) by
min(S) < min(S ′).

I And so we have a canonical ordering of the vectors V (A).

Canonical spanning set

I Given a family of vector (vi)1≤i≤N we want to find a Z-basis
B of it.

I We want a function Basis(V) such that
Basis(PV) = PBasis(V) for P ∈ GLn(Z).

I The Hermite Normal Form (HNF) provides what we want. A
matrix A ∈ Mm,n(Z) is written uniquely as A = UH with
U ∈ GLm(Z), H ∈ Mm,n(Z) and

I H is upper triangular with Hi,j = 0 for i > j .
I Every pivot of H, the leading coefficient of a row is strictly to

the right of the pivots above
I The elements below pivot are zero and elements above pivots

are nonnegative and strictly smaller than the pivot.

This is computed with Euclidean Divisions.

I We define Basis(A) = U.

V. Extensions

and Applications

Extension 1: Symplectic group

I We are interested in the group G = Sp(2n,Z) defined as

G =
{
M ∈ GL2n(Z) s.t. MtJM = J

}
with J =

(
0 In
−In 0

)
I So, for a positive definite matrix A ∈ S2n

>0(R) and a generating
vector set V we do the following:

I Instead of the pairwise weight vAwT we take the pairwise
weight (vAwT , vJwT).

I The same algorithm apply and we can reorder the generating
set.

I We can deterministically build a symplectic basis from the
reordered generating set.

Extension 2: Non-generating vector sets?

I There are many examples of lattices for which we can get an
invariant full dimensional set of vectors which does not Z-span
the lattice.
Examples: The Niemeier lattices are such.

I If one wants to compute automorphism (and testing for
equivalence) this is fine as we can do group action on the
possible integral embedding and find stabilizer.
One needs to use the partition backtrack for finding the set
stabilizer of finite groups.

I But this does not work for the canonical form because we do
not have a canonical form for the orbit of a set under a finite
group.
But there is no theoretical obstacle for this to be done.

Extension 4: Other groups?

I GLn(Z) is just a case for the group action. Conceivably we
could consider other group cases.

I It is not likely to obtain an uniform description for finite index
subgroups of GLn(Z). But what special finite index subgroups
could be doable?

I For subgroups G of GLn(Z) preserving a finite list of
n-dimensional lattices L1, . . . , Lm we have generalization of
stabilizer/isomorphy formalism.

I If m = 1 we are in GLn(Z) case.

I But there does not appear to have some generalization of the
canonical form for m > 1.

I Conceivably we can do the reduced form to GLn(Z[i]).

Application 1: Application to perfect forms

I The enumeration of perfect forms in a fixed dimension n is
done by using Voronoi algorithm:

I Take a perfect form A and insert it into the list of perfect
forms.

I For a given perfect form, compute the forms whose perfect
domain is adjacent to it.

I Insert the new found forms in the list if they are new.
I Terminate when all forms have been treated.

I The enumeration has to be done in parallel with each parallel
node having a specific set of perfect forms.

I The canonical forms allow to assign the forms to the parallel
node in a reliable way.

Application 2: Genus enumeration

I By this we mean enumeration of forms of bounded
discriminant, or small class number or small spinor class
number.

I Example of algorithm used is Kneser’s neighboring algorithm
which takes a form and return its p-neighbors.

I It works similarly to Voronoi’s Algorithm and the same
technique can be used.

I The Kneser’s algorithm for a prime number p can be used to
build a Hecke operators. Canonical forms can be used to
reduce the number of isomorphy tests.

I This can be used to compute some Algebraic Modular Forms.

Application 3: Database of forms

I The L-functions and Modular Forms Database (LMFDB)
contains a lot number theoretic informations.

I This includes some lattices coming from different sources.

I Using canonical forms can make the query faster.

THANK YOU

