
Lecture 1: Weighing

September 6, 2006

0.1 Problem

Suppose we have n coins; one is bad, it has weight different from that of the
others, which are all the same.

We want to find the bad coin.

We have a balance device, and can put coins on either side of it. It will
balance only when there are the same number of coins on each side of it, and
they are all good ones.

Our task is to discover which of our coins is counterfeit, as efficiently as
possible. We measure efficiency by the number of times we have to use our
balance.

There is a standard puzzle that asks: how can we handle 12 coins with 3
weighings? We will answer this and much more.

0.2 Lower bound on the number of weighings needed

First we are going to look for a lower bound on the number of weighings
we need, with n coins. This will give us a way of estimating how good any
procedure we develop is.

1



The standard way to get a lower bound is what is called the Pigeonhole
Principle: It says, if you have more pigeons (or objects you want to stick in
pigeonholes) than pigeonholes, then at least two of them must share a hole.

This is relevant here because our task is to use the outcomes of weighings
to distinguish the bad coin. Thus, the number of outcomes of weighings must
be greater than or equal to the number of coins. In other words, if coin 5 say
is bad, it must give rise to a different weighing outcome from what would
happen if coin 7, or any other of the n coins, is bad.

Thus the outcomes of the weighings are like pigeonholes, and the possible
bad coins are like pigeons. There is one subtlety however. If any of our
coins is ever weighed, and it is the bad one, it can give rise to two different
weighing outcomes. One if it is heavy, and one if it is light. If the coin is
heavy, its side of the balance will go down; if light it will go up, and these
are different outcomes.

Note that at most one coin can be kept off the balance for all weighings.
(Otherwise, if two coins were off the scale at every weighing, we could not
distinguish one coin being bad from the other coin being bad.)

This tells us that the number of weighing outcomes has to be at least
2n− 1 if we are to have a separate outcome for each possibly bad coin. We
have 2n− 1 pigeons with n potentially bad coins.

So how many outcomes do we get with k weighings?

With one weighing we get three possible outcomes. Which we can denote
as (left side) heavy, (left side) light, or balance. Which we describe by the
numerals 1, -1 and 0 respectively.

With k weighings we get a sequence of such numbers; thus with three
weighings we can write a typical outcome as 1, -1,-1, which corresponds to
the right side going down in the second and third weighing, and the left side
going down in the first.

The number of such sequences is 3k. This number is the number of pigeon

2



holes. The first few values of which are 3, 9, 27, 81, . . .

The pigeonhole principle then tells us, that we must have

3k ≥ 2n− 1

and this determines our lower bound on the number of weighings needed.

The first few values we get for the largest number n possible with k weigh-
ings are: 2, 5, 14, 41, . . .

This number in general is ((3k) + 1)/2.

0.3 The non-adaptive problem, matrix notation and
conditions on the weighing matrix

So now we turn to the question, can we produce a weighing scheme that
will always find the bad coin, that meets this bound. That is, can we find a
procedure for putting coins on the balance that will allow us to find the bad
coin with n = 2, 5, 14, 41 coins and 1, 2, 3, 4, . . . weighings?

The answer is both yes and no. If we are given an additional (n + 1)st

coin that we know to be good, then we can. Otherwise, we can not.

First, Why not?

The pigeonhole principle tells us that not only can we distinguish at most
3k cases using k weighings, but after the first weighing, no matter what hap-
pens, we can distinguish from at most 3(k−1) cases for each outcome of the
first weighing. And 3 raised to any power is an odd number.

On the other hand, if we have no definitely good coin, all the coins we put
on the balance must be potentially bad; and we must put the same number
of coins on either side of it.

This means that the left hand side will go down if any of the x coins
on it is heavy or if any of the x coins on the right side is light. This is 2x

3



cases which has to be an even number. No matter what we do, after the first
weighing then, the number of cases corresponding to the left being heavy (or
light) must be an even number less than 3(k−1) or at most 3(k−1) − 1. This
lowers the number of possible cases by 2, and the number of coins we can
handle to at most 1, 4, 13, 40, in 1 to 4 weighings. And to ((3k) − 1)/2 in
general. This number respresents the the largest number n possible coins
with k weighings when we are not given a definite good coin.

We will assume we have a good coin, because this allows us to accommo-
date one extra coin, and because it allows us to do something useful in the
one weighing case.

The standard way to attack this problem is to see what the cases are if we
put x coins on each side, arrange so that there are 3(k−1) possibilities for each
first outcome, and continue in the same way to figure out what to do on the
second weighing, and so on. (If this paragraph makes no sense I apologise
and ignore it.)

We are going to create a harder problem in that there are more constraints
on the solution, which actually makes it easier to solve. We will look for a
scheme of weighing that is fixed in advance (non-adaptive algorithm). We
will not look at what happened on previous weighings in determining what to
do next (adaptive algorithm); instead we will seek as scheme for putting coins
on the balance that can be written down in advance for all weighings at once.

We need some notation to describe such a scheme. And that notation is
a matrix.

Along the top of the matrix we list the coins, and in each row we list
where that coin goes on the corresponding weighing. If coin y is put on the

left on weighing j we put a 1 in the jth row and the column marked y.

If it goes on the right in that weighing we put a -1 in that place, and it
stays off the balance, we put a 0 there.

Thus, with this notation, if we have only one weighing, and have a good

4



coin, we can employ the weighing scheme defined by the following one-row
matrix:

g 1 2
1 −1 0

(1)

We now ask: what conditions must a matrix like this satisfy to represent a
weighing scheme that allows us to find the counterfeit coin, no matter which
one it is?

• First, every row sum must be 0. This expresses the condition that the
same number of coins must be on each side of the balance, in every
weighing.

• Second, no two columns, neither one representing the good coin, can
be identical.

• Third, no two columns can be the exact negative of one another.

Why these conditions?

Obviously, if two columns are identical, the corresponding coins will give
rise to the same set of outcomes, if either one is bad. And if one is the nega-
tive of the other, one coin being heavy gives rise to the same set of outcomes
as the other being light. So these conditions are necessary for a successful
weighing scheme. In other words, each pigeonhole can contain at most one
pigeon.

Actually, these conditions are sufficient as well. For, if a matrix obeys
these conditions, any particular outcome can be the same as at most one col-
umn or the negative of at most one column, and not both. So every outcome
can correspond to only one bad coin.

5



0.4 Construction procedure for a solution

Now we turn to the problem of actually constructing a good weighing scheme
of this predetermined, (or non-adaptive) kind.

We will do so by induction. We will start with the simple one weighing
scheme, make three copies of it, putting 1’s under the first copy, -1’s un-
der the next copy, and 0’s under the third. What we get will not be the
two weighing scheme we seek, but will be easily changeable into a good two
weighing scheme.

So what do we get?

Here it is:

g1 1 2 g2 3 4 g3 5 6
1 −1 0 1 −1 0 1 −1 0
1 1 1 −1 −1 −1 0 0 0

(2)

And what is wrong with this scheme?

First it has three good coins instead of 1. We must therefore get rid of
two of them, say g2 and g3. Actually we can get rid of either g2 or 3 and
either g3 or 5; that is we can switch the names of g2 and 3 or the names of
g3 and 5 and get rid of the new g2 and g3, if we want. Who cares which we do?

Second there is a pair of columns that are the oppostite of one another.
These are columns 2 and 4. So to get a good scheme we must get rid of one
of these two columns as well.

In short, the two row scheme above has three pairs of columns that are
opposites of one another. (not counting the g1 column.) These are :

1 −1 1 −1 0 0
−1 1 0 0 1 −1

(3)

The scheme does have 0 row sums, so to make it into a good scheme we
must eliminate one column from each of these pairs, and what we eliminate

6



must also have 0 row sums.

Can we do it?

Yes we can. Take the first fourth and fifth of these, (or the other three)
and throw them away. The resulting scheme will be a good one. And here
it is: (with the first, fourth, and fifth in the three pairs above gone, and the
coin names changed:

g 1 2 3 4 5
1 −1 −1 0 1 0
1 1 −1 −1 0 0

(4)

The nice thing about the procedure we used to go from one row to two
works identically to go from two rows to three and three to four and so on.

How come?

The procedure is: take three copies of this scheme, add 1’s , -1’s and 0’s
under them, keep g1 but find the pairs of other columns that are negatives of
one anothter; two of these will be pairs including the second and third copies
of the good coin. The third will come from the all 0’s column with 1 and -1
beneath it.

Why no others?

Because any two other columns can be opposite one another (or identi-
cal) only if their tops (without the last row) are opposite one another (or
identical) and this happens only with good coins, or with the coin that never
goes on the scale; which is the negative of itself.

And how do we eliminate one from each of the three ± pairs?

Exactly as in the one row to two row case; Let us do it explicitly to go
from two to three rows.

Here are the bad pairs

7



1 −1 1 −1 0 0
1 −1 1 −1 0 0
−1 1 0 0 1 −1

(5)

We can get rid of the first fourth and fifth of these again, and get a good
scheme.

And the same thing works every time; the only difference is that the
length of the columns increases. All entries except the last are always the
same within each column, so the column length is of no relevance to the
procedure.

And how good is the scheme we get? It meets our bound!

That is, the number of columns for k rows, call it s(k), obeys s(k) =
3s(k−1)−1. Which is exactly the recursion of the bound (Why 3s(k−1)−1?
Well we triple our columns and get rid of three, two of which correspond to
duplicates of the good coin; thus the number of risky coins triples minus one.)

The actual formula for the maximum number of coins in k weighings is
((3k) + 1)/2, which obviously obeys the same recursion.

And what happens if we have no good coin?

Then we can throw away the good column and its negative and we have
a scheme for ((3k)− 1)/2 at risk coins.

And if as well, we want to know whether the bad coin is heavy or light?
Then we cannot have an all-0 column which reduces us to (3k)/2− 3/2 coins
in our scheme.

Suppose we want a good scheme for (3k)/2− 5/2 coins?

That is a good question. Figure out such a scheme for homework!

8


