
Generating Function Notes
18.310, Fall 2005, Prof. Peter Shor

1 Counting Change

In this lecture, I’m going to talk about generating functions. We’ve already seen
an example of generating functions. Recall when we had n independent random
variables, each of which was 0 with probability p, and 1 with probability q = 1− p.
How did we compute the probability of getting exactly k 1’s. What we did was look
at the polynomial

(p + qx)n =

(

n

0

)

pn +

(

n

1

)

pn−1qx +

(

n

2

)

pn−2q2x2 + . . . +

(

n

n

)

qnxn

The coefficient of xk was the probability of getting k 1’s. This is a simple generating
function, and we will generalize this construction in today’s lecture. There are a lot
more things you can do with generating functions that aren’t going to be covered
in today’s lecture, but it will give you a flavor of how these work. It will also show
you how to solve linear recurrence equations, which can be very useful.

Let’s look at a related question. Suppose we have 4 pennies, 1 nickel, and 1
dime. For which prices can we give exact change? The answer can be found in
a way that’s a lot like the probability computation above (in fact, you may have
figured out the answer already, but this is an easy example to show you how these
generating functions work).

We’ll introduce a variable x so that xn will correspond to the ways of making n
cents in change. We can either use 0, 1, 2, 3, or 4 pennies, and 0 or 1 nickels, and
0 or 1 dimes. Thus,

(1 + x10)(1 + x5)(1 + x + x2 + x3 + x4)

is the generating function which gives the answer. If we use the dime, we use the
x10 monomial in the first term. Otherwise, we use the x0 = 1 monomial, and so
forth. Multiplying this out, we get

(1 + x10)(1 + x5)(1 + x + x2 + x3 + x4) = 1 + x + x2 + x3 + . . . + x19,

showing that we can obtain any number of cents between 0 and 19.
A little thought will convince you that the coefficient on the xk term gives the

number of different ways of finding coins that add up to k cents. We can thus use
the same technique to answer a question such as: How many ways can you make
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21 cents exact change if you have two dimes, three nickels, and seven pennies? For
this problem, the generating function is

(1 + x10 + x20)(1 + x5 + x10 + x15)(1 + x + x2 + x3 + x4 + x5 + x6 + x7).

The first term is the contribution from the dimes, the second term from the nickels,
and the third from the pennies. The coefficient on the x21 term gives you the
number of way of making 21 cents exact change. This coefficient is 4, and the terms
correspond to coins as follows

x20 · 1 · x two dimes and one penny
x10 · x10 · x one dime, two nickels and one penny
x10 · x5 · x6 one dime, one nickel and six pennies
1 · x15 · x6 three nickels and six pennies

What happens if you have an arbitrary number of dimes, nickels, and pennies?
Now, we want to multiply by (for the dimes)

1 + x10 + x20 + x30 + x40 + x50 + . . .

where we can have any non-negative integer for the number of dimes. But this
infinite series above is just 1/(1 − x10), and it converges as long as |x| < 1. Thus,
the generating function that corresponds to making change using any number of
dimes, nickels, and pennies, would be

1

(1 − x)(1 − x5)(1 − x10)
.

The corresponding power series converges if |x| ≤ 1. The essential ingredient we
need to know in terms of using it is that it converges in some neighborhood around
the x = 0. Power series that don’t necessarily converge anywhere are called formal

power series; these can still be useful for some purposes, but we won’t discuss them
any further in this class.

Let’s do one more thing with change before we move on. Suppose we are paying
with dollar bills and dollar coins. If we count these two forms of money as different,
we can make n dollars in n + 1 different ways: we can use k coins and n − k bills
for any value of k between 0 and n. This corresponds to the identity

1

(1 − x100)2
= 1 + 2x100 + 3x200 + 4x300 + . . .
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2 Dots and Dashes

Now, let’s think about another problem. Suppose that you are sending information
using a sequence of two symbols, say dots and dashes, and suppose that the dash is
two times as long as a dot1. How many different messages can you send in n time
units? Let’s call this number fn. We’ll figure fn out for the first few n. We have

n 1 2 3 4 5
fn 1 2 3 5 8
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. .
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.. .

...
.

.
.

You may already recognize the pattern: these are Fibonacci numbers. But let’s see
what we can find out about Fibonacci numbers using generating functions. The
recursion for the Fibonacci numbers is

fn = fn−1 + fn−2

It’s not too difficult to see see why this works. The last symbol must be either a
dot or a dash. If the last symbol is a dash, removing it leaves a sequence two units
shorter. If the last symbol is a dot, removing it leaves a sequence one unit shorter.
Now, how does this connect to generating functions? Let us define

g(x) =
∞
∑

j=0

fjx
j .

What is f0? It has to be 1, in order to have f2 = f1+f0. This makes sense intuitively:
there is one message, the empty message, using zero units of time (intuitively, setting
f0 = 0 also makes sense, but it doesn’t satisfy the recurrence). What does this
recurrence say about g(x)? Let’s look at the following equations

g(x) = 1 + x + 2x2 + 3x3 + 5x4 + 8x5 + 13x6

xg(x) = x + x2 + 2x3 + 3x4 + 5x5 + 8x6

x2g(x) = x2 + x3 + 2x4 + 3x5 + 5x6

We can see that by multiplying by x and x2 we have shifted the terms so that
instead of terms fkx

k, we get terms fk−1x
k and fk−2x

k. We thus get that the

1Real Morse code is a bit more complicated.
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equation fk = fk−1+fk−2 seems to correspond to the (slightly incorrect) equation
g(x) = xg(x) + x2g(x). Is this the right equation for our generating function g(x)?
It isn’t quite right. All the terms xk for k > 0 do cancel in this equation, but it
doesn’t work for the constant term. To make the constant term correct, we need to
add 1 to the right side, obtaining the correct equation

g(x) = xg(x) + x2g(x) + 1.

Now, this can be rewritten as

g(x) =
1

1 − x − x2
.

When we have a polynomial in the denominator of a fraction like this, we can factor
the polynomial and express it as the sum of two simpler fractions. That is, we first
factor the denominator

1 − x − x2 =

(

1 −
(1 +

√
5

2

)

x

)(

1 −
(1 −

√
5

2

)

x

)

,

We now use the method of partial fractions to rewrite this as

g(x) =
a

1 − (1+
√

5
2 )x

+
b

1 − (1−
√

5
2 )x

.

Some of you may have seen the method of partial fractions before in calculus when
you learned integration. We need to find a and b. Elementary algebra gives

a =
1√
5

(

1 +
√

5

2

)

b = − 1√
5

(

1 −
√

5

2

)

.

Now, we need to remember what the Taylor series for 1/(1 − αx) is. It is

1

1 − αx
= 1 + αx + α2x2 + α3x3 + α4x4 + . . .

Even those of you who haven’t seen Taylor expansions should recognize this as the
formula for summing a geometric series.
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We thus have that, expanding each of the fractions in the expression for g(x)
above by a Taylor series,

g(x) = a

(

1 +
(

1+
√

5
2

)

+
(

1+
√

5
2

)2
x2 +

(

1+
√

5
2

)3
x3 + . . .

)

+b

(

1 +
(

1−
√

5
2

)

+
(

1−
√

5
2

)2
x2 +

(

1−
√

5
2

)3
x3 + . . .

)

=
1√
5

(

(

1+
√

5
2

)

+
(

1+
√

5
2

)2
x +

(

1+
√

5
2

)3
x2 +

(

1+
√

5
2

)4
x3 + . . .

)

− 1√
5

(

(

1−
√

5
2

)

+
(

1−
√

5
2

)2
x +

(

1−
√

5
2

)3
x2 +

(

1−
√

5
2

)4
x3 + . . .

)

.

Now, this gives us a nice expression for fn, the nth Fibonacci number. We equate
the coefficients of xn on the left- and right-hand sides of this equation. Since the
nth Fibonacci number fn is the coefficient on xn in g(x), we get

fn =
1√
5

(

(

1+
√

5
2

)n+1
− (1−

√
5

2

)n+1
)

.

Now, since
∣

∣

∣

1−
√

5
2

∣

∣

∣ < 1, we can see that the second term above is neglible, and fn

grows as

C
(

1+
√

5
2

)n

for some C. (And in fact, it’s really easy to figure out C from this formula.) This
means that we have found the asymptotic growth rate for the number of messages
that can be encoded by our dots and dashes, and that number of bits sent per time
unit is

log2

1 +
√

5

2
.

Now let’s generalize this. I’m going to give you a general method for solving
linear recurrence equations (also called linear difference equations). If you’ve taken
18.03, you’ll notice that this method looks a lot like the method for solving linear
differential equations, and in general, it turns out that recurrence equations often
behave a lot like differential equations.

Suppose we have a recurrence equation

fn = αfn−1 + βfn−2 + γfn−3

I’m only writing this equation down with three terms, but the generalization to k
terms is obvious, and works just like you’d expect. How do we solve this? What we
do is we write down the generating function

g(x) =
∞
∑

j=0

fjx
j .
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We then, using the same reasoning we had before, get an equation for g(x) of the
following form:

g(x) = αxg(x) + βx2g(x) + γx3g(x) + p(x)

where p(x) is a low-degree polynomial that makes this equation work for the first
few elements of the sequence, where the recurrence equation doesn’t work (because
we don’t have a f−1 term). For the Fibonacci number example above, we have
p(x) = 1. Note that if we don’t have a p(x) term, we get the solution g(x) = 0
which, while its coefficients (all 0’s) satisfy the linear recurrence equation, doesn’t
tell us much useful.

We then obtain, as before

g(x) =
p(x)

1 − αx − βx2 − γx3

Let’s suppose we can factor the denominator as follows:

1 − αx − βx2 − γx3 = (1 − r1x)(1 − r2x)(1 − r3x).

We then use the method of partial fractions (which you may remember from Cal-
culus) to get

g(x) = q(x) +
a

1 − r1x
+

b

1 − r2x
+

c

1 − r3x

where a, b and c are constants, as before, and where q(x) is a low degree polynomial
that takes care of any anomolies in the first few terms of the sequence (there usually
won’t be any, so q(x) usually will be 0). We can then see, by taking a Taylor
expansion for this generating function, that a generic term of our sequence will be

fn = arn
1 + brn

2 + crn
3 .

How did we get the roots r1, r2 and r3? They are the zeros of the polynomial

y3 − αy2 − βy − γ.

We can see this by taking y = 1
x , so

1 − αx − βx2 − γx3 = x3(y3 − αy2 − βy − γ)

= x3(y − r1)(y − r2)(y − r3)

= (1 − r1x)(1 − r2x)(1 − r3x)

What happens if we have a double root? I went over this in class, but I’m
going to be lazy and not type it up. This case would make a good homework
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problem when I teach the class again in the future. You probably did the case of
a double root when you took calculus and learned the partial fractions method for
integrating fractions with polynomials. If you remember what happened there, or if
you remember what happens when you have a double root in differential equations,
you can figure out what happens here. When you get r as a double root, you get a
term with

(αn + β)rn,

in the expression for fn, and if r appears as a k-fold root, you get a term p(n)rn

where p(n) is a polynomial of degree at most k − 1.

3 A Chord Sequence

Let’s count something harder now. (This is the start of Monday’s lecture). Let’s
count how many ways there are of putting chords in a k-gon to divide it into
triangles. We’ll call this number Ck−2. This sequence starts as follows:

k 3 4 5 6 7
j = k − 2 1 2 3 4 5

Cj 1 2 5 14 42

as you can see from the following figure. Here I’ve illustrated one of each essentially
way of dividing a k-gon into triangles, along with the number of times it must be
counted (because of symmetry), for k ≤ 7.

6x 2x6x

7x 7x 14x 14x

5x

How can we find a recurrence for this number? Well, for a k-gon, let’s look at
the triangle through the edge (k, 1). There must be a third point in this triangle.
Let’s call it j. Clearly, we must have 2 ≤ j ≤ k − 1. If we remove this triangle, we
now have two smaller polygons, a j-sided one, and a (k − j + 1)-sided one. We now
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can divide these polygons up into triangles independently. (We need another figure
here.) We thus get that the number of ways of triangulating a k-gon, given that we
have a triangle with vertices 1, j, k, is Cj−2Ck−j−1.

One thing we notice is that for this to be true for j = 2 or j = k − 1, we have
to set C0 = 1. This takes care of the case where j is 2 or k − 1, and one of the two
smaller polygons isn’t really there (or is just an edge).

Now, we can get a recurrence. Summing over all the j between 2 and k − 1

Ck−2 =
k−1
∑

j=2

Cj−2Ck−j−1

This formula can use some rethinking of the limits. Let’s let k ′ = k−2 and j ′ = j−2.
We get

Ck′ =
k′−1
∑

j′=0

Cj′Ck′−j′−1

which is a nicer-looking recurrence relation.
The next question is how we evaluate it using generating functions. Let’s look

at the generating function for counting these triangulations That is,

g(x) =
∞
∑

i=0

Cixi = 1 + x + 2x2 + 5x3 + 14x4 + . . .

What happens when we square g(x). We get

g(x)2 = 1 + (1 + 1)x + (1 · 2 + 1 · 1 + 2 · 1)x2 + (1 · 5 + 2 · 1 + 1 · 2 + 1 · 5)x3 + . . .

=
∑

k

xk
k
∑

j=0

CjCk−j

You can see that the xk term in the expression on the right is the right-hand-side
of the recurrence relation we found above for C ′

k (with k = k′ − 1), so we get

g(x)2 =
∞
∑

k=0

Ck+1x
k.

Multiplying this by x gives a sum with the xj coefficient equal to Cjx
j . So we

now have a expression relating xg(x)2 and g(x). We need to make sure we get the
smallest terms right. We can check the the constant term is the only one that’s
wrong, and we can fix that by adding 1 to xg(x)2, to get the equation

g(x) = 1 + xg(x)2
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Now, this is a quadratic equation in g(x), so we can use the quadratic formula to
solve for it, and we obtain

g(x) =
1 ±

√
1 − 4x

2x
.

Well, we now have a choice here. Which of the two roots of this equation should we
use? We can figure that out by looking at the first term. We should have g(0) = 1.
Depending on which root we choose, we either get g(0) = 2/0 or g(0) = 0/0. Using
l’Hopital’s rule, or expanding the power series, we can figure out that in the second
case, we indeed have g(0) = 1, so we get

g(x) =
1 −

√
1 − 4x

2x

What is this number? Well, to figure that out, we have to expand g(x) in a power
series. We can use the expansion

(1−y)1/2 = 1−1
2y + (1)(−1)

22

y2

2! −
(1)(−1)(−3)

23

y3

3! + (1)(−1)(−3)(−5)
24

y4

4! −
(1)(−1)(−3)(−5)(−7)

25

y5

5! + . . .

Substituting y = 4x, this gives

g(x) =
1 −

√
1 − 4x

2x
=

∞
∑

k=1

1

2x

1

2k
(2k − 3)(2k − 5)(2k − 7) . . . 1

(4x)k

k!

where by (2k−3)(2k−5)(2k−7) . . . 1 we mean the product of odd numbers between
1 and 2k − 3, and 1 if k = 1. All the − signs cancel out, as they should: since we’re
counting things, we have to get a positive integer.

How do we simplify this expression? Let’s equate coefficients on the left-hand-
and right-hand-sides of this equation. The coefficient of xj on the left-hand-side is
Cj . On the right hand side, we have xk−1, so we need to take k = j + 1. Equating
coefficients, we get We get that

Cj =
1

2

1

2j+1

(2j − 1)(2j − 3) . . . 1

j + 1!
4j+1

=
1

j + 1

(2j − 1)(2j − 3) . . . 1

j!
2j

We can now multiply the top and bottom of the above expression by j! and simplify,
to get

Cj =
1

j + 1

(2j)!

(j!)2
=

1

j + 1

(

2j

j

)

Here, we grouped the j! in the numerator with the 2j and the product of odd
numbers to get (2j)!. This is the j’th Catalan number (in class, I forgot to divide
by x, and told you the wrong result, that it was the j − 1’th Catalan number).
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The Catalan numbers turn up in quite a few places. Prof. Richard Stanley has a
section in his enumerative combinatorics book (this section is also on his web page)
giving 66 combinatorial interpretations of the Catalan numbers.

4 Ups and Downs

The last example we will do is counting the number of alternating permutations.
These are permutations that alternate up steps with down steps. For example, the
permutation 3,6,1,8,4,7,2,5 is one, since

3 < 6 > 1 < 8 > 4 < 7 > 2 < 5

Let An be the number of such permutations on the letters 1, 2, . . . , n that start with
an up step. It’s an easy observation that if we know the number that start with
an up step, we also know the number that start with a down step, because these
numbers are equal by symmetry. If n > 1, it’s also half the total number, since each
alternating permutation (except when n = 1) either starts by going up or going
down.

How many such permutations are there? We’ll go through this example a little
more quickly than the last ones, since hopefully you are getting used to this kind
of reasoning by now. We can easily count the first few terms of the sequence. This
is a good idea in any case in working out this type of problem. You might notice
a pattern in these numbers. Even if you don’t, in working out the small cases you
might get an idea of how to find a recurrence. And in any case, you can use these
numbers to check your final results. We have

k 0 1 2 3 4 5
Ak 1 1 1 2 5 16

We need to find a recurrence on the number of permutations. This means that we
somehow need to build each such permutation out of smaller ones. How can we do
this?

It’s not completely obvious how to find this recurrence. Here’s how we do
it. What we will do is remove the largest number in the permutation, which will
break it into two pieces (one of these pieces may have length 0). Each of these
pieces will alternate up and down steps, starting with up. And the first piece will
always have odd length, since it has to start with an up step and end with a down
step. In our example above, we remove the 8 and get the two sequences 3,6,1 and
4,7,2,5. These aren’t examples of alternating permutations, since they aren’t on the
numbers 1, 2, . . . , k for any k. However, we can map each of these to a permutation
on 1, 2, . . . , k while preserving the relative order of these numbers. For our example
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above, these smaller permutations (counted A3 and A4 respectively) would be 2,3,1
and 2,4,1,3.

Now, however, we’ve lost some information about how to construct the original
permutation. We need to know which numbers were on the right and which were
on the left. That is, we need to know which subset of 1, 2, 3, . . . , n − 1 was to the
left of n. In our example above, this subset was {1, 3, 6}. If we know this subset,
we can go back and figure out what our original sequence was.

Furthermore, we have found a one-to-one correspondence between, on the one
hand, alternating permutations of size n, and, on the other, a subset of some odd
size k of {1, 2, . . . , n− 1} together with a pair of alternating permutations of size k
and n − k − 1. This is because if we start with an subset of odd size, and such a
pair of alternating permutations, the reconstruction will always give us a length n
alternating permutation. This gives us the recurrence

An =

2bn/2c−1
∑

k=1

k odd

(

n − 1

k

)

AkAn−k−1

since
(n−1

k

)

is the number of subsets of size k.
We can get almost the same recurrence with even k, by removing the smallest

element, 1, instead of the largest. The second alternating permutation (the one to
the right of the 1) now starts going down instead of up, but this doesn’t matter for
our recurrence, as the same number start up and down. This gives the recurrence

An =

2b(n−1)/2c
∑

k=0

k even

(

n − 1

k

)

AkAn−k−1.

Adding these two equations together, we get the simpler recurrence

2An =
n−1
∑

k=0

(

n − 1

k

)

AkAn−k−1.

We now need to find a generating function. Our generating function will be

g(x) =
∞
∑

j=0

Aj
xj

j!
.

Note that we have stuck in a j! which we didn’t in our previous examples. This is
a pretty common thing to do in making generating functions. If you do it, what
you get is called an “exponential generating function,” and if you don’t do it, the
technical term for what you get is an “ordinary generating function.”
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Why did we choose an exponential generating function here? The first reason
is the this j! ensures that the generating function converges, whereas if we tried to
write down an ordinary generating function, the function Aj grows too fast for it
to converge. The second reason is that the j! combines with the

(n−1
k

)

term in the
recurrence very nicely so that they both nearly cancel. We’ll see that now.

If we let Bj = Aj/j!, our exponential generating function for Aj becomes an
ordinary generating function for Bj. We have, expanding the term

(n−1
k

)

in our
recurrence,

2An =
n−1
∑

k=0

(n − 1)!
Ak

k!

An−k−1

(n − k − 1)!
.

Now replacing Aj with Bj above, we get

2n!Bn =
n−1
∑

k=0

(n − 1)!BkBn−k−1, (1)

or simplifying,

2nBn =
n−1
∑

k=0

BkBn−k−1. (2)

We know how to handle the right side of this equation using generating functions.
We saw this expression when we were looking at the Catalan numbers. This is just
the xn−1 term of g(x)2. How do we get the left side? Let’s remember that

g(x) =
∑

j

Bjx
j .

Differentiating, we get
g′(x) =

∑

j

jBjx
j−1.

Thus, the left side of (4) above is the xn−1 term of g′(x). So we now have an
equation

2g′(x) = g(x)2 + ?

where I’ve left a ’?’ in the equation we haven’t chekced that the coefficients for
small powers of x are equal in this equation, so we may have to add some small
polynomial in x to fix any problems. In fact, this equation doesn’t work for the
constant term. This is because our recurrence doesn’t work for A0 (this is easy to
check).

It’s easy to calculate Bk. The sequence is

k 0 1 2 3 4 5
Bk 1 1 1

2
1
3

5
24

2
15
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and from these numbers, we can substitute into the differential equation and figure
out what the “?” has to be to get it to work. We find

2g′(x) = g(x)2 + 1

What’s the solution to this? I don’t know how to figure out the solution to this
differential equation by hand, but you can always type it into Maple or Mathematica.
If you use Maple, it tells you that the solutions are

g(x) = tan(
x

2
+ θ)

for some constant θ, and it’s easy to check that this works by differentiating. We
need to choose θ so that g(0) = 1. It’s easy to see that this means θ = π

4 , so we get

g(x) = tan

(

x

2
+

π

4

)

.

We can use trigonometric identitites to get the equivalent expression

g(x) = tan x + sec x

which is a more useful expression for looking at Ak. This is because tan is an odd
function, while sec is an even function, so the odd Ak come from the expansion of
tan x while the even ones come from the expansion of sec x. These are well-studied
power series, and the odd Ak are called tangent numbers while the even Ak are
called secant numbers.

The generating function for g(x) can tell us quite a bit about the asymptotic
growth rate of the numbers Ak, and I’ll get to putting that in these notes later.
That stuff isn’t urgent, since it won’t help you with the homework.
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