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What real reductive groups?

Old days: assumed G(R) connected semisimple.
Problem is that G(R) is studied using Levi
subgroups; these aren’t connected even if G is.
Here are some possible assumptions for us:

1. Narrowest: G complex connected reductive algebraic
defined over R, G(R) = real points.

2. Somewhat weaker: G(R) is transpose-stable subgp
of GL(n,R) with G(R)/G(R)0 finite.

3. Still weaker: G(R) is finite cover of a group as in (2).

General notation: g(R) = Lie(G(R)), g = g(R)⊗R C.
Everything I say holds exactly under (1);
lots is still true under the (strictly weaker) (2);
most things work under (3).
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Structure of G(R)

G(R) ↪→ GL(n,R), stable by transpose, G(R)/G(R)0 finite.

Cartan involution of GL(n,R) is automorphism θ(g) = tg−1.

Recall polar decomposition:
GL(n,R) = O(n)× exp(symmetric matrices).

= GL(n,R)θ × exp(gl(n,R)−θ)

Inherited by G(R) as Cartan decomposition for G(R):

K (R) = G(R)θ = O(n) ∩G(R),

s(R) = g(R)−θ = symm matrices in g(R)

S(R) = exp(s(R)) = pos def symm matrices in G(R),

G(R) = K (R)× S(R) ' K (R)× s(R).

Nice structures on G(R) come from nice structures on
K (R) by solving differential equations along S(R).
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What representations (A)?
As good analytic C∗-algebra people, you understand

Definition. Unitary representation of G(R) on Hilbert
space Hπ is weakly continuous homomorphism

π : G→ U(Hπ).

Irreducible if Hπ has exactly two closed G(R)-invt subspaces.

Chevalley told Harish-Chandra to weaken this definition.

Definition. Representation of reductive G(R) on loc cvx
complete Vπ is weakly continuous group homomorphism

π : G→ GL(Vπ)

Get a new loc cvx complete V∞π ⊂ Vπ on which π∞

differentiates to action of U(g).

Define Z(g) = U(g)Ad(G(R)). Schur’s lemma suggests that
Z(g) should act by scalars on V∞π for irreducible π.

Always true for π unitary (Segal), fails sometimes for
nonunitary π on any noncompact G(R) (Soergel).
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What representations (B)?
Definition (Harish-Chandra) Rep π of G(R) on complete
loc cvx Vπ is quasisimple if Z(g) acts by scalars on V∞π .

You know to care about Ĝ(R)u = unitary equivalence
classes of irr unitary representations.

HC says to care about larger Ĝ(R) = infinitesimal
equivalence classes of irr quasisimple π.

Defining infinitesimal equivalence is a bit complicated; soon...

To see the value of this, helpful to introduce Ĝ(R)h = infl
equiv classes of irr quasisimple π with nonzero (maybe
indefinite) invariant Hermitian form.

Ĝ(R)u ⊂ Ĝ(R)h ⊂ Ĝ(R).

You know that the left term is interesting. I claim that it’s
best understood by understanding the right term and the
two inclusions. . .
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What representations (C)?

Ĝ(R)u ⊂ Ĝ(R)h ⊂ Ĝ(R)

unitary ⊂ hermitian ⊂ quasisimple

desirable ⊂ acceptable ⊂ available

Langlands classification beautifully describes Ĝ(R) as
complex algebraic variety.

Knapp-Zuckerman describe Ĝ(R)h as real points of this
alg variety: fixed points of simple complex conjugation.

Ĝ(R)u is cut out inside Ĝ(R)h by real algebraic
inequalities, more or less computed by Adams,
van Leeuwen, Trapa, V.
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What can we ask about representations?

Start with a reasonable category of representations. . .
Example: cplx reductive g ⊃ b = h + n; BGG category O
consists of U(g)-modules V subject to

1. fin gen: ∃V0 ⊂ V , dim V0 <∞, U(g)V0 = V .
2. b-locally finite: ∀v ∈ V , dim U(b)v <∞.
3. h-semisimple: V =

∑
γ∈h∗ Vγ .

Want precise information about reps in the category.
Example: V in category O

1. dim Vγ is almost polynomial as function of γ.
2. V has a formal character

[∑
λ∈h∗ aV (λ)eλ

]
/∆.

Want construction/classification of reps in the category.
Example: λ ∈ h∗  I(λ) =def U(g)⊗U(b) Cλ = Verma module.

1. (STRUCTURE THM): I(λ) has highest weight Cλ ↪→ I(λ)n.
2. (QUOTIENT THM): I(λ) has unique irr quo J(λ).
3. (CLASSIF THM): Each irr in O is J(λ), unique λ ∈ h∗.
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How do you do that?
g ⊃ b = h + n, ∆ = ∆(g, h) ⊂ h∗ roots, ∆+ roots in n.

 partial order on h∗:
µ′ ≤ µ ⇐⇒ µ′ ∈ µ− N∆+

⇐⇒ µ′ = µ−
∑
α∈∆+

nαα, (nα ∈ N)

Proposition. Suppose V ∈ O.
1. If V 6= 0,∃ maximal µ ∈ h∗ subject to Vµ 6= 0.
2. If µ ∈ h∗ is maxl subj to Vµ 6= 0, then Vµ ⊂ V n.
3. If V 6= 0,∃µ with 0 6= Vµ ⊂ V n.
4. ∀λ ∈ h∗, Homg(I(λ),V ) ' Homh(Cλ,V n).

Parts (1)–(3) guarantee existence of “highest weights;”
based on formal calculations with lattices in vector
spaces, and n · Vµ′ ⊂

∑
α∈∆+ Vµ′+α.

Sketch of proof of (4):
HomU(g)(U(g)⊗U(b) Cλ,V ) ' HomU(b)(Cλ,V ) = HomU(h)(Cλ,Vn).

First isom: “change of rings.” Second: n · Cλ =def 0.
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Moral of the story

For category O, three key ingredients:
1. Change of rings U(g)⊗U(b) · Verma mods I(λ).
2. Universality: Homg(I(λ),V ) ' Homh(Cλ,V n).
3. Highest weight exists: J irr =⇒ Jn 6= 0.

#2 is homological alg, #3 is comb/geom in h∗.
Irrs J in O! λ ∈ h∗ characterized by Cλ ⊂ J(λ)n.
Same three ideas apply to G(R) representations.
Technical problem: change of rings isn’t projective, so ⊗ Tor.

Parallel problem: Jn = H0(n, J) derived functors Hp(n, J).

Conclusion will be: irr G(R)-reps J ! γ ∈ Ĥ(R),
some Cartan H(R) ⊂ G(R); char by Cγ ⊂ Hs(n, J).

Next topic: Harish-Chandra’s algebraization of rep
theory, making possible the program outlined above.
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Principal series for SL(2,R) (skip this!)
To understand how Harish-Chandra studied reductive
group representations, need a serious example.

But there isn’t time; so look at these slides on your own!

Use principal series repns for SL(2,R) =def G(R).

G(R) y R2, so get rep of G(R) on functions on R2:

[ρ(g)f ](v) = f (g−1 · v).

Lie algs easier than Lie gps write sl(2,R) action, basis

D =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
,

Action on functions on R2 is by vector fields:

ρ(D)f = −x1
∂f
∂x1

+ x2
∂f
∂x2

, ρ(E) = −x2
∂f
∂x1

, ρ(F ) = −x1
∂f
∂x2

.

General principle: representations on function spaces are
reducible! exist G(R)-invt differential operators.

Euler deg operator E = x1
∂
∂x1

+ x2
∂
∂x2

commutes with G(R).

Conclusion: interesting reps of G(R) on eigenspaces of E .
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Principal series for SL(2,R) (also skip)
Previous slide: expect interesting reps of G(R) = SL(2,R)
on homogeneous functions on R2.

For ν ∈ C, ε ∈ Z/2Z, define
Wν,ε = {f : (R2 − 0)→ C | f (tx) = |t |−ν−1 sgn(t)εf (x)},

functions on the plane homog of degree −(ν + 1, ε).

ν  ν + 1 simplifies MANY things later. . .

Study W ν,ε by restriction to circle {(cos θ, sin θ)}:
Wν,ε ' {w : S1 → C | w(−s) = (−1)εw(s)}, f (r , θ) = r−ν−1w(θ).

Compute Lie algebra action in polar coords using
∂

∂x1
= −x2

∂

∂θ
+ x1

∂

∂r
,

∂

∂x2
= x1

∂

∂θ
+ x2

∂

∂r
,

∂

∂r
= −ν − 1, x1 = cos θ, x2 = sin θ.

Plug into formulas on preceding slide: get
ρν,ε(D) = 2 sin θ cos θ

∂

∂θ
+ (− cos2 θ + sin2 θ)(ν + 1),

ρν,ε(E) = sin2 θ
∂

∂θ
+ (− cos θ sin θ)(ν + 1),

ρν,ε(F ) = − cos2 θ
∂

∂θ
+ (− cos θ sin θ)(ν + 1).
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A more suitable basis (skip this too!)
Have family ρν,ε of reps of SL(2,R) defined on functions
on S1 of homogeneity (or parity) ε:

ρν,ε(D) = 2 sin θ cos θ
∂

∂θ
+ (− cos2 θ + sin2 θ)(ν + 1),

ρν,ε(E) = sin2 θ
∂

∂θ
+ (− cos θ sin θ)(ν + 1),

ρν,ε(F ) = − cos2 θ
∂

∂θ
+ (− cos θ sin θ)(ν + 1).

Hard to make sense of. Clear: family of reps analytic
(actually linear) in complex parameter ν.

Big idea: see how properties change as function of ν.

Problem: {D,E ,F} adapted to wt vectors for diagonal
Cartan subalgebra; rep ρν,ε has no such wt vectors.

But rotation matrix E − F acts simply by ∂/∂θ.

Suggests new basis of the complexified Lie algebra:
H = −i(E − F ), X =

1
2

(D + iE + iF ), Y =
1
2

(D − iE − iF ).

ρ
ν,ε(H) =

1

i

∂

∂θ
, ρ

ν,ε(X) =
e2iθ

2i

(
∂

∂θ
+ i(ν + 1)

)
, ρ
ν,ε(Y ) =

−e−2iθ

2i

(
∂

∂θ
+ i(ν + 1)

)
.
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Principal series, bad news (not for us!)

Have family ρν,ε of reps of SL(2,R) defined on functions
on S1 of homogeneity (or parity) ε:

ρ
ν,ε(H) =

1

i

∂

∂θ
, ρ

ν,ε(X) =
e2iθ

2i

(
∂

∂θ
+ i(ν + 1)

)
, ρ
ν,ε(Y ) =

−e−2iθ

2i

(
∂

∂θ
+ i(ν + 1)

)
.

These ops act simply on basis wm(cos θ, sin θ) = eimθ:
ρν,ε(H)wm = mwm,

ρν,ε(X )wm =
1
2

(m + ν + 1)wm+2,

ρν,ε(Y )wm =
1
2

(−m + ν + 1)wm−2.

Suggests reasonable function space to consider:

W ν,ε,K (R) = fns homog of deg (ν, ε), finite under rotation

= span({wm | m ≡ ε (mod 2)}).

� W ν,ε,K (R) has beautiful rep of g: irr for most ν, easy submods
otherwise. Not preserved by G(R) = SL(2,R):
exp(A) ∈ G(R) 

∑
Ak/k !: Ak y W ν,ε,K (R), sum not.
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Principal series: good news (last skip!)
Original question was action of G(R) = SL(2,R) on

W ν,ε,∞ = {f ∈ C∞(R2 − 0) | f homog of deg −(ν + 1, ε)} :

what are the closed G(R)-invt subspaces. . . ?

Found nice subspace W ν,ε,K (R), explicit basis, explicit
action of Lie algebra easy to describe g–invt
subspaces.

Theorem (Harish-Chandra) There is one-to-one corr

closed G(R)-invt S ⊂W ν,ε,∞! g(R)-invt SK ⊂W ν,ε,K

S  K -finite vectors in S, SK  SK .

Content of thm: closure carries g-invt to G-invt.

Why this isn’t obvious: SO(2) acting by translation on C∞(S1).
Lie alg acts by d

dθ , so closed subspace

E = {f ∈ C∞(S1) | f (cos θ, sin θ) = 0, θ ∈ (−π/2, π/2) + 2πZ}

is preserved by so(2); not preserved by rotation.

Reason: Taylor series for in f ∈ E doesn’t converge to f .
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Making representations algebraic
Back to general setting: G(R) real reductive,
θ : G(R)→ G(R) Cartan involution, s(R) = g(R)−θ.

K (R) = G(R)θ compact subgroup.

Recall polar decomposition G(R) = K (R)× exp(s0).

Nice structures on G(R) come from nice structures on
K (R) by solving differential equations along S.

(ρ,W ) rep on complete loc cvx W ; had smaller space

W∞ = {w ∈ W | G(R)→ W , g 7→ ρ(g)w smooth}.

Similarly define two more smaller complete loc cvx spaces
W K (R) = {w ∈ W | dim span(ρ(K (R))w) <∞},

W K (R),∞ = {w ∈ W∞ | dim span(ρ(K (R))w) <∞}
Definition. The Harish-Chandra-module of W is W K (R),∞:
representation of Lie algebra g(R) and of group K (R).

Easy (two slides below!) to define (g(R),K (R))-modules.
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Group reps and Lie algebra reps

G(R) reductive ⊃ K (R) max cpt, Z(g) = U(g)Ad(G).

Recall (π,V ) is quasisimple if π∞(z) = scalar, z ∈ Z(g).

Theorem (Segal, Harish-Chandra)
1. Any irreducible (g(R),K (R))-module is quasisimple.
2. Any irreducible unitary rep of G(R) is quasisimple.
3. Suppose V quasisimple rep of G(R). Then

W 7→W K (R),∞ is bijection between
subrepresentations

(closed W ⊂ V )↔ (W K (R),∞ ⊂ V K (R),∞).

4. (irreducible quasisimple reps of G(R)) (irreducible
(g(R),K (R))-modules), Wπ  W K (R),∞

π is surjective.

Idea of proof: G(R)/K (R) ' s0, vector space. Describe anything
analytic on G(R) by Taylor expansion along K (R).
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Category of (h(R),L(R))-modules

Setting: h(R) ⊃ l(R) real Lie algebras, L(R) compact Lie group
acting on h(R) by Lie algebra automorphisms Ad.

Definition. An (h(R), L(R))-module is complex vector space W ,
with reps of h(R) and of L(R), subject to

1. each w ∈ W belongs to fin-diml L(R)-invt W0, so that
action of L(R) on W0 continuous (hence smooth);

2. differential of L(R) action is l(R) action;
3. ∀k ∈ L(R), Z ∈ h(R), w ∈ W , k · (Z · (k−1 · w)) = [Ad(k)(Z )] · w.

Condition (3) is automatic if L(R) connected.

WriteM(h(R), L(R)) for category of (h(R), L(R))-modules.

Proposition. Taking smooth K (R)-fin vecs is functor

(reps of G(R) on complete loc cvx W )

−→ (g(R),K (R))-modules W K (R),∞.

But it’s easier to use reps of complex Lie algebras. . .
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Complexified Lie algebras

real Lie algebra h(R) complex Lie algebra
h = h(C) =def h(R)⊗R C

= {X + iY | X ,Y ∈ h(R).}
complexification of h(R).

Proposition. Representation (π0,V ) of h(R)!
representation (π1,V ) of h(C):

π1(X + iY ) = π0(X ) + iπ0(Y ), π0(X ) = π1(X ).

Identification π0 ! π1 is perfect; write π for both.

Convenient to express as modules for an algebra:

Proposition. Reps of real Lie alg h(R)! modules for
complex enveloping algebra U(h).

Seek to extend this to (h(R),L(R))-modules.
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Complexified compact Lie groups

Complexification also works for compact groups. . .

real compact L(R) ⊂ U(n) complex reductive alg

L = L(C) =def L(R) exp(i l(R) ⊂ GL(n,C)

complexification of L(R).

Coordinate-free definition:

reg fns on L(C) = L(R)-finite C-valued fns on L(R)

Proposition. Fin-diml continuous (π0,V ) of L(R)!
fin-diml algebraic representation (π1,V ) of L(C):

π1(l exp(iY )) = π0(l) exp(idπ0(Y )), π0(l) = π1(l).

Identification π0 ! π1 is perfect; write π for both.

L(R)-finite cont reps of L(R) = algebraic reps of L(C).
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Category of (h,L)-modules

Now we can complexify Harish-Chandra’s category. . .

Setting: h ⊃ l complex Lie algebras, L complex algebraic
acting on h by Lie algebra automorphisms Ad.

Definition. An (h,L)-module is complex vector space W ,
with reps of h and of L, subject to

1. L action is algebraic (hence smooth);
2. differential of L action is l action;
3. For k ∈ L, Z ∈ h, w ∈W ,

k · (Z · (k−1 · w)) = [Ad(k)(Z )] · w .

WriteM(h,L) for category of (h,L)-modules.

Proposition. Taking smooth K -finite vecs is functor

W ∈ (reps of G(R) on complete locally convex space)

−→W K ,∞ ∈M(g,K )

.



David Vogan

Introduction

Langlands
classification A

(g, K )-modules

R(h, L)-mod

Langlands
classification B

Cartan subgroups

Langlands
classification C

Your friend K (R)

Representations and R-modules
Rings and modules familiar and powerful try to make
representation categories into module categories. Saw

Category of reps of h(R) = category of U(h)-modules.

Seek parallel for locally finite reps of compact L(R):
R(L) = conv alg of C-valued L-finite msres on L(R)

'(Peter-Weyl)

[∑
(µ,Eµ)∈L̂ End(Eµ)

]
� 1 /∈ R(L) if L(R) is infinite: convolution identity is point

measure at e ∈ L(R), not L-finite.

α ⊂ L̂ finite  1α =def
∑
µ∈α Idµ ∈ R(L).

Elements 1α are approximate identity: ∀r ∈ R(L) ∃α(r)
finite so 1β · r = r · 1β = r if β ⊃ α(r).

R(L)-module M is approximately unital if ∀m ∈ M ∃α(m)
finite so 1β ·m = m if β ⊃ α(m).

Alg reps of L = approximately unital R(L(R))-modules.

R -mod =def category of approximately unital R-modules.
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Hecke algebras

Setting: h ⊃ l cplx Lie algs, L reductive alg y h by Lie alg
automorphisms Ad.

Definition. The Hecke algebra R(h,L) is

R(h, L) = U(h)⊗U(l) R(L)

' [conv alg of L-finite U(h)-valued msres on L(R)]/U(l)

R(h,L) inherits approx identity from subalgebra R(L).

Proposition. M(h,L) = R(h,L) -mod: (h,L) modules are
approximately unital modules for Hecke algebra R(h,L).

Immediate corollary: M(h,L) has projective resolutions,
so derived functors. . .
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Langlands classification

Theorem (Langlands) Irreducible representations of a real
reductive group G(R) are in one-to-one correspondence

(H(R), γ)/(G(R) conjugacy)! J(H(R), γ) with

1. H(R) ⊂ G(R) is a Cartan subgroup, γ ∈ Ĥ(R) a character;
2. γ nontrivial on each compact imaginary simple coroot; and
3. γ nontrivial on each simple real coroot.

Equivalently,
Ĝ(R) =

∐
H(R)/G(R)

Ĥ(R)reg/W (G(R),H(R)).

(2) is the “regularity” condition in Langlands classification for K ;

(3) excludes the reducible tempered principal series of SL(2,R)

J(H(R), γ) characterized by occurrence of γ − ρ in H(R) action
on Hs(n, J) (some Borel subalgebra b = h + n).

Remaining lies: omitted translate of γ by ρ, choice of pos imag roots.

Next time: what H(R) and W (G(R),H(R)) look like.
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What have we done?

Harish-Chandra’s notion of all irreducible representations
π of G(R): continuous irreducible on complete loc cvx top
vec space Wπ, quasisimple: U(g)Ad(G(R)) acts by scalars.

 W K ,∞
π irr (g,K )-module of K -finite smooth vecs.

Ĝ(R) =def infinitesimal equiv classes of irr quasisimple, so

Ĝ(R) 'def simple R(g,K )-modules.
Langlands classification proceeds by category O strategy:

1. construct (complicated) R(g,K )-modules from (simple)
R(h,H ∩ K )-modules by change-of-rings functors;

2. prove exhaustion using universality properties involving Lie
algebra cohomology.

If you’ve read Langlands, this summary may look absurd. But. . .

Change-of-rings includes parabolic induction.

Lie algebra cohom can come from asymptotic exp of matrix coeffs.

Feel better?
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Cartan subgroups

Said that Langlands parametrized irr reps of real reductive
G(R) by characters of Cartan subgroups H(R).

To make precise/concrete, need structure of H(R).

Assume (replace H(R) by conjugate) θ(H(R)) = H(R).

Set T (R) = H(R)θ = H(R) ∩ K (R) compact

Set a0 = h(R)−θ, A = exp(a0) vector group.

H(R) = T (R)× A

Ĥ(R) = (chars of T (R))× (a∗)

= (nearly lattice)× (complex vector space).

Ĝ(R) = countable union of complex vector spaces.
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Examples of Cartan subgroups
Sp(2n,R) = linear maps of 2n-dimensional real E preserving
nondegenerate skew-symm bilinear form ω.

1st construction: U n-diml real E = U ⊕ U∗,
ω((u1, λ1), (u2, λ2)) = λ1(u2)− λ2(u1).

Get GL(U) ↪→ Sp(E), g · (v , λ) = (g · u,t g−1 · λ).

 Cartan subgp Hn,0,0(R) = GL(1,R)n ⊂ GL(n,R) ⊂ Sp(2n,R).

2nd construction: F n-diml complex with nondeg Herm form µ,
ω(f1, f2) = Im(µ(f1, f2)) (on real space F |R).
Get unitary group U(F ) ↪→ Sp(F |R).

 Cartan H0,0,n(R) = U(1)n ⊂ U(p, q) ⊂ Sp(2n,R).

3rd construction: n = 2m even, V m-diml complex, ωC on
F = V ⊕ V ∗ as in 1st, ωR = Re(ωC) on F |R.
Get GL(V ) ↪→ Sp(F )︸ ︷︷ ︸

complex algebraic

↪→ Sp(F |R)︸ ︷︷ ︸
real

.

 Cartan H0,m,0 = GL(1,C)m ⊂ GL(m,C) ⊂ Sp(2m,C) ⊂ Sp(4m,R).

Any Cartan: Ha,b,c ' (R×)a × (C×)b × U(1)c (n = a + 2b + c).

Ta,b,c = {±1}a × U(1)b+c , Aa,b,c = Ra+b
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Cartans, eigenvalues, Weyl groups/C

g ∈ G(C) = Sp(2n,C) (complex reductive) has 2n eigenvalues

((z1, z−1
1 ), (z2, z−1

2 ), . . . , (zn, z−1
n )).

g usually conjugate to

(z1, . . . , zn) ∈ GL(1,C)n = H(C) ⊂ Sp(2n,C).

(z1, . . . , zn) only determined up to permutation, inversions.

H(C) is unique conjugacy class of Cartan in Sp(2n,C)

Its Weyl group

WC = W (G(C),H(C)) = NG(C)(H(C))/H(C) = W (BCn)

is called the nth hyperoctahedral group.

W (BCn) = Sn o (±1)n = permutations and inversions.

Real Cartan subgroups! reality conditions on eigenvalues.

Each real Weyl group is a subgroup of W (BCn).
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Cartans, eigenvalues, Weyl groups/R
g ∈ G(R) = Sp(2n,R) has 2n complex eigenvalues

((z1, z−1
1 ), (z2, z−1

2 ), . . . , (zn, z−1
n ))

permuted by complex conjugation.
Ways this happens! expressions n = a + 2b + c:

1. zi = z i , (1 ≤ i ≤ a);
2. za+2j−1 = za+2j , (1 ≤ j ≤ b); and
3. za+2b+k = za+2b+k

−1, (1 ≤ k ≤ c).

Conditions describe elts of Ha,b,c(R) = (R×)a × (C×)b × U(1)c .
Wa,b,c = W (G(R),Ha,b,c(R)) = W (BCa)×[W (BCb)o(±1)b]×Sc .

Here W (BCb) acts simultaneously on (za+2j−1), (za+2j−1).

(±1)b interchanges some pairs (za+2j−1, za+2j−1).

It’s perhaps a surprise that the last factor is Sb (permutations) and not
W (BCb) (which includes inversions).

Inverting some of the za+2b+k gives a group element conjugate by G(C)

but not by G(R) (stably conjugate).

Distinction between conjugacy and stable conjugacy is source of
multi-element L-packets in the Langlands classification.
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Langlands classification
Theorem (Langlands)

̂Sp(2n,R) =
∐

a+2b+c=n

̂Ha,b,c(R)reg/Wa,b,c .

̂Ha,b,c(R)! γ ∈ Cn, ε ∈ (Z/2Z)a, with
1. γa+2j−1 − γa+2j ∈ Z, 1 ≤ j ≤ b, and
2. γa+2b+k ∈ Z, 1 ≤ k ≤ c.

Write γ as sum of continuous part (character of vector group A)

ν =
(
γ1, . . . , γa,

γa+1 + γa+2

2
,
γa+1 + γa+2

2
, . . . ,

γa+2b−1 + γa+2b

2
,
γa+2b−1 + γa+2b

2
, 0, . . . , 0

)
∈ Ca+b ⊂ Cn

and discrete part (character of T (R)0)

λ =
(
0, . . . , 0,

γa+1 − γa+2

2
,
−γa+1 + γa+2

2
, . . . ,

γa+2b−1 − γa+2b

2
,
−γa+2b−1 + γa+2b

2
, γa+2b+1, . . . , γa+2b+c

)
∈ Zb+c ⊂

(
1
2
Z
)n

.
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What about unitary representations?

Can define Herm dual V h for (g,K )-module V .
Theorem (Knapp-Zuckerman). Suppose G(R) real reductive,
H(R) = T (R)A Cartan subgroup,

γ = (λ, ν) ∈ Ĥ(R)reg, (λ ∈ T̂ (R), ν ∈ a∗), V = J(γ) ∈ Ĝ(R).

1. γh = (λ,−ν); γ unitary ⇐⇒ γ = γh ⇐⇒ ν ∈ ia∗0 .
2. V h ' J(γh); γ unitary ⇐⇒ J(γ) tempered.
3. V Herm ⇐⇒ V ' V h ⇐⇒ γh ∈ W (G(R),H(R)) · γ.

Picture: V 7→ V h is a complex conjugation on Ĝ(R).
Hermitian reps = real points.

Easy real pts! ν purely imaginary! tempered reps.

Difficult real pts! −ν = w · ν (w ∈ W (G(R),H(R))λ).

Last cond is ν ∈ (ia∗0 )w + (a∗0 )−w , real vec space of dimension dim A.

Corollary (Knapp-Vogan). Each V ∈ Ĝ(R)h is unitarily induced
from VL ⊗ (unitary char) ∈ L̂(R)h, with νL real.
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What do the Langlands parameters mean?
Continuous part of Langlands param for Sp(2n,R) is

νa,b,c = (z1, . . . , za,w1/2,w1/2, . . . ,wb/2,wb/2, 0, . . . , 0),

with zi and wj complex; using the Weyl group we may
assume zi and wj have nonnegative real part.

Rearrange these with decreasing real part as
ν = (ν1, · · · , νn).

Then ν is a leading term in asymptotic expansions of
matrix coefficients of J(λ, ν).

Discrete part of a Langlands param for Sp(2n,R) is

λa,b,c = (0, . . . , 0, `1/2,−`1/2, . . . , `b/2,−`b/2, n1, . . . , nc),

with `j and nk integers.

Rearrange these half integers in decreasing order as
λ = (λ1 ≥ · · · ≥ λn).

Then λ is close to the highest weight of the lowest
representation of U(n) appearing in J(λ, ν).
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Looking closely at K (R)

Said for Sp(2n,R), disc part of Langlands parameter
≈ highest weight of lowest K -type.
To make this statement precise and more general,
need to look closely at K̂ (R).

Reasons you don’t know this already
it’s worth doing here :

1. K (R) is disconnected; Lie theorists are too lazy to
talk about disconnected groups in grad courses.

2. Indexing K̂ (R) by highest weights is wrongheaded,
persisting only for reasons cited in (1).

3. Construction of ρK covers that we’ll use parallels
details that I omitted from Langlands classification for
reasons cited in (1).
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Cartan subgroups of K (R)

Fix a maximal torus TK ,0(R) ⊂ K0(R).

Fix pos roots ∆+
K ⊂ ∆ (k,TK ,0(R))! Borel bK = tK + nK .

Set TK (R) = NormK (R)(bK ), a large Cartan in K (R).

OR fix Borel subgp BK ,0 ⊂ K0; define Borel subgp of K BK = NK (BK ,0).
Then BK ∩ K (R) = TK (R) = large Cartan in K (R), BK = TK NK .

K (R) can be disconnected, exactly reflected in TK (R):

TK (R)/TK ,0(R) ' K (R)/K0(R).

Highest weight theory makes bijection

K̂ (R)←→ irreducible dominant reps of TK (R).

For harmonic analysis, not the best parametrization.

Weyl dimension formula and Weyl character formula both
use highest weight shifted by ρK .
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Some easy covering groups

F a group: F -cover of group G is 1→ F → G̃→ G→ 1.

Easy exercise: F -cover is a covariant functor.

Example. F = µn = n th roots of 1, 1→ µn → C× n th power−→ C× → 1.

Any character γ : H → C×  n th root of γ cover.

1→ µn → H̃γ/n → H → 1, H̃γ/n = {(h, z) ∈ H × C× | γ(h) = zn}.

Representation τ of H̃γ/n called genuine if τ(ω) = ωI (ω ∈ µn).

H̃γ/n has genuine character γ/n: (γ/n)(h, z) = z.

Proposition. ⊗(γ/n) is a bijection Ĥ →
(
H̃γ/n

)̂
genuine.

General philosophical reason we need these: measures on manifold M
! line bundle

∧dim M T∗(M) (densities).

Hilbert spaces on M ! square roots of measures (half densities).

M = G/H:
∧dim M T∗(M)! char γ ∈ Ĥ (γ(h) = det(Ad(h)|g/h)−1).

half densities on G/H ! character γ/2.
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ρK covers of Cartans in K

Recall Borel subgp BK = TK NK of K , TK def over R.

Get one diml character 2ρK ∈ T̂K , 2ρK (t) = det(Ad(t)|bK .

 (square root of 2ρK ) = ρK cover T̃K ,ρK

Proposition. ⊗ρK is bijection T̂K →
(
T̃K ,ρK

)̂
genuine; sends

(irr dom reps of TK )! (irr dom genuine regular reps of T̃K ,ρK
).

Corollary. There is a bijection
K̂ ←→ (irr dom regular reps of T̃K ,ρK

), JK (γ)←→ γ.

Suppose γ0 ∈ t∗ is a weight of γ. Then

dim(JK (γ)) = dim(γ) ·
∏
α∈∆+

K

〈γ0, α
∨〉

〈ρK , α∨〉
.

This is a formula for the Plancherel measure for K (R).
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Lowest K -types and Langlands parameters
Borel subgp BK = TK NK ⊂ K , ρK ∈ t∗K half sum of roots.

Define Hf (R) = cent in G(R) of TK ,0, fundamental Cartan
subgroup of G(R).

Suppose γ irr dom genuine regular rep of T̃K ,ρK
, so

JK (γ) ∈ K̂ has highest weight γ − ρK . Fix γ1 ∈ itK (R)∗ wt
of γ.

Fix θ-stable pos ∆+
G ⊂ ∆(g, hf ) so γ1 + ρK dom for ∆+

G .

Define 2ρ∨G = (sum of positive coroots for ∆+
G) ∈ itK (R).

Set height(JK (γ)) = height(γ) = 〈γ1 + ρK ,2ρ∨〉.

Lowest K -types of V ∈ Ĝ(R) are JK (γ) of minimal height.

Theorem. Any lowest K -type JK (γ) of an irr rep J(λ, ν)

determines the discrete Langlands parameter λ.

Assume γ + ρK − ρG ∈
(
T̃f ,ρ
)̂
genuine is dom reg for ∆+

G . Then
H = Hf , and λ = γ + ρK − ρG.

Recall that ∆+
G chosen to make γ + ρK dominant. So hypothesis on

γ + ρK − ρG is always nearly true.
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Discrete series Lowest K -types

Fix G(R) conn; assume TK (R) ⊂ K (R) Cartan in G(R).

Each ∆+
G ⊃ ∆+

K pos roots for TK defines Weyl chamber

C∆∗G
= {γ ∈ itK (R)∗ | γ(α∨) ≥ 0, α ∈ ∆+

G},

closed convex cone in itK (R)∗.

Theorem (Hecht-Schmid). Suppose λ ∈
(
T̃K ,ρ

)̂
genuine is

dom reg for ∆+
G : HC param for a discrete series rep J(λ).

1. Unique lowest K -type of J(λ) is JK (λ+ ρG − ρK ).
2. Every K -type of J(λ) is of the form

JK (λ+ ρG − ρK + S), S = sum of roots in ∆+
G −∆+

K .

I wish that the last few slides could be sketches of the
Hecht-Schmid theorem.

Didn’t manage, so I’ll switch to an app where I can sketch.
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