
Lempel-Ziv Notes
Prof. Peter Shor

We now explain the algorithm that Lempel and Ziv gave in a 1978 paper,
and generally called LZ78. This is opposed to LZ77, an earlier algorithm
which differed significantly in the implementation details but is based on the
same general idea. This idea is that if some text is not random, a substring
that you see once is more likely to appear again than substrings you haven’t
seen.

The LZ78 algorithm works by constructing a dictionary of substrings,
which we will call“phrases,” that have appeared in the text. The LZ78
algorithm constructs its dictionary on the fly, only going through the data
once. This is a great advantage in that you don’t have to receive the entire
document before starting to encode it. This might be a problem if, for
example, the first half of some document is in English and the second half
is in Chinese. In this case, the dictionary constructed for the first half will
be suboptimal when used on the second half.

There are many variations of Lempel Ziv around, but they all follow
the same basic idea. We’ll just concentrate on LZ78 because it is one of the
simplest to explain and analyze, although other variants may work somewhat
better in practice. The idea is to parse the sequence into distinct phrases.
The version we analyze does this greedily. Suppose, for example, we have
the string

AABABBBABAABABBBABBABB

We start with the shortest phrase on the left that we haven’t seen before.
This will always be a single letter, in this case A:

A|ABABBBABAABABBBABBABB

We now take the next phrase we haven’t seen. We’ve already seen A, so we
take AB:

A|AB|ABBBABAABABBBABBABB

The next phrase we haven’t seen is ABB, as we’ve already seen AB. Con-
tinuing, we get B after that:

A|AB|ABB|B|ABAABABBBABBABB

and you can check that the rest of the string parses into

A|AB|ABB|B|ABA|ABAB|BB|ABBA|BB

1

Because we’ve run out of letters, the last phrase on the end is a repeated
one. That’s O.K.

Now, how do we encode this? For each phrase we see, we stick it in
a dictionary. The next time we want to send it, we don’t send the entire
phrase, but just the number of this phrase. Consider the following table

1 2 3 4 5 6 7 8 9
A AB ABB B ABA ABAB BB ABBA BB

∅A 1B 2B ∅B 2A 5B 4B 3A 7

The first row gives the numbers of the phrase, the second row gives the
phrases, and the third row their encodings. That is, when we’re encoding
the ABAB (the sixth phrase), we encode it as 5B. This maps to ABAB
since the fifth phrase was ABA, and we add B to it. Here, the empty set ∅
should be considered as the 0’th phrase and encoded by 0. The last piece is
encoding this string into binary. This gives

001110100101001011100101100111

To see how this works, I’ve now inserted dividers and commas, to make it
more comprehensible)

0, 0|1, 1|10, 1|00, 1|010, 0|101, 1|100, 1|011, 0|0111

We have taken the third row of the previous array, expressed all the numbers
in binary (before the comma) and the letters in binary (after the comma)
Note that I’ve mapped A to 0 and B to 1. If you had a larger alphabet, you
would encode the letters by more than one bit. (In fact, you could even use
a Huffman code to encode the letters if you know the frequencies of your
letters.) Note also that as soon as a reference to a phrase might conceivably
involve k bits (starting with the 2k + 1 dictionary element), I’ve actually
used k bits, so the number of bits used before the comma keeps increasing.
This ensures that the decoding algorithm knows where to put the commas
and dividers.

To decode, the decoder needs to construct the same dictionary. To do
this, he first takes the binary string he receives, and inserts dividers and
commas. This is straightforward. The first two dividers each come after 2
bits. The next two each come after 3 bits. We then get 22 of length 4 bits,
23 of length 5 bits, 24 of length 6 bits, and in general 2k of length k + 2
bits. This is because when we encode our phrases, if we have r phrases in
our dictionary, we use dlog2 re bits to encode the number of the phrase to

2

ensure that the encodings of all phrases use the same number of bits. You
can see that in the example above, the first time we encode AB (phrase 2)
we encode it as 10, and the second time we encode it as 010. This is because
the first time, we had three phrases in our dictionary, and the second time
we had five.

The decoder then uses the same algorithm to construct the dictionary
as the encoder did. He knows phrases 1 through r − 1 when he is trying
to figure out what the rth phrase is, and this is exactly the information he
might need to reconstruct the dictionary.

You might notice that in this case, the compression algorithm actually
makes the sequence longer. This is the case for one of two reasons. Either
this original sequence was too random to be compressed much, or it was too
short for the asymptotic efficiency of Lempel-Ziv to start being noticeable.

How well have we encoded the string? Suppose we have broken it up
into c(n) phrases, where n is the length of the string. Each phrase is broken
up into a reference to a previous phrase and to a letter of our alphabet. The
previous phrase can be represented by at most dlog2 c(n)e bits, since there
are c(n) phrases, and the letter can be represented by at most dlog2 αe bits,
where α is the size of the alphabet (in the above example, it is 2). We have
thus used at most

c(n)(log2 c(n) + log2 α)

bits total in our encoding.
In practice, you don’t want to use too much memory for your dictionary.

Thus, most implementations of Lempel-Ziv type algorithms have some max-
imum size for the dictionary. When it gets full, they drop a little-used word
from the dictionary and replace it by the current word. This also helps the
algorithm adapt to messages with changing characteristics. You need to
use some deterministic algorithm for which word to drop, so that both the
sender and the receiver will drop the same word.

So how well does the Lempel-Ziv algorithm work? In this lecture, we will
calculate how well it works in the worst case, It actually also works well both
in the random case where each letter of the message is chosen uniformly and
independently from a probability distribution, as well as in the case where
the letters of the message are chosen with a more sophisticated random
process called a Markov chain (don’t worry if you don’t know what this is).
It also works well for a lot of data that occur in practice, although it is
not guaranteed to be asymptotically optimal for all types of sources. In all
three of these cases, the compression is asymptotically optimal. That is, in
the worst case, the length of the encoded string of bits is n + o(n). Since

3

there is no way to compress all length-n strings to fewer than n bits, this
can be counted as asymptotically optimal. In the second case, the source is
compressed to length

H(p1, p2, . . . , pα)n + o(n) = n

α∑

i=1

(−pi log2 pi) + o(n),

which is to first order the Shannon bound.
Let’s do the worst case analysis first. Suppose we are compressing a

binary alphabet. We ask the question: what is the maximum number of
distinct phrases that a string of length n can be parsed into. There are
some strings which are clearly worst case strings. These are the ones in
which the phrases are all possible strings of length at most k. For example,
for k = 1, one of these strings is

0|1

with length 2. For k = 2, one of them is

0|1|00|01|10|11

with length 10; and for k = 3, one of them is

0|1|00|01|10|11|000|001|010|011|100|101|110|111

with length 34. In general, the length of such a string is

nk =
k∑

j=1

j2j

since it contains 2j phrases of length j. It is easy to check that

nk = (k − 1)2k+1 + 2

by induction [This is an exercise.] If we let c(nk) be the number of distinct
phrases in this string of length nk, we get that

c(nk) =
k∑

i=1

2i = 2k+1 − 2

For nk, we thus have

c(nk) = 2k+1 − 2 ≤
(k − 1)2k+1

k − 1
≤

nk

k − 1

4

Now, for an arbitrary length n, we can write n = nk + ∆. To get the
case where c(n) is largest, the first nk bits can be parsed into c(nk) distinct
phrases, containing all phrases of length at most k, and the remaining ∆
bits can be parsed into into phrases of length k +1. This is clearly the most
distinct phrases a string of length n can be parsed into, so we have that for
a general string of length n, the number of phrases is at most total is

c(n) ≤
nk

k − 1
+

∆

k + 1
≤

nk + ∆

k − 1
=

n

k − 1
≤

n

log2 c(n) − 3

Now, we have that a general bit string is compressed to around c(n) log2 c(n)+
c(n) bits, and if we subsitute

c(n) ≤
n

log2 c(n) − 3

we get

c(n) log2 c(n) + c(n) ≤ n + 4c(n) = n + O(
n

log2 n
)

So asymptotically, we don’t use much more than n bits for compressing any
string of length n. This is good: it means that the Lempel-Ziv algorithm
doesn’t expand any string by very much. We can’t hope for anything more
from a general compression algorithm, as it is impossible to compress all
strings of length n into fewer than n bits. So if a lossless compression algo-
rithm compresses some strings to fewer than n bits, it will have to expand
other strings to more than n bits. [Lossless here means the uncompressed
string is exactly the original message.]

The Lempel-Ziv algorithm also works well for messages that are gener-
ated by the random process where each letter αi is generated independently
with some probability pi. We don’t have enough probability theory or time
to give the proof in this lecture, but maybe we will get to it later. A more
complicated version of the proof shows that the Lempel-Ziv algorithm also
works for messages that are generated by probabilistic processes with lim-
ited memory. This means that the probability of seeing a given letter may
depend on the previous letters generated, but this probability mainly de-
pends on letters that were generated recently. This kind of process seems
to reflect real-world sequences pretty well, at least in that the Lempel-Ziv
family of algorithms works very well on a lot of real-world sequences.

All the compression algorithms we’ve talked about so far are lossless
compression algorithms. This means that the reconstructed message is ex-
actly the same as the original message. For many real-world processes, lossy

5

compression algorithms are adequate, and these can often achieve much bet-
ter compression ratios than lossless algorithms. For example, if you want to
send video or music, it’s generally not worth it to retain distinctions which
are invisible or inaudible to our senses. Lossy compression thus gets much
more complicated, because in addition to the mathematics, you have to fig-
ure out what kinds of differences can be distinguished by human eyes or
ears, and then find an algorithm which ignores those kinds of differences,
but doesn’t lose significant differences. (And it may even be useful to have
compression algorithms that reduce the quality of the signal.)

6

