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Unfortunately, the OCW notes on Kuratowski’s theorem seem to have
several things substantially wrong with the proof, and the notes from Prof.
Kleitman’s website are too vague to be able to deduce the proof from them.
I’m just going to type in the OCW notes, changing things to make the proofs
correct.

We can, given a graph, attempt to draw it on a piece of paper, repre-
senting its vertices by points and its edges by either straight lines or nice
curves. We then define a graph G to be planar if it can be so drawn without
any of the curves or lines that represent its edges crossing one another or
meeting a third vertex on the way from one vertex to the other. Note that
there might be many ways to draw the graph such that its edges cross, but
as long as there is some way to draw it such that no edges cross, then it is
planar. For example, looking at the graph in the figure below, you may not
think that it is planar because two of its edges cross. However, the same
graph can be drawn in a different way such that no edges cross and we see
that it is in fact planar.

One obvious question is whether we need to use curves for planar graphs,
or whether all planar graphs can be drawn with straight line segments. It
turns out that any planar graph can be drawn in the plane with straight line
segments for its edges. For example, the graph above can be drawn with
straight lines as follows.

We will define the degree of a vertex to be the number of edges that
contain it as an endpoint.
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It will be useful later to have a notion of adding a vertex in the middle

of an edge. Adding a vertex in the middle of an edge means replacing an
edge (a, b) by two new edges (a, c) and (c, b).

a a

bb
c

We will say that a subdivision of G is any graph that is obtainable by
adding repeatedly adding vertices in the middle of edges of G. (For the
sake of completeness, we will consider G to be a subdivision of itself). For
example, the following figure is a subdivision of the graph above.

Note that this definition is different from the way Prof. Kleitman defined
subdivision in the OCW notes. What he calls a subdivision is generally
called a minor, and what I call a subdivision is generally called a subdivi-
sion.1 Kuratowski’s theorem is true for both minors and for subdivisions.

Another obvious question is: is there a convenient way to characterize
planar graphs? Indeed there is. Before discussing and proving it we make
some remarks, which we will prove.

1. There are two fairly small graphs which are not planar, K5 and K3,3.

2. We can add vertices in the middle of any of these two graphs as we
like, and that will not help to make them planar. Adding a vertex in
the middle of an edge here means replacing an edge (a, b) by two new
edges (a, c) and (c, b).

3. Every graph which contains as a subgraph either K5 or K3,3 or a graph
obtained from these by adding vertices in the middle of edges cannot
be planar.

1Actually, when Prof. Kleitman says graph G is a subdivision of H, the accepted ter-

minology is that H is a minor of G. A minor of G is a graph that can be obtained from G

by deleting and contracting edges; here contracting means deleting the edge and merging

its two endpoints into a single vertex.
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This means that if we can obtain one of the graphs K5 or a K3,3 from
G by deleting (throwing away) some edges, and replacing long paths in the
resulting graph by single edges, than G is not planar.

K K 3,35

We will now prove these statements. The first follows from this remark.
If we take any drawing of either K5 (or more generally K2j+1) or K3,3 (or
more generally K2k+1,2j+1) in the plane) the number of crossings between
edges whose vertex sets are disjoint2 has the same value mod 2 in each
drawing (we count a point of tangency between two edges as either 2 or 0
crossings).

It follows immediately from this statement that if we can find a draw-
ing of either K5 or K3,3 with an odd number of crossings between edges
whose vertex sets are disjoint, it cannot be drawn with any even number of
crossings, including zero.

So let us prove the statement.
We start with two drawings of the same graph, with vertex sets the same

for each. We will take each edge of the first one at a time and slowly and
continuously move it until it reaches the position of the same edge in he
second drawings. When we are done, the two drawings will be identical, so
they will have the same number of crossings.

To prove the result we notice that the number of crossings of the moved
edge with any other edge having different endpoints can only change by an
even number.

How could it change?
If the edge m being moved does not either become tangent to another

edge q or cross over one of the endpoints of another edge, the number of
crossings between m and q will not change in any way. The crossings, if any,
will merely slide along q.

When m and q become tangent and then cross, or become tangent and
uncross, the number of crossings between m and q will change by 2.

2The reason we have to count crossings with disjoint endpoints is because if two edges

share an endpoint, then we could make them cross each other an arbitrary number of

times if we wanted to. If we are using straight-line drawings, these edges never cross at

all.
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When m crosses over an endpoint v, the number of crossings of m with
every edge containing v changes by 1, either up or down.

In the case of K2j+1, since every vertex shares an edge with every other
vertex, two of these crossings will involve edges that share endpoints with
the two ends of m. The number of crossings not counting these two (since
these edges do not have disjoint vertex sets) will therefore change by an
even number when m passes over v (since the vertices of K2j+1 have even
degree), which is 0 mod 2.

v v
m

m

We conclude that the number of crossings in either case can never change
mod 2 as the first drawing is transformed into the second one. Thus, the
number of crossings mod 2 must have been the same to begin with, which
is what we sent out to prove Q.E.D.

We turn then to the question posed above of how to characterize planar
graphs. It turns out that there is a very nice theorem, called Kuratowski’s
Theorem, which tells us exactly when a graph is non-planar

A graph is planar if it does not contain a subgraph that is a subdivision

of K5 or K3,3.

This theorem tells us that the absence of these two configurations and
their subdivisions, which we have seen are enough to ruin planarity, is enough
to ensure planarity.

We will now give a the proof of a special case of Kuratowski’s theorem,
as well as the outline of a complete proof. The special case is the case where
G has maximum degree 3. In this case, Kuratowski’s theorem says that G
must contain a subdivision of a K3,3, since K5 has vertices of degree 4, and
we can never obtain a degree 4 vertex by subdivision of a graph of maximum
degree 3.
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In the presentation of the proof, I will try to do two things at the same
time. We will start out presenting arguments that apply not only to max-
imum degree 3 graphs but also higher degree graphs. In fact Kuratowski’s
theorem in general can be proved by continuing this line of argument. How-
ever, the details seem to get pretty complicated, and at the point when they
start getting difficult, we’ll switch to talking about just the case of maximum
degree 3 graphs so you can understand how the proof goes without wading
through all the messy details. I’ll give some exercises at the end of these
notes which will show how to extend the proof to the general case.

Recall that we defined a cycle in a graph as a path whose endpoint is the
same as its starting point, but which does not repeat any vertex in between.
This is often called a simple cycle.

Recall that a chord of a cycle C in a graph G was an edge (not in C)
between two vertices of C.

Before we can go on, we need to define a bridge of a cycle C in a graph
G. A bridge is a maximal3 set of edges in G connected by vertices not in C.
In other words, it is a set of edges connected to each other by vertices not
on C, and connected to the rest of the graph G only by vertices of C. For
example, the graph pictured below has three bridges, two of them chords
(edges 2-4 and 5-7) and one of them having three edges (connecting 1,3, and
4). Every non-cycle edge is in a unique bridge.

G

2
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6

Our first observation is that it is enough to prove Kuratowski’s theorem
for graphs G with no vertices of degree 2. If a graph G has vertices of degree
2, we can remove all of these and merge their adjoining edges to obtain a

3Maximal means that it can’t be made any larger, not that it has the most edges of

any such set. This means any edge adjacent to a non-cycle vertex in a bridge must be in

the bridge.
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new graph G′ with no vertices of degree 2. G is non-planar if and only
if G′ is, and G has a K3,3 or K5 subdivision if and only if G′ does, so if
Kuratowski’s theorem holds for G′ it also holds for G.

Suppose that G is a minimal non-planar graph. This is a graph such that
if you remove one edge then it is planar (we can start with any non-planar
graph and remove edges until it is minimal in this sense).

Our next step is to shat that G contains a cycle C with at least two
bridges. One way to do this is to consider the longest cycle C in G. Suppose
that it has only one bridge. If this bridge were a chord, then G would be
planar, so it’s not a chord. Because G has no degree 2 vertices, this bridge
must connect all to the vertices in C. Since it’s not a chord, we can find
a longer cycle by taking a path that goes through the bridge (see figure).
By the definition of a bridge, all the edges in the bridge are connected via
non-cycle vertices, so we can find a longer cycle C′ by first going around the
cycle C, then going into the bridge from vk and coming out on v1.v1

vk

We will call the vertices connecting a bridge with our cycle C the feet of
this bridge.

We say that two bridges are “compatible” if they can both be drawn
inside C without edge crossings, and “incompatible” otherwise. For exam-
ple, in the figure below, the chordal bridges 2-4 and 5-7 are compatible,
and the non-chordal bridge 1-3-5-6-8 is incompatible with them both. Two
incompatible bridges cannot both be drawn inside (or outside) the cycle C
without crossing.
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We now need to prove that if we have a set of bridges of C, all pairs of
which are compatible, then all of these bridges can be drawn inside (or all
outside) the cycle C without any crossings. This can be proved formally by
induction, by showing that there is one bridge which is ”inside” all the other
bridges; i.e., all the other bridges are on the same side of it.

We next define a bridge graph. Its vertices are the bridges, and there
is an edge connnecting any pair of bridges that are incompatible. For an
example, both the graph G and its bridge graph are shown in the figure
above.

If we take a pair of incompatible bridges, we can draw one of them inside
the cycle and the other outside the cycle without any crossings. If we could
do this for every pair of incompatible bridges, then we could draw G with
no crossings and it would be planar. This means that if there was a way
of dividing the bridge graph into two groups of vertices so that there is no
edge between any of the vertices of a group, then G is planar. The graph in
the previous figure is shown drawn as a planar graph here, by moving the
two bridges 1-3 and 3-5 outside the cycle.

G
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We thus have that if G is non-planar, the bridge graph is not bipartite.
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We saw earlier that if a graph is not bipartite, then it contains an odd
cycle. In fact, it contains a chordless odd cycle. This means that the bridge
graph of G must contain a chordless odd cycle.4 Thus, we can prove Kura-
towski’s theorem if we can show that any chordless odd cycle in the bridge
graph requires a configuration in G that is obtained by subdividing edges
from K5 or K3,3.

At this point, to make things easier, let’s restrict all vertices of G to have
degree 3. For this case, we are able to show that we can assume that all
bridges of our cycle C must be chords.

Let’s show this now. We’ll concentrate on one bridge that is not a chord,
that we’ll call Bi, and show that if it is not a chord, then we can replace it
by a chord between two of its feet and still have a non-planar graph. There
are two cases. First, we’ll assume that the chordless odd cycle in our bridge
graph is not a triangle. Then, because the bridge graph was an odd cycle,
there are exactly two bridges that are incompatible with Bi. Call them Bi−1

and Bi+1. Because they are compatible, and because G has degree three,
they must look something like the following figure. Specifically, the feet of
Bi−1 are between two vertices v1 and v2, and the feet of Bi+1 are between
two vertices v3 and v4, where v1, v2, v3 and v4 appear in that order on the
cycle C5.

G

B

B

i−1

i+1

v4

v1

v

v3

2

Now, for Bi to be incompatible with both bridges Bi−1 and Bi+1, it must
have at least one foot between v1 and v2 in the above figure, and at least
one other between v3 and v4. But then, if we replace Bi by the chord that
joins these two feet, we get a subgraph of G which is also non-planar because
the bridge graph is also an odd cycle, so G couldn’t have been minimal, a
contradiction.

4At this point, there are two cycles around, the cycle C of G, and the chordless odd

cycle in our bridge graph. Try not to confuse them.
5In the degree > 3 case, we may have v2 = v3 and v4 = v1.
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The other case is when the bridge graph is a triangle. In this case, the
two bridges Bi−1 and Bi+1 must now be incompatible. Again, although it’s a
little tricker, it is possible to show that we can replace Bi by a chord joining
two of its feet to find a subgraph of G which is also non-planar. (Exercise
1.) We thus have that all bridges of G are chords.

But we’re nearly done now. If we know that a degree 3 graph G has a
bridge graph that is an odd chordless j-cycle, and bridges which are chords,
there is only one such graph G. (I’ll let you work this out for yourself why
this is true.) I’ve drawn the cases for j = 3, 5, 7 below. Now all we have to
do is show that each of these graphs G contains a K3,3. For the case where
j = 3, this graph is itself a K3,3. In the other two cases, I’ve highlighted
the K3,3 by labelling the points 1 or 2, depending on whether they’re in the
first or second set of vertices, and made the paths connecting them dashed,
thicker, and a different color.
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So now we’ve proved Kuratowski’s theorem for graphs of maximum de-
gree 3. What do we do for graphs of degree 4 or higher? If the chordless
odd cycle has length five or more, the proof above that all the bridges are
chords still works just fine. In this case, it is no longer true that we have just
one graph corresponding to a j-cycle of the bridge; we now have a choice
in constructing the graph. Namely, bridge i can either share a vertex with
bridge i + 2 or not. We then discover that G looks something like one of
the graphs below, and we have to show how to find a K3,3 or a K5 in any
of these graphs. This is not too hard, and is an exercise below.

In the higher degree case, if the bridge graph is an odd cycle has length
three, i.e. a triangle, things get tricky. We now have lots of graphs G where
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you can’t find a non-planar subgraph by replacing a bridge with a chord
across two of its feet. Some of these are shown below. One thing that’s
fairly easy to show is that no bridge needs to have more than four feet
(otherwise we could replace it with a smaller bridge connecting just some
of its feet, and still keept it incompatible with the other two bridges). This
observation reduces the proof to a finite number of cases, but the details are
still quite tedious.

Is there a better way to organize these details? The best way I know of
for dealing with this case is to use the fact that we can assume that C is the
longest cycle in the graph. This means that for any bridge, there is a vertex
on the cycle C between every pair of its feet. I’ll let you work out the rest
of this part of the proof (see exercises).

Exercise 1: Show that if G has degree 3, and the bridge graph is a triangle,
then any non-chordal bridge can be replaced by a chord between two of its
feet to get a new non-planar graph.

Doing the next five exercises will let you prove Kuratowski’s theorem for
the case where G has degree greater than 3. None of these exercises is very
hard. Note that here, two bridges can have a foot at the same vertex.

Exercise 2: Show that any graph which has just chordal bridges, and where
the bridge graph is an odd cycle of length ≥ 5, has a subgraph which is a
subdivision of K3,3 or K5.

Exercise 3: Suppose we have a graph with three bridges B1, B2, and B3,
and the bridge graph is a triangle. Show that if B1 has two feet which are
adjacent on the cycle then there is a longer cycle in G.

Exercise 4: Suppose we have a graph with three bridges B1, B2, and B3,
and the bridge graph is a triangle. Show that if both B2 and B3 have a
foot (these could be at the same vertex) between two adjacent feet of B1

(adjacent around the cycle), then B1 can be replaced by a chord between
two of its feet to obtain a non-planar graph.

Exercise 5: Suppose we have a graph with at three bridges B1, B2, and B3,
and the bridge graph is a triangle. Show that if the cycle has four adjacent
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vertices belonging to two bridges B1, B2, B1, B2, in that order, then graph
G contains a longer cycle. (It doesn’t matter if some of these vertices could
also belong to B3.)

Exercise 6: Suppose we have a graph with three bridges B1, B2, and B3,
the bridge graph is a triangle, and B1 is not a chord. Show that if G is a
minimal non-planar graph with no degree 2 vertices, and C is the longest
cycle of G then exercises 3, 4, 5 imply that there is exactly one vertex on
the cycle between any adjacent two feet of B1, that B2 and B3 are chords,
and that the feet must alternate as follows:

B1, B2, B1, B3, B1, B2, B1, B3.

Dealing with this last case is easy: do it.
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