
28 Duality in Linear Programming 
 

As we have noted , a linear program is an optimization problem with linear 
constraints and a linear objective function. 

 
If there are n variables and m constraints (in addition to constraints that each of 

the variables must be non-negative), we can write such an optimization problem as 
 

SUMk Ajkxk  + sj  - bj = 0 for each j  
 
and each xk and sj  is non-negative for each j and k, and we are to maximize SUMk vkxk. 
 
 As we have also noted, the form of the equations here is one in which the sj 
variables are solved for in the sense that each appears with coefficient 1 in exactly one 
equation. This form is convenient for evaluating these s variables when all the x variables 
are set to 0, so we associate the origin in the x variables with this form for the 
equations . 
 
 We can similarly associate every vertex or intersection of n linearly independent 
constraints with a form of the equations that is solved for all the variables which are not 0 
at that vertex. 
 
 We saw that a vertex is a vertex of the allowed or feasible polytope if all the b 
parameters are non-negative, and that we can change the form of the equations to move 
the origin along an edge of that polytope by performing a pivot operation. This involves 
choosing one of the x variables, solving an appropriate equation for it, and using that 
equation to eliminate the given x variable from all equations and from the objective 
function. 
 
 If we write  –bj = Aj0 and ck = A0k, we find that the step of eliminating xK from all 
the equations but the J equation takes the form 
 
 Ajk  becomes Ajk – AjKAJk/AJK for all j and k from 0 to m or n, except for J and K. 
 
 This operation has an obvious symmetry between row and column, which 
suggests that there is some kind of transposed problem that we can define, which will 
transform in the same way under this kind of pivot operation. 
 
 The symmetry between row and column manifests itself in a second way as well: 
the condition for feasibility is that the Aj0 are negative, while the condition at a feasible 
vertex that the objective function is a minimum is that the A0k are negative. Thus the 
condition for the maximum feasible point is symmetric as well.  
  
 There is indeed such a transposed problem hich, if defined as follows, has 
important and very useful properties. It is called the dual to the original LP, which is 
often referred to as the primal problem. (Of course the dual of the dual is the primal 



again, so that the distinction between those is really about which problem we defined 
first.) 
 
 In the dual problem we define a second variable for each of the variables of the 
primal including the slack variables, here, a y variable for each s variable and a t 
variable for each x variable of the primal. 
 

We define the dual to obey the conditions: 
 
1. The dual equations transform under a pivot exactly as do the primal equations, 

so that the dual is uniquely determined by the primal equations, and does not depend on 
the form used to describe them 

2. The solution conditions for the dual are the same as those for the primal, so that 
a solution for one determines a solution for the other. 

3. Any feasible solution to the dual provides an upper bound to the primal 
solution, while any solution to the primal provides a lower bound to the dual solution. 

 
All this can be accomplished by writing the dual equations as 
 

SUMj yjAjk  - ck  - tk = 0, 
 
and requiring that the dual objective function, SUMj yj bj be minimized at the dual 
solution, whose feasibility requires that the ck  are negative. (We have to make the 
signs of the tk variables what they are here so that the solution will occur for ck negative, 
as it does in the primal problem. Minimizing here means that a solution corresponds to 
the bj non-negative, again what we need here.) 
 

Here the tk  are called dual slack variables, and the yj   are called dual variables. 
Again each are non-negative in the standard form for an LP. 
 
 With this form for the dual, not only do the equations transform in the same way 
under a pivot operation, but both the primal and the dual objective functions change 
by the same amount, by AJ0 A0K/AJK in each pivot. A JK pivot interchanges the roles 
of xK and sJ in the primal and of yJ and tK in the dual.  The resulting constant term in the 
objective function is therefore the same for the primal and dual problems at every vertex. 
 
 Notice that with these equations we can evaluate the double sum SUMj,k yjAjkxk in 
either order, and draw the conclusion, after rearranging the four resulting terms: 
 

SUMj yjbj  - SUMk ck xk = SUMj sj yj  + SUMk xk tk 
 
 The left hand side here is the difference between the dual objective function 
and the primal objective function. The right side is always positive if the variables 
represent feasible solutions to the primal and dual problems. 
 



 We can deduce from this  equation not only that any feasible dual point has dual 
objective function greater than the primal maximum, (and any primal feasible 
solution has objective function less than it) but at the solution point, where the bj are 
positive and the ck are negative for each problem, and the objective functions are the 
same for both, at least one of each pair of variables  (xk and tk, or yj and sj) must be 0, 
in order that the right hand side here be 0. 
 
 At this solution point the origin will not be the original origin since the x and s 
variables will be mixed up; but the solved for primal variables will be given by the bj at 
that point, and the rest will be 0; the solved for dual variables will be given by the -ck and 
the rest of those will be 0. 
 
 The dual problem is often written without the dual slack variables, just as the 
primal problem is often written without the sj. The dual inequalities then read: 
 

SUMj yj Ajk >= ck. 
   
 Of course at any feasible point for the primal problem other than the solution 
maximum itself, the dual problem willl not be feasible at the corresponding dual point, 
and vice versa.   
 
Exercise: The act of writing down explicit dual equations of a given LP is not 
complicated but it is quite unnatural to human beings, and you can expect to do it 
hesitantly and incorrectly the first three times you try to do it. Therefore please 
attempt to do it with random initial LP’s at least four times. 
 

 
2. Of What Use is the Dual? 

 
 The dual problem can be useful for solving LP’s either because your origin is 
feasible for it rather than for the primal, or because there are fewer variables in it, or it 
just looks nicer. 
 
 Also the bound that the dual gives on solutions to the primal are sometimes useful 
in themselves.  
 
 There are even methods for attacking problems which use both the primal and the 
dual problems alternately. 
 
 Finally, the duality theorem, that primal and dual objective functions are the same 
at solutions, provides sometimes useful information as to the nature of the problems you 
are dealing with. Often the duality theorem contains a not obvious statement about the 
nature of the problems under consideration. 
 
 For example, flow problems in networks can be described as lps as we shall see. 
The dual of a flow problem is equivalent to the problem of finding a minimum cut in the 



network. The statement that the amount of the maximum flow in a network is the size of 
a minimum cut, is an example of a non-trivial and useful duality statement. 
 

3. Network Flow: 
 
 There are a number of practical problems related to flow of commodities or fluids 
in networks, which can be phrased as linear programs. 
 
 A network is another name for a graph. Suppose one has a graph and in it a source 
vertex and a sink vertex. A substance can flow in this network from its source to its sink, 
along edges of the graph. You can  ask: how should this flow be routed in the network 
to maximize it and how much flow can be achieved in a given network? 
 
 There are typically two kinds of constraints in such a problem. There are 
limitations on how much flow can pass through each edge, and sometimes how much can 
pass through a vertex. Also there are conservation constraints at vertices other than the 
source and sink. These are all typically linear. 
 
 There are also variations in this problem in which there are several commodities 
with different sources and sinks. These can be modeled similarly as LPs. 
 
 For each directed edge e of the graph, let vfe be the vertex at its head and vte be 
the vertex at its tail. 
 
 (For convenience we split each edge into directed edges in each direction the way 
we tend to split roads).  
 
` Let the amount of flow in edge e be xe. Then the constraints on this problem are  
 
 For each edge   0 <=   xe  <= Ce  where Ce is the capacity of the edge. 
 
 For each vertex v other than the source and sink,  

 
SUM (over edges with front end at v) xv = SUM(over edges with tail at v)xv. 
 

and we want to maximize the flow into the sink vertex which is like the left hand side of 
this equation at the sink vertex. 
 
 What then is the dual to this LP? 
 
 We have a variable ye for each equation corresponding to the capacity constraint 
on it, a variable zv at each intermediate vertex corresponding to the conservation 
constraint there. 
 
 And what constraints do they appear in? 
 



 There is a constraint corresponding to each variable xe; since xe appears with 
coefficient 1 in its capacity constraint and with coefficient -1 (say) in its front end 
constraint, and 1 in its back end constraint, we get the dual constraint. 
 
  
 

ye   >= zvfe - zvte  
 
There is no z variable at the source or sink but the z variable at the sink is replaced by 1 
coming from the coeffient of the edges leading into it in the objective functions. 
 
 We can interpret the z variables as a potential defined on the vertices, which is 0 
at the source and 1 at the sink, and the edge variables must be at least the difference of 
potential across the edge, 
 
 The dual objective function here is SUMe Ceye. If we find a minimum capacity cut 
between the source and the sink, and set y=0 on the source side of the cut, and y= 1 on 
the sink side, this sum becomes the minimum cut capacity. 
 
 On the other hand, if we define the potential on each edge as a linear function 
between its values on its ends, the points at which the potential takes on any value but 0 
or 1 itself forms a cut, and the objective function will be the average of the  capacity of 
these cuts.  
 
 Thus the minimum value of the objective function will be the minimum cut 
capacity, which tells us, by the duality theorem, that 
 
 The maximum flow in a network is the capacity of a minimum cut. 
 
 This result is a typical duality theorem, and these are often valuable facts. 
 
Exercise: Suppose you have several commodities with different sources and sinks 
that can flow in the same network. Set up a linear programming formulation of this 
problem. 
You can maximize the total value of the flows. 
 
 


