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Language for today

G(R) real reductive ⊃ K (R) = G(R)θ

G ⊃ K = Gθ complexifications, g = Lie(G)

Cartan and Borel h ⊂ b ⊂ g, W = W (g, h)

λ ∈ h∗ dominant regular infinitesimal character.
M(g,K )λ =category of (g,K )-modules of infl char λ
Irr(g,K )λ = (finite) set of irreducible representations
KM(g,K )λ = Grothendieck group.
KM(g,K )λ = fin-rk free Z-module, basis Irr(g,K )λ.
W (λ) = integral Weyl group ⊂W .
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What’s a Harish-Chandra cell?

Have preorder ≤
LR

on Irr(g,K )λ: following Joseph,

Y ≤
LR

X ⇐⇒ ∃F , Y comp factor of F ⊗ X .

Here F is fin-diml rep of Gad .
Equivalence relation Y ∼

LR
X means Y ≤

LR
X ≤

LR
Y .

Strict order Y <
LR

X means Y ≤
LR

X but X 6 ≤
LR

Y .

A Harish-Chandra cell is an ∼
LR

equiv class in Irr(g,K )λ.

Harish-Chandra cells partition Irr(g,K )λ.
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How is that a Weyl group representation?

Integral Weyl group W (λ) acts on KM(g,K )λ = Z Irr(g,K )λ.

Action defined using tensor products with fin-diml Gad reps.

Can therefore use W (λ) rep to describe ≤
LR

:

Y ≤
LR

X ⇐⇒ ∃w ∈W (λ), [Y ] appears in w · X .

C(X ) = ∼
LR

equiv class of X = HC cell ⊂ Irr(g,K )λ.

C(X ) = ≤
LR

interval below X = HC cone ⊂ Irr(g,K )λ.

∂C(X ) = C(X ) − C(X ).

Theorem.
1. W (λ) acts on ZC(X ) =

[ ∑
Y ≤

LR
X

ZY
]
⊃ Z∂C(X ).

2. W (λ) acts on ZC(X ) ' ZC(X )/Z∂C(X ).

ZC(X ) is called a HC cell repn of W (λ).
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What’s the plan?

Cells connect Weyl group reps and inf diml g reps.
What Joseph did for highest weight modules.
What Joseph’s results give for HC modules.
Lusztig’s calculation of Joseph’s cell representations.
conjectural extension of Lusztig’s results to HC cells.

https://1drv.ms/u/s!AuIZlbpNWacjgVxg4fFkfQkHZfLn

link to examples of Joseph and HC cells.
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What’s true about Joseph cells?

w ∈Wλ  irr L(w), highest weight wλ − ρ.

Theorem (Joseph)

1. Relations ∼
L

and ∼
LR

partition W (λ) into left cells and

two-sided cells CL(w) ⊂ CLR(w) ⊂W (λ) (w ∈W (λ)).

2. Free Z-module ZCL(w) = left cell rep of W (λ).

3. ZCLR(w(λ)) = 2-sided cell rep of W (λ) ×W (λ).

4.
∑

CLR
ZCLR 'W (λ)×W (λ) ZW (λ), regular rep of W (λ).

5. Two-sided cells CLR partition Ŵ (λ) into subsets
Σ(CLR) called families: ZCLR '

∑
σ∈Σ(CLR)

σ ⊗ σ∗.

6. As rep of the first W (λ), ZCLR '
∑

CL⊂CLR

ZCL.
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Joseph’s Goldie rank W (λ) reps
w ∈Wλ  irr L(w), highest weight wλ − ρ.

Theorem (Joseph)

1. Ann(L(w)) = Ann(L(w ′))⇐⇒ w , w ′ in same left cell CL.
2. AV(L(w)) = AV(L(w ′)) if w , w ′ in same right cell CR .
3. Left cell rep ZCL has “lowest degree” irr σ0(CL), mult one.
4. σ0(CL) = σ0(C′L)⇐⇒ CL, C′L in same CLR .
5. Two-sided cells CLR in bijection with W (λ) reps σ0(CLR).
6. #(left cells in CLR) = dim(σ0(CLR)).
7. #Primλ U(g) = sum of dims of reps σ0.

The reps σ0(CLR) are Joseph’s Goldie rank
representations.

Turn out also to be Lusztig’s special W (λ) representations.

The moral of this story:

1. Cell reps of W (λ) are critical to Prim U(g).
2. Cell reps are helpful to AV(highest wt modules).

More about (2) on the next slide. . .
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What’s special about Goldie rank reps?

w ∈Wλ  irr L(w), highest weight wλ − ρ.

CLR two-sided cell Σ(CLR) ⊂ Ŵ (λ).

Say σ0 is the (Goldie rank
special ) W (λ) rep in Σ(CLR).

Write b(σ0) = smallest integer b so σ0 ⊂ Sb(h).

Theorem (Joseph)

1. b(σ0) < b(σ′) for any other σ′ ∈ Σ(CLR).

2. W · [σ0 ⊂ Sb(σ0)] is an irr rep σ1 ∈ Ŵ , b(σ0) = b(σ1).

3. σ1 is a Springer rep! nilpotent orbit O(σ1) ⊂ g∗.

4. For w ∈ CLR , AV(L(w)) ⊂ O(σ1).

5. AV(L(w)) = some irr comps of O(σ1) ∩ (g/b)∗.
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What’s true about Harish-Chandra cells?

Applying Joseph’s clever definitions, find easily. . .

Theorem.

1. Y ≤
LR

X =⇒ AV(Y ) ⊂ AV(X ).

2. Y <
LR

X =⇒ AV(Y ) $ AV(X ).

3. Y ∼
LR

X =⇒ AV(Y ) = AV(X ).

Since C(X ) = ∼
LR

equiv class of X = HC cell ⊂ Irr(g,K )λ,

Deduce associated varieties are constant on HC cells.

Applying Joseph’s deep thms about Goldie rk polys, find

Theorem. Suppose X is an irr (g,K )-module belonging to
Harish-Chandra cell C = C(X ).

1. All W (λ) reps on ZC(X ) ⊂ one family Σ(CLR) ⊂ Ŵ (λ).

2. ZC(X ) contains (Goldie rank
special ) W (λ) rep σ0 ∈ Σ(CLR).



David Vogan

Introduction

Joseph cells

HC cells

Springer corr

Lusztig’s results

More on HC cells

Associated varieties for HC cells

Irr(g,K )λ is partitioned into Harish-Chandra cells C;

ZC carries a HC cell representation of W (λ);

ZC is built from one two-sided cell Σ ⊂ Ŵ (λ);

ZC ⊃ unique (Goldie rank
special ) rep σ0(C);

σ0(C) Springer W rep σ1(C) nilp orbit O(C) ⊂ g∗.

Kostant-Rallis: O(C) ∩ (g/k)∗ = finite union of K orbits.

Analogous to Joseph’s irr comps of O ∩ (g/b)∗.

Analog of Joseph’s result for right cells in W (λ) is

Theorem. For any irr HC module X ∈ C,

AV(X ) = union of closures of K -orbits in O(C) ∩ (g/k)∗.

Assoc var (which union of closures) depends only on C.
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What next?

Jeffrey Adams + DV algorithm for AV(X ).

Nothing parallel known for highest weight modules.

Get complex nilp orbit from
(
Goldie rank

special

)
W (λ) rep.

Other W (λ) reps in ZC(X ) carry more info about X .

Seek to understand these other reps!

ZC(X ) made of W (λ) reps in one family Σ(CLR).

First topic is Lusztig’s description of families.
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Springer’s description of Ŵ
Already used: Springer identified each nilpotent coadjoint
orbit O ⊂ g∗ with a Weyl group rep σ(O).

Now need to extend that: fix η ∈ O, so O ' G/Gη.

Eqvt fundamental group is πG
1 (O) = A(O) =def Gη/Gη

0.

(Subgps of A(O))! (covers of O with G action)

Theorem (Springer)

1. Each irreducible ξ ∈ Â(O) σ(O, ξ), rep of W .
2. σ(O, ξ) is irreducible or zero; σ(O,1) , 0.
3. “The” Springer rep for O is σ(O) = σ(O,1).
4. Nonzero σ(O, ξ) are all distinct (O and ξ vary).
5. Every irr rep of W is σ(O, ξ) for unique (O, ξ)

Ŵ partitioned by nilp orbits into Springer sets

S(O) =
{
nonzero σ(O, ξ) | ξ ∈ Â(O)

}
.
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Lusztig’s description of families
For any finite group F , Lusztig in 1979 defined

M(F ) = { (x , ξ) | x ∈ F , ξ ∈ F̂ x }/(conjugation by F )

Fix (Σ ⊂ Ŵ ) family! (CLR ⊂W ) two-sided cell.

Recall Joseph: Σ 3 (Goldie rank
special ) σ0 ←→

Springer
O = O(Σ) nilpotent.

S(O) = {σ(O, ξ) | ξ ∈ Â(O)} Springer set.

Theorem (Lusztig 1984)

1. List W -reps in Σ attached by Springer to O:

Σ ∩ S(O) =
{
σ(O, ξ1), σ(O, ξ2) . . . , σ(O, ξr )

}
.

2. Define A(O) = A(O)/[∩j ker ξj ].

3. Have inclusion Σ ↪→M(A), σ 7→ (x(σ), ξ(σ)) so
σ0 7→ (1,1), σ(O, ξj ) 7→ (1, ξj ).

Source: bijection Unip(G(Fq))↔ all pairs (O,m) (m ∈ M(A(O))). . .

. . . and natural inclusion of Ŵ ⊂ Unip(G(Fq))).
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Lusztig’s description of left cells: formalism

Recall that finite group F gives
M(F ) = { (x , ξ) | x ∈ F , ξ ∈ F̂ x }/(conj by F )

' irr conj-eqvt coherent sheaves E(x , ξ) on F .
Sheaf E(x , ξ) supported on F -conjugacy class of x .

Subgp S ⊂ F const sheaf S on S is S-eqvt for conjugation.

Push forward to F -eqvt sheaf supp on F -conjugates of S:

i∗(S) =
∑
s,ξ

mS(s, ξ)E(s, ξ), mS(s, ξ) = dim ξSs
.

Sum runs over S conj classes s ∈ S. Can write this as

i∗(S) =
∑

s

E(s, IndFs

Ss (triv)).

This construct nonnegative integer combination of
elements ofM(F ) from any subgroup S ⊂ F .

mS(x ,1) = #(S-conj classes in F -conj class of x).

Fin grps question: do numbers mS(x ,1) determine S up to conj in F?
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Some examples
Fix O = O(CLR) (special) nilpotent orbit.

If G has only classical simple factors, then A(O) is an
elementary abelian 2-group.

That is, A(O) = V , d-diml vector space over F2.

Hence Lusztig’s finite set is

M(A(O)) = V × V ∗ = T ∗(V ),

2d-diml symplectic vector space over F2.

If S ⊂ V is any subspace, then

mS(x , ξ) =

1 ξ|S = 0
0 ξ|S , 0

This is the characteristic function of

S × (V /S)∗ = T ∗S(V ) ⊂ T ∗(V )

a d-dimensional Lagrangian subspace:

|M(A(O))| = 22d , |T ∗S(V )| = 2d .
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Lusztig’s description of left cells

Fix (Σ ⊂ Ŵ ) family! (CLR ⊂W ) two-sided cell.

O = O(CLR) corresponding (special) nilpotent orbit.

Goal: describe Weyl rep ZCL, each left cell CL ⊂ CLR .

Know: ZCL is nonnegative integer comb of elements of Σ.

Describe the combination using Lusztig’s Σ ↪→M(A).

Theorem (Lusztig)

1. ∃ subgp Γ = Γ(CL) ⊂ A so ZCL '
∑

(x ,ξ) mΓ(x , ξ)σ(x , ξ)

2. mΓ(1,1) = 1, so special rep σ appears once in ZCL.

3. ∃ Lusztig cells with Γ = A, so ZCL '
∑

x σ(x ,1).

4. ∃ Springer cells with Γ = {e}, so ZCL '
∑
ξ∈Â dim(ξ)σ(1, ξ),

all Springer reps for O in Σ.
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Back to the example board

G classical, two-sided cell (CLR ⊂W )! (Σ ⊂ Ŵ ) family.

Write O = O(CLR), A(O) = V (order 2d ).

Lusztig: cardinality of the family in Ŵ is

#Σ =

(
2d + 1

d

)
=

(
2d
d

)
+

(
2d

d − 1

)
.

That is the size of im(Σ) ⊂ T ∗V , #T ∗V = 22d .

Each CL ! T ∗
Γ(CL)

V , subspace Γ(CL) ⊂ V .

T ∗
Γ(CL)

⊂ im(Σ), so ZCL = sum of 2d distinct irrs in family Σ.

Springer cell has Γ = {0} ⊂ V , 2d W reps σ(O, ξ)↔ V ∗ = (0, ξ).

Lusztig cell has Γ = A(O) = V , W reps attached to (x ,0).

2d ≤ (2d+1
d ) ≤ 22d , equality ⇐⇒ d = 0.



David Vogan

Introduction

Joseph cells

HC cells

Springer corr

Lusztig’s results

More on HC cells

Consequences of Lusztig for HC cells

HC world (g,K ): Irr(g,K )λ ⊃ C = HC cell W (λ) rep ZC.

By Joseph etc: ZC ⊃ unique σ(C) special in Ŵ (λ).

σ(C)  O(C) Σ ⊂ Ŵ (λ) family, A(O), Σ ↪→M(A(O)).

Theorem (McGovern, Binegar) C a HC cell in Irr(g,K )λ.
1. ZC =

∑
τ∈Σ mC(τ)τ, mC(τ) ∈ N, mC(σ(C)) = 1.

2. Assume G(R) is a real form of SO(n), Sp(2n), type A, any
complex group, or any exceptional group. Then ∃Γ(C) ⊂ A
so mC(σ(x , ξ)) = mΓ(x , ξ).

3. Assume G(R) cplx, so O = O1 × O1, A(O) = A1 × A1. Then we
must take Γ(C) = (A1)∆. (Not one of Lusztig’s Γ unless A1 = 1.)

4. If G simple in (2) (excludes complex case), then Γ(C) appears in
Lusztig’s description of left cells. That is, ZC is isomorphic to a left
cell representation of W (λ).

McGovern showed (4) fails for some forms of Spin(n),PSp(2n).

Conjecture. Part (2) is true for any HC cell C.

Next goal: try to understand geometric origin of Γ(C).
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Real forms of G

This page is incomplete at best! Don’t trust it.

Pinning P = (G,B,H ,
{
Xα | α ∈ Π(B,H) ⊂ X ∗(H)

}
).

Distinguished inv δ ∈ Aut(P), extended group GΓ = G o {1, δ}.

Strong real form of G = G-conj class of x ∈ Gδ, x2 ∈ Z (G).

Strong form x  inv aut θx = Ad(x) Cartan for real form.

Summary: (conj classes of invs in G)! (R-forms of G).

Ex: G = GL(n), involution xpq =

(
Ip 0
0 −Iq

)
! U(p,q).

Coming up: (involution respecting ??)! (real form of ??).
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Real forms of nilpotents

Pinning P = (G,B,H , {Xα}).

θ Cartan inv g = k ⊕ s N = nilp cone ⊃ Nθ = N ∩ s.

Theorem (Jacobson-Morozov, Kostant, Kostant-Rallis)
O ⊂ g nilpotent orbit.

1. ∃ Lie triple (T ,E ,F ), [T ,E ] = 2E , [T ,F ] = −2F , [E ,F ] = T ,

E ∈ O; T ∈ h dom; T is unique φ : SL(2)→ G

Define g[j] = {X ∈ g | [T ,X ] = jX }. JM parabolic is

l = g[0], u =
∑
j>0

g[j], q = l+ u.

2. GE = (LE )(UE ) = GφUE Levi decomp.
3. BIJECTION (R-forms of O) (Gφ-conj classes

{` ∈ Gφ | `2 ∈ φ(−I)Z (G)}, ` 7→ R-form x = ` · φ

(
i 0
0 −i

)
}).

4. Summary: (conj classes of invs in Gφ)!(R-forms of O).
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