Counting points on modular curves

Andrew V. Sutherland

Massachusetts Institute of Technology

Arithmetic Geometry, Cryptography, and Coding Theory June 12, 2019

Why count points on modular curves?

- Curves with many points over finite fields
- Curves with no points over finite fields
- Hecke eigenvalues of modular forms
- Computing L-functions (special values, analytic ranks, ...)
- Sato-Tate distributions
- Identifying isogenies and morphisms (even non-modular ones)
- Computing endomorphism rings, decomposing modular Jacobians
- Mazur's "Program B"

Mazur's Bonn lectures and Program B

In the course of preparing my lectures for this conference, I found a proof of the following theorem, conjectured by Ogg (conjecture 1 [17b]):

THEOREM 1. Let Φ be the torsion subgroup of the Mordell-Weil group of an elliptic curve E, over Φ . Then Φ is isomorphic to one of the following 15 groups:

$$\mathbf{Z}/\mathbf{m} \cdot \mathbf{Z} \qquad \text{for } \mathbf{m} \leq 10 \quad \text{or } \mathbf{m} = 12$$

$$\mathbf{Z}/2 \cdot \mathbf{Z} \times \mathbf{Z}/2 \nu \cdot \mathbf{Z} \qquad \text{for } \nu \leq 4 \quad .$$

$$\vdots$$

Theorem 1 also fits into a general program:

B. Given a number field K and a subgroup H of $\operatorname{GL}_2\widehat{\mathbf{Z}} = \prod_p \operatorname{GL}_2 \mathbf{Z}_p$ classify all elliptic curves $\operatorname{E}_{/K}$ whose associated Galois representation on torsion points $\operatorname{maps} \operatorname{Gal}(\overline{K}/K) \text{ into } \operatorname{H} \subset \operatorname{GL}_2\widehat{\mathbf{Z}} \text{.}$

Galois representations attached to elliptic curves

Let E be an elliptic curve over a number field k. For each integer $N \ge 1$ the action of $G_k := \operatorname{Gal}(\bar{k}/k)$ on E[N] yields a mod-N Galois representation

$$\rho_{E,N} \colon G_k \to \operatorname{Aut}(E[N]) \simeq \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}).$$

Choosing a compatible system of bases and taking the inverse limit yields

$$\rho_E \colon G_k \to \mathrm{GL}_2(\widehat{\mathbb{Z}}) \simeq \prod_{\ell} \mathrm{GL}_2(\mathbb{Z}_\ell).$$

Theorem (Serre 1972)

For non-CM elliptic curves the image of ρ_E is an open subgroup $H_E \subseteq \mathrm{GL}_2(\widehat{\mathbb{Z}})$.

There is thus a minimal positive integer M_E such that ρ_E factors through $\bar{\rho}_{E,M_E}$ and H_E is completely determined by its reduction modulo M_E .

There are infinitely many possibilities for M and H_E as E/k varies, but it is believed that only finitely many non-surjective projections to $\mathrm{GL}_2(\mathbb{Z}_\ell)$ arise, and only finitely many values of $[\mathrm{GL}_2(\widehat{\mathbb{Z}}):H_E]$ (even if only $[k:\mathbb{Q}]$ is fixed).

Modular curves

Let H be an open subgroup of $\mathrm{GL}_2(\widehat{\mathbb{Z}}) = \varprojlim \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z}) =: \varprojlim \mathrm{GL}_2(N)$.

Then H contains the kernel of $\pi_N \colon \operatorname{GL}_2(\widehat{\mathbb{Z}}) \to \operatorname{GL}_2(N)$ for some $N \ge 1$; the least such N is the level of H, and H is completely determined by $\pi_N(H)$.

Definition (Deligne-Rapoport 1973)

The modular curves X_H and Y_H are coarse spaces for the stacks \mathcal{M}_H and \mathcal{M}_H^0 that parameterize elliptic curves with H-level structure.

Modular curves

Let H be an open subgroup of $\mathrm{GL}_2(\widehat{\mathbb{Z}}) = \varprojlim \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z}) =: \varprojlim \mathrm{GL}_2(N)$.

Then H contains the kernel of $\pi_N \colon \operatorname{GL}_2(\widehat{\mathbb{Z}}) \to \operatorname{GL}_2(N)$ for some $N \ge 1$; the least such N is the level of H, and H is completely determined by $\pi_N(H)$.

Definition (Deligne-Rapoport 1973)

The modular curves X_H and Y_H are coarse spaces for the stacks \mathcal{M}_H and \mathcal{M}_H^0 that parameterize elliptic curves with H-level structure.

- X_H is a smooth proper $\mathbb{Z}[\frac{1}{N}]$ -scheme with open subscheme Y_H . The complement X_H^{∞} of Y_H in X_H (the cusps) is finite étale over $\mathbb{Z}[\frac{1}{N}]$.
- When $\det(H) = \widehat{\mathbb{Z}}^{\times}$ the generic fiber of X_H is a nice curve X_H/\mathbb{Q} , and $X_H(\mathbb{C})$ is a Riemann surface isomorphic to $X_{\Gamma_H} := \Gamma_H \setminus \mathcal{H}$, where $\Gamma_H \subseteq \mathrm{SL}_2(\mathbb{Z})$ is the inverse image of $\pi_N(H) \cap \mathrm{SL}_2(N)$.
- In particular, $g(X_H) = g(X_{\Gamma_H})$, and X_H and X_{Γ_H} have the same cusps. **Note**: $X_{\Gamma_H} = X_{\Gamma_{H'}} \not\Rightarrow X_H = X_{H'}$, and the levels of X_{Γ_H} and X_H may differ.
- If $det(H) \neq \widehat{\mathbb{Z}}^{\times}$ then X_H is not geometrically connected (but that's OK!).

Classical modular curves

For $B_0(N) := \{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \} \subseteq \operatorname{GL}_2(N)$ we have $X_0(N) = X_{B_0(N)}$ (as curves over \mathbb{Q}).

For $B_1(N) := \left\{ \left(\begin{smallmatrix} 1 & * \\ 0 & * \end{smallmatrix} \right) \right\} \subseteq \operatorname{GL}_2(N)$ we have $X_1(N) = X_{B_1(N)}$.

We similarly define $X_s(p)$, $X_{ns}(p)$, using Cartan subgroups $H \subseteq GL_2(p)$.

Classical modular curves

For $B_0(N) := \{ \left(\begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix} \right) \} \subseteq \operatorname{GL}_2(N)$ we have $X_0(N) = X_{B_0(N)}$ (as curves over $\mathbb Q$).

For $B_1(N) := \{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \} \subseteq \operatorname{GL}_2(N)$ we have $X_1(N) = X_{B_1(N)}$.

We similarly define $X_s(p)$, $X_{ns}(p)$, using Cartan subgroups $H \subseteq GL_2(p)$.

Example: Let us compute $\#X_1(13)(\mathbb{F}_{37})$.

Over \mathbb{F}_{37} there are 4 elliptic curves with a rational point of order 13:

$$y^2 = x^3 + 4,$$
 $y^2 = x^3 + 33x + 33,$
 $y^2 = x^3 + 8x,$ $y^2 = x^3 + 24x + 22.$

What is $\#X_1(13)(\mathbb{F}_{37})$?

Classical modular curves

For $B_0(N) := \{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \} \subseteq GL_2(N)$ we have $X_0(N) = X_{B_0(N)}$ (as curves over \mathbb{Q}). For $B_1(N) := \{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \} \subseteq GL_2(N)$ we have $X_1(N) = X_{B_1(N)}$.

We similarly define $X_s(p)$, $X_{ns}(p)$, using Cartan subgroups $H \subseteq GL_2(p)$.

Example: Let us compute $\#X_1(13)(\mathbb{F}_{37})$.

Over \mathbb{F}_{37} there are 4 elliptic curves with a rational point of order 13:

$$y^2 = x^3 + 4$$
, $y^2 = x^3 + 33x + 33$, $y^2 = x^3 + 8x$, $y^2 = x^3 + 24x + 22$.

What is $\#X_1(13)(\mathbb{F}_{37})$?

The genus 2 curve 169.1.169.1 is a smooth model for $X_1(13)$:

$$y^2 + (x^3 + x + 1)y = x^5 + x^4$$
.

It has 23 rational points over \mathbb{F}_{37} .

What do these 23 points represent?

Moduli spaces of elliptic curves with H-level structure

Let H be an open subgroup of $\mathrm{GL}_2(\widehat{\mathbb{Z}})$ of level N with image H in $\mathrm{GL}_2(N)$. Let k be a perfect field whose characteristic does not divide N.

Definition

An *H*-level structure on an elliptic curve E/\bar{k} is the equivalence class $[\iota]_H$ of an isomorphism $\iota\colon E[N]\to (\mathbb{Z}/N\mathbb{Z})^2$, where $\iota\sim\iota'$ if $\iota=h\circ\iota'$ for some $h\in H$.

If we fix a basis so $E[N] := (\mathbb{Z}/N\mathbb{Z})^2$, then $[\iota]_H$ is a right H-coset in $\mathrm{GL}_2(N)$.

Definition

The set $Y_H(\bar{k})$ consists of equivalence classes of pairs $(E, [\iota]_H)$, where $(E, [\iota]_H) \sim (E', [\iota']_H)$ if there is an isomorphism $\phi \colon E \to E'$ for which the induced isomorphism $\phi_N \colon E[N] \to E'[N]$ satisfies $\iota \sim \iota' \circ \phi_N$.

Equivalently, $Y_H(\overline{k})$ consists of pairs $(j(E), \alpha)$, where $\alpha = HgA_E$ is a double coset in $H \setminus \operatorname{GL}_2(N)/A_E$, with $A_E := \{\varphi_N : \varphi \in \operatorname{Aut}(E)\}$.

The set of k-rational points $Y_H(k)$

The Galois group $G_k := \operatorname{Gal}(\bar{k}/k)$ acts on $Y_H(\bar{k})$ by acting on coefficients of E and points in E[N], which induces an action on $[\iota]_H$ and pairs $(E, [\iota]_H)$.

More precisely, $\sigma \in G_K$ send E to E^{σ} and induces an isomorphism $\sigma^{-1} \colon E^{\sigma}[N] \to E[N]$ defined by $(x : y : z) \mapsto (\sigma^{-1}(x) : \sigma^{-1}(y) : \sigma^{-1}(z))$.

For $P := (E, [\iota]_H) \in Y_H(\bar{k})$ we have $\sigma(P) := (E^{\sigma}, [\iota \circ \sigma^{-1}]_H)$.

The subset of G_k -stable points in $Y_H(\bar{k})$ forms the set of k-rational points $Y_H(k)$.

Lemma (DR73, Z15)

Each $P \in Y_H(k)$ is represented by a pair $(E, [\iota]_H) \in Y_H(k)$ with E defined over k, and any such a pair lies in $Y_H(k)$ if and only if for all $\sigma \in G_k$ there exists a $\varphi \in \operatorname{Aut}(E_{\overline{k}})$ and an $h \in H$ such that

$$\iota \circ \sigma^{-1} = h \circ \iota \circ \varphi_N.$$

In other words, a pair $(j(E),\alpha)$ with $j(E)\in k$ and $\alpha=HgA_E$ lies in $Y_H(k)$ if and only if $Hg\sigma^{-1}A_E=HgA_E$ for all $\sigma\in G_k$, where $A_E:=\{\varphi_N:\varphi\in \operatorname{Aut}(E_{\bar k})\}.$

Interpreting rational points on Y_H

Recall that if E is an elliptic curve over a number field K, the action of G_K on torsion points of $E(\overline{K})$ yields a Galois representation

$$\rho_E \colon G_K \to \operatorname{Aut}(E(\overline{K})_{\operatorname{tor}}) \simeq \operatorname{GL}_2(\widehat{\mathbb{Z}}) \simeq \varprojlim \operatorname{GL}_2(N).$$

For each positive integer N, let $\rho_{E,N}$ denote the projection to $GL_2(N)$.

Lemma (DR73, RZB15)

Let H be an open subgroup of $\mathrm{GL}_2(\widehat{\mathbb{Z}})$ of level N and let E be an elliptic curve over a number field K. There exists an isomorphism $\iota \colon E[N] \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^2$ such that $(E, [\iota]_H) \in Y_H(K)$ if and only if the image of $\rho_{E,N}$ is contained in a subgroup of $\mathrm{GL}_2(N)$ conjugate to $\pi_N(H)$.

This is how we should understand the moduli interpretation of Y_H and X_H .

The set of k-rational cusps $X_H^{\infty}(k)$

Let $U(N) := \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, -1 \rangle \subseteq \operatorname{GL}_2(N)$. We define a right G_k -action on $H \backslash \operatorname{GL}_2(N)/U$ via $hgu \mapsto hg\chi_N(\sigma)u$, where $\chi_N(\sigma) := \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix}$ is defined by $\sigma(\zeta_N) = \zeta_N^e$.

Lemma (DR73)

The cardinality of $X_G^{\infty}(k)$ is equal to the cardinality of the subset of $H \setminus GL_2(N)/U(N)$ fixed by $\chi_N(G_k)$.

When k is finite, we can compute both $\#X_H^{\infty}(k)$ and $\#Y_H(k)$ by counting the fixed points of a right G_k -action on a double coset spaces of $\mathrm{GL}_2(N)$.

We have

$$\#X_H(k) = \#(H \backslash \operatorname{GL}_2(N)/U(N))^{\chi_N(G_k)} + \sum_{j(E) \in k} \#(H \backslash \operatorname{GL}_2(N)/A_E)^{G_k}.$$

This does not depend on the choice of E or the choice of basis for E[N].

Where the 23 points of $X_1(13)(\mathbb{F}_{37})$ come from

For $k = \mathbb{F}_{37}$ and the action of G_k is generated by the 37-power Frobenius σ , which induces the action of $\chi_{13}(G_k)$ on $\mu_{13}(\bar{k})$ and the Frobenius endomorphism π_E which acts on E[13]. We have

$$\#\operatorname{GL}_2(13) = 12^2 \cdot 13 \cdot 14, \qquad \#B_1(13) = 12 \cdot 13, \qquad \#U = 26,$$

and the right coset space $B_1(13) \setminus GL_2(13)$ has cardinality $12 \cdot 14 = 168$.

- The space $B_1(13)\backslash\operatorname{GL}_2(13)/U(13)$ partitions $B_1(13)\backslash\operatorname{GL}_2(13)$ as 2^626^6 . These 12 double cosets correspond to the 12 cusps of $X_1(13)$. The 6 partitions of size 26 are fixed by $\chi_{13}(\sigma)=\left(\begin{smallmatrix} 11&0\\0&1\end{smallmatrix}\right)$ but not the others. So we have 6 rational cusps.
- The four elliptic curves E/\mathbb{F}_{37} with a points of order 13 have j-invariants 0, 16, 26, 35 (note $1728 \equiv 26 \mod 37$), so A_E is cyclic of order 6, 2, 4, 2. The 168 right cosets of $B_1(13)$ correspond to the 168 points of order 13 in E[13]; in all 4 cases exactly 12 of these are fixed by π_E .

We thus get 2 + 6 + 3 + 6 = 17 non-cuspidal rational points.

$$2 + 6 + 3 + 6 + 6 = 23$$

Counting \mathbb{F}_q -points on X_H

Let $j_H: X_H \to X(1)$ be the morphism induced by $H \subseteq \operatorname{GL}_2(\widehat{\mathbb{Z}})$.

$$\#X_G(\mathbb{F}_q) = \#X_H^\infty(\mathbb{F}_q) + \sum_{j \in \mathbb{F}_q} \#\{P \in Y_H(\mathbb{F}_q) : j_H(P) = j\}$$

Every term is computed by counting double cosets fixed by a right action. Computing $\chi_N(\sigma)$ is easy (reduce q modulo N). To compute π_E we use [DT02].

Theorem (DT02)

Let E/\mathbb{F}_q be an elliptic curve, and let π_E denote its Frobenius endomorphism. Define $a:=\operatorname{tr} \pi_E=q+1-\#E(\mathbb{F}_q)$ and $R:=\operatorname{End}(E)\cap \mathbb{Q}(\pi_E)$, let $\Delta:=\operatorname{disc}(R)$ and $\delta:=\Delta \bmod 4$, and let $b:=\sqrt{(a^2-4q)/\Delta}$ if $\Delta\neq 1$ and b:=0 otherwise. The integer matrix

$$A_{\pi} := \begin{pmatrix} (a+b\delta)/2 & b \\ b(\Delta-\delta)/4 & (a-b\delta)/2 \end{pmatrix}$$

determines the action of π_E on E[N] for all $N \geq 1$.

Note: A_{π} is determined only up to conjugacy, but we must compute A_{E} and A_{π} with respect to the same basis for E[N].

Computational issues

- Computing b typically requires determining $[\mathcal{O}_K:\operatorname{End}(E)]$ where $K=\mathbb{Q}(\sqrt{a^2-4q})$. This is much harder than computing $\operatorname{tr}\pi_E$. The brute force approach tests $H_D(j(E))\stackrel{?}{=}0$ for discriminants D of all orders in \mathcal{O}_K containing $\mathbb{Z}[\pi_E]$. This is expensive and unnecessary.
 - We will enumerate every root of H_D for all such D as we enumerate j(E)!
- ② Computing an explicit basis for E[N] is painful when N is large; this only matters when j(E)=0,1728, but these two cases can get very expensive.

Solution to (1): Instead of enumerating j-invariants, enumerate Frobenius traces a and compute A_π for each triple (a,b,Δ) satisfying $4q=a^2-b^2\Delta$. Then multiply the number of double cosets fixed by A_π by h(D).

This reduces the problem to computing class numbers rather than Hilbert class polynomials, which is much easier (and can be done via table lookup).

Solution to (2): Instead of computing A_E , enumerate twists of elliptic curves with j(E)=0,1728 and compute A_π for each. No need to fix a basis for E[N].

The algorithm

Given $H \subseteq GL_2(N)$ and a prime power q, compute $X_H(\mathbb{F}_q)$ as follows:

- Compute $f_H : \operatorname{GL}_2(N) \to \mathbb{Z}$ defined by $g \mapsto \#(H \setminus \operatorname{GL}_2(N)/\{\pm 1\})^g$. Note that f_H does not depend on q and factors through the class map. Indeed: $f_H(g) = [\operatorname{GL}_2(N) : H] \cdot \#(\pm H \cap g^{\operatorname{GL}_2(N)}) \cdot (\#g^{\operatorname{GL}_2(N)})^{-1}$.
- ② Compute $n_{\infty} := \# X_H^{\infty}(\mathbb{F}_q) = \# (H \backslash \operatorname{GL}_2(N)/U(N))^{\chi_N(\sigma)}$. (this step is fast in practice, but asymptotically annoying).
- **3** Compute $n_0 := \#j_H^{-1}(0)$ and $n_{1728} := \#j_H^{-1}(1728)$ by computing A_{π} for each twist, summing $f_H(A_{\pi})$ values, and dividing by $\# \operatorname{Aut}(E_{\bar{k}})$.
- **9** Set $n_{\text{ord}} := 0$ and for a from 1 to $\lfloor 2\sqrt{q} \rfloor$ coprime to q:
 - **o** Compute $D = a^2 4q$, put $D_0 := \operatorname{disc} \mathbb{Q}(\sqrt{D_{\pi}})$ and for $b^2|(D/D_0)$:
 - Set $D' := b^2 D_0$ and $\delta := D \mod 4$ and compute A_{π} (for D' < -4).
 - ② If $f_H(A_\pi) \neq 0$, compute/lookup h(D) and add $f_H(A_\pi)h(D)$ to n_{ord} .
- **③** Compute $n_{\rm ss}$ by computing A_{π} for supersingular elliptic curves with $j \neq 0,1728$ (only $a=0,\pm 2q$ possible), and multiplying $f_H(A_{\pi})$ by the counts of such curves (using $h(\sqrt{-q})$, $h(\sqrt{-4q})$ and [W69]).
- **1** Output $\#X_H(\mathbb{F}_q) = n_{\infty} + n_0 + n_{1728} + n_{\text{ord}} + n_{\text{ss}}$.

A non-trivial example

Consider the following genus 14 subgroup on the Mazur-B 5-adic list:

$$H := \langle \begin{pmatrix} 8 & 6 \\ 4 & 4 \end{pmatrix}, \begin{pmatrix} 9 & 18 \\ 7 & 16 \end{pmatrix} \rangle \subseteq GL_2(25);$$

this is the normalizer of a non-split Cartan subgroup of $\mathrm{GL}_2(25)$. Counting points on X_H over \mathbb{F}_{2^r} , \mathbb{F}_{5^r} , \mathbb{F}_{7^r} for $1 \leq r \leq 14$ yields the L-polynomials

$$L_2(x) = (2^2x^4 - 2x^3 + 3x^2 - x + 1)(2^2x^4 + 2x^3 + 3x^2 + x + 1)^2(2^8x^{16} + \dots + 1),$$

$$L_3(x) = (3x^2 - x + 1)^2(3x^2 + x + 1)^2(3^2x^4 + 9x^3 + 7x^2 + 3x + 1)(3^8x^{16} + \dots + 1),$$

$$L_7(x) = (7^2x^4 - 7x^3 + 13x^2 - x + 1)(7^2x^4 + 7x^3 + 13x^2 + x + 1)(7^2x^4 + 7x^3 + 3x^2 + x + 1)$$

$$(7^8x^{16} + \dots + 1),$$

suggesting the \mathbb{Q} -isogeny decomposition of the Jacobian has shape 2-2-2-8. Hashing traces and searching for 5-power conductor genus 2 curves yields

$$y^{2} + (x^{3} + x + 1)y = -3x^{4} + 7x^{3} + x^{2} - 5x + 1,$$

$$y^{2} + (x^{3} + x + 1)y = x^{6} - 13x^{4} + 37x^{3} + 6x^{2} - 23x + 6,$$

$$y^{2} + (x^{3} + x + 1)y = 6x^{6} - 5x^{5} + 12x^{4} - 13x^{3} + 6x^{2} - 13x - 4,$$

each of which have RM by $\mathbb{Q}(\sqrt{5})$ and Jacobians of Mordell-Weil rank 2.

Complexity analysis

We can use sub-exponential time Monte-Carlo algorithms to compute class numbers and still get a provably correct result (in practice we just look up class numbers in a precomputed table).

As written, the complexity of this algorithm is

$$N^{4+o(1)} + q^{1/2+o(1)}N^{o(1)}$$
.

The constant factors are very small (the inner loop is just table lookups). The dependency on N can easily be improved to $N^{3+o(1)}$, and even to $N^{2+o(1)}$ for suitable H (this is work in progress).

If we wish to compute $\#X_H(\mathbb{F}_q)$ for many values of q (for example, all primes $p \nmid N$ up to some bound B), the computation of $f_H \colon \operatorname{GL}_2(N) \to \mathbb{Z}$ only needs to be done once, and we can precompute all the class numbers up to 4B in $O(B^{3/2+o(1)})$ time (deterministically) by counting binary quadratic forms.

Corollary: We can completely determine the *L*-function $L(X_H, s)$ in time $\operatorname{cond}(\operatorname{Jac}(X_H))^{3/4+o(1)}$, which is $N^{3g/4+o(1)}$ or $N^{3g/2+o(1)}$ (depending on H).

Performance comparison

	Pari/GP v2.11						new algorithm				
B	N =11	47	97	149	197		N =11	47	97	149	197
212	0.1	0.1	0.2	0.2	0.3		0.1	0.1	0.1	0.1	0.1
2^{13}	0.3	0.3	0.3	0.3	0.4		0.1	0.1	0.1	0.1	0.1
2^{14}	0.7	0.7	0.8	8.0	0.9		0.1	0.1	0.2	0.2	0.2
2^{15}	2.0	2.0	2.1	2.1	2.2		0.2	0.3	0.3	0.5	0.4
2^{16}	6.1	5.9	6.2	5.9	6.1		0.5	0.6	0.9	1.2	1.1
2^{17}	18	17	18	18	18		1.3	1.8	5.3	3.1	3.1
2^{18}	54	51	54	51	51.8		3.8	5.1	9.9	9.0	8.0
2^{19}	159	153	160	153	453		14	15	21	25	21
2^{20}	462	455	462	450	453		36	42	53	62	57
2^{21}	1350	1340	1350	1330	1340		107	120	146	160	156
2^{22}	?	?	?	?	?		333	353	399	427	433
2^{23}	?	?	?	?	?		950	1020	1120	1180	1220
224	?	?	?	?	?		2840	2990	3210	3360	3500

Intel Skylake 2.0 GHz CPU times (seconds)

Zeta functions and *L*-functions

Let X/\mathbb{Q} be a nice (smooth, projective, geometrically integral) curve of genus g. For primes p of good reduction (for X) we have a zeta function

$$Z(X_p;s) := \exp\left(\sum_{r>1} \# X_p(\mathbb{F}_{p^r}) \frac{T^r}{r}\right) = \frac{L_p(T)}{(1-T)(1-pT)},$$

in which the *L*-polynomial $L_p \in \mathbb{Z}[T]$ in the numerator satisfies

$$L_p(T) = T^{2g} \chi_p(1/T) = 1 - a_p T + \dots + p^g T^{2g};$$

here $\chi_p(T)$ is the charpoly of the Frobenius endomorphism of $\mathrm{Jac}(X_p)$ (this implies $\#\,\mathrm{Jac}(X_p)=L_p(1)$, for example). The *L*-function of *X* is

$$L(X,s) = L(\operatorname{Jac}(X),s) := \sum_{n \geq 1} a_n n^{-s} := \prod_p L_p(p^{-s})^{-1},$$

where the Dirichlet coefficients $a_n \in \mathbb{Z}$ are determined by the $L_p(T)$. In particular, $a_p = p + 1 - \#X_p(\mathbb{F}_p)$ is the trace of Frobenius.

The Selberg class with polynomial Euler factors

The Selberg class S^{poly} contains Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$ satisfying:

- L(s) has an analytic continuation that is holomorphic at $s \neq 1$;
- ② For some $\gamma(s) = Q^s \prod_{i=1}^r \Gamma(\lambda_i s + \mu_i)$ and ε , the completed L-function $\Lambda(s) := \gamma(s) L(s)$ satisfies the functional equation

$$\Lambda(s) = \varepsilon \overline{\Lambda(1-\bar{s})},$$

where $Q>0,\,\lambda_i>0,\,\operatorname{Re}(\mu_i)\geq 0,\,|\varepsilon|=1.$ Define $\deg L:=2\sum_i^r\lambda_i.$

- **3** $a_1 = 1$ and $a_n = O(n^{\epsilon})$ for all $\epsilon > 0$ (Ramanujan conjecture).
- **1** L(s) has an Euler product $L(s) = \prod_p L_p(p^{-s})^{-1}$ in which each local factor $L_p \in \mathbb{Z}[T]$ has degree at most $\deg L$.

For any nice curve X the Dirichlet series $L_{\rm an}(s,X):=L(X,s+\frac{1}{2})$ satisfies both (3) and (4) (by Weil), and conjecturally lies in $S^{\rm poly}$.

For modular curves we also know (1) and (2), so $L(s, X_H) \in S^{\text{poly}}$.

Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)

If $A(s) = \sum_{n \ge 1} a_n n^{-s}$ and $B(s) = \sum_{n \ge 1} b_n n^{-s}$ lie in S^{poly} and $a_p = b_p$ for all but finitely many primes p, then $A(s) = \overline{B}(s)$.

Corollary

If $L_{\rm an}(s,X)$ lies in $S^{\rm poly}$ then it is determined by (any choice of) all but finitely many coefficients a_p . In particular, all of the local factors are completely determined by the Frobenius traces a_p at good primes.

Henceforth we assume that $L_{an}(s,X) \in S^{poly}$.

Let $\Gamma_{\mathbb{C}}(s) := 2(2\pi)^s \Gamma(s)$, and define $\Lambda(X,s) := \Gamma_{\mathbb{C}}(s)^g L(X,s)$. Then

$$\Lambda(X,s) = \varepsilon N^{1-s} \Lambda(X,2-s).$$

where the analytic root number $\varepsilon=\pm 1$ and analytic conductor $N\in\mathbb{Z}_{\geq 1}$ are also determined by the Frobenius traces a_p at good primes.

Effective strong multiplicity one

Fix a finite set of primes S (e.g. bad primes) and an integer M that we know is a multiple of the conductor N (e.g. $M = \Delta(X)$).

There is a finite set of possibilities for $\varepsilon=\pm 1$, N|M, and the Euler factors $L_p\in\mathbb{Z}[T]$ for $p\in\mathcal{S}$ (the coefficients of $L_p(T)$ are bounded).

Suppose we know the a_n for all $n \leq c_1 \sqrt{M}$ with $p \nmid n$ for $p \in \mathcal{S}$. For a suitably large c_1 , exactly one choice of ε , N, and $L_p(T)$ for $p \in \mathcal{S}$ will make it possible for L(X,s) to satisfy its functional equation.

One can explicitly determine a set of $O(N^{\epsilon})$ candidate values of c_1 , one of which is guaranteed to work; in practice the first one usually works.

This gives an effective algorithm to compute ε , N, and $L_p(T)$ for $p \in \mathcal{S}$, provided we can compute $L_p(T)$ at good $p \leq B$, where $B = O(\sqrt{N})$.

References

[BS11] G. Bisson and A.V. Sutherland, *Computing the endomorphism ring of an ordinary elliptic curve over a finite field*, J. Number Theory **131** (2011), 815–831.

[DT02] W. Duke and A. Toth, *The splitting of primes in division fields of elliptic curves*, Experimental Mathematics **11** (2002), 555–565.

[RZB15] J. Rouse and D. Zureick-Brown, *Elliptic curves over* $\mathbb Q$ *and* 2-adic images of Galois, Research in Number Theory **1** (2015).

[DR73] P. Deligne and M. Rapoport, *Les schémas de modules de courbes elliptiques*, in Modular functions of one variable, II, P. Deligne and W. Kuijk (eds), 143–316, Springer, 1973.

[Se72] J.-P. Serre, *Propriétés galoisiennes des points dordre fini des courbes elliptiques*, Invent. Math. **15** (1972), 259–331.

[Su15] A. V. Sutherland, *Computing images of Galois representations attached to elliptic curves*, Forum of Mathematics, Sigma **4** (2016), 79 pages.

[W69] W. C. Waterhouse, *Abelian varieties over finite fields*, Annales scientifique de L'É.N.S **2** (1969), 521–560.

[Z15] D. Zywina, *Possible indices for the Galois image of elliptic curves over* \mathbb{Q} , arXiv:1508.07663.