This is what I do: (restrict representations to compact subgroups)

David Vogan

Department of Mathematics Massachusetts Institute of Technology

RTNCG Zoom 3/15/21

Outline

This is what I do:
David Vogan
Introduction
Examples
How do you do that?
Applications
And now a word from our sponsor

Equivariant K-theory
K-theory and representations

Setting

Compact groups K are relatively easy...
Noncompact groups G are relatively hard.
Harish-Chandra et al. idea:

$$
\text { understand } \pi \in \widehat{G} \text { m understand }\left.\pi\right|_{K}
$$

(nice compact subgroup $K \subset G$).
Get an invariant of a repn $\pi \in \widehat{G}$:

$$
m_{\pi}: \widehat{K} \rightarrow \mathbb{N}, \quad m_{\pi}(\mu)=\text { mult of } \mu \text { in }\left.\pi\right|_{K} .
$$

1. What's the support of m_{π} ? (subset of \widehat{K})
2. What's the rate of growth of m_{π} ?
3. What functions on \widehat{K} can be m_{π} ?

Where can you do this?

Get an invariant of a repn $\pi \in \widehat{G}$:

$$
m_{\pi}: \widehat{K} \rightarrow \mathbb{N}, \quad m_{\pi}(\mu)=\text { mult of } \mu \text { in }\left.\pi\right|_{K}
$$

1. What's the support of m_{π} ? (subset of \widehat{K})
2. What's the rate of growth of m_{π} ?
3. What functions on \widehat{K} can be m_{π} ?

I look at $G=G(\mathbb{R})$ real reductive, $K=K(\mathbb{R})$ max cpt.
Questions are just as interesting, and much less understood, for $G p$-adic, K compact open.

What's an answer look like?

Seek to understand mult of μ in $\left.\pi\right|_{K}(\pi$ irr of G, μ irr of $K)$.
m_{π} is an \mathbb{N}-valued function on an infinite countable set.

One kind of answer:

1. find family $\left\{S_{p} \mid p \in P\right\}$ of functions $S_{p}: \widehat{K} \rightarrow \mathbb{Z}$.
2. find nice interpretation of each S_{p}.
3. find algorithm to write $m_{\pi}=\sum_{p \in P} a_{\pi}^{p} S_{p}$ (finite sum).
4. find algorithm to compute each S_{p}.
(3) $+(4)$ computes m_{π}, (2) gives meaning to answer.

Today $P=\{$ tempered reps of real infl char $\}, S_{p}=m_{p}$ (branching rule for tempered p).

Examples

1. $G=G L(n, \mathbb{C}), K=U(n)$. Typical restriction to K is

$$
\left.\pi\right|_{K}=\operatorname{Ind}_{U(1)^{n}}^{U(n)}(\gamma)=\sum_{\mu \in \widehat{U(n)}} m_{\mu}(\gamma) \gamma \quad\left(\gamma \in \widehat{U(1)^{n}}\right):
$$

$m_{\pi}(\mu)=$ mult of μ is $m_{\mu}(\gamma)=\operatorname{dim}$ of γ wt space.
2. $G=G L(n, \mathbb{R}), K=O(n)$. Typical restriction to K is

$$
\left.\pi\right|_{K}=\operatorname{Ind}_{O(1)^{n}}^{O(n)}(\gamma)=\sum_{\mu \in \widehat{O(n)}} m_{\mu}(\gamma):
$$

$m_{\pi}(\mu)=$ mult of μ in π is $m_{\mu}(\gamma)=$ mult of γ in $\left.\mu\right|_{O(1)^{n}}$.
3. G split of type $E_{8}, K=\operatorname{Spin}(16)$. Typical res to K is

$$
\left.\pi\right|_{\operatorname{Spin}(16)}=\operatorname{Ind}_{M}^{\operatorname{Spin}(16)}(\gamma)=\sum_{\mu \in \operatorname{Spin}(16)} m_{\mu}(\gamma) \gamma ;
$$

here $M \subset \operatorname{Spin}(16)$ subgp of order 512 , central ext of $(\mathbb{Z} / 2 \mathbb{Z})^{8}$.
Moral: The hard work of computing m_{π} takes place inside the world of compact groups.

Lowest K-types for $S p(4, \mathbb{R})$

Representations of maximal compact $K=U(2)$ for $G=S p(4, \mathbb{R})$, parametrized by pairs of integers $a \geq b$. Grouped in families as lowest K-types of a particular series of representations, one for each KGB element x with no complex descents.

Examples

Methods
Applications
Pon un ad

Questions
K-theory
K-theory \& repns

Branching law for ONE tempered rep

In blue are K-types of the tempered representation induced from the first holomorphic discrete series on the long root Levi. Changing first to k th again gives an infinite triangle, bounded on the left by the line $(k+1, *)$ and above by the edge of the dominant chamber.
Multiplicities are shown in red next to each $U(2)$-representation.

Examples

Methods

How do you do that?

Main ideas are due to Harish-Chandra, Langlands, Schmid, and Knapp-Zuckerman.

Description below makes it sound like they're due to me.
Reason: (given my age) I interpreted the topic as What I did.
Start with preorder on \widehat{K}, roughly length of highest weight.
Every rep $\pi \in \widehat{G}$ has one or more lowest K-types μ.
Study all G-reps π of lowest K-type μ.
Find: lowest K-type condition \Longrightarrow Lie alg cohom $(\pi) \neq 0$.
WHICH Lie alg cohom depends on how singular μ is.
Gives the eight familes in picture of LKT's for $\operatorname{Sp}(4, \mathbb{R})$.
More generic $\mu \leadsto$ better cohom $\rightsquigarrow>$ fewer π with LKT μ.
Most generic $\mu \rightsquigarrow$ unique ("discrete series") rep of G with LKT μ. Four red regions in \widehat{K} in $\operatorname{Sp}(4, \mathbb{R})$ picture.
Least generic $\mu \leadsto r$ rk G-param fam ("princ ser") reps with LKT μ. Black region of five K-types in $\operatorname{Sp}(4, \mathbb{R})$ picture.

What do those methods tell you?

Theorem (Langlands) Reductive $G \supset K$ max compact.

1. $\mu \in \widehat{K} \rightsquigarrow H(\mathbb{R})=T A \subset G$ Cartan subgroup.
2. $T=H \cap K$ compact, $A \stackrel{\exp }{\sim} a_{0}$ split vector group.
3. $\mu \in \widehat{K} \rightsquigarrow \lambda \in \widehat{T}$. Precisely: genuine char of \widetilde{T}_{ρ}, M-regular.
4. Put $\quad P=M A N$ (cuspidal) parabolic,
$\delta \in \widehat{M}$ discrete series with HC param λ.
5. $v \in \mathfrak{a}^{*} \rightsquigarrow$, std rep $I(\lambda, v)=\operatorname{Ind}_{P}^{G}(\delta \otimes v \otimes 1)$
6. $I(\lambda, v)$ has μ as a LKT, multiplicity one.
7. $I(\lambda, v)$ has unique $\operatorname{irr} J(\lambda, v)(\mu) \in \widehat{G}$ containing μ.
8. Every $\pi \in \widehat{G}$ of LKT μ is $J(\lambda, v)(\mu)$, some $v \in \mathfrak{a}^{*}$.
9. If $v=0, \mu$ is the unique LKT of $J(\lambda, 0)(\mu)$.

Consequence: reps of LKT μ indexed by cplx vec space a^{*}.

Composition series and characters

Prev slide exactly right; this slide needs care with lim disc ser.
Theory of lowest K types start with preorder on \widehat{K}.
Langlands classification gives bijection $\widehat{K} \leftrightarrow(T, \lambda)$.
\leadsto preorder on pairs (T, λ), inherited by params ($T A, \lambda, v$).
Each std has finite comp series $I(\lambda, v)=\sum_{\lambda^{\prime}, v^{\prime}} m_{\lambda, v^{\prime}}^{\prime^{\prime} v^{\prime}} J\left(\lambda^{\prime}, v^{\prime}\right)$.
Nonnegative integer coeffs $m_{\lambda, v^{\prime}}^{\lambda^{\prime}, v^{\prime}},\left(\lambda^{\prime}, \nu^{\prime}\right) \geq(\lambda, v)$.
Equality in preorder only if $\left(\lambda^{\prime}, v^{\prime}\right)=(\lambda, v)$, and then $m_{\lambda, v}^{\lambda^{\prime}, v^{\prime}}=1$.
Each irr has finite char formula $J(\lambda, v)=\sum_{\lambda^{\prime}, v^{\prime}} M_{\lambda, v^{\prime}}^{\lambda^{\prime}, v^{\prime}} I\left(\lambda^{\prime}, v^{\prime}\right)$. Integer coeffs $M_{\lambda, v^{\prime}}^{\gamma^{\prime}, v^{\prime}},\left(\lambda^{\prime}, \nu^{\prime}\right) \geq(\lambda, v)$.
Equality in preorder only if $\left(\lambda^{\prime}, \nu^{\prime}\right)=(\lambda, v)$, and then $M_{\lambda, v^{\prime}}^{\lambda^{\prime}, v^{\prime}}=1$.
Matrices $m_{\lambda, v}^{\lambda^{\prime}, v^{\prime}}$ and $M_{\lambda, \nu}^{\lambda^{\prime}, v^{\prime}}$ are integer, upper triang, is on diag. They are inverse to each other.
$M_{\lambda, v}^{\lambda^{\prime}, v^{\prime}}$ is computed by Kazhdan-Lusztig theory.

Restriction to K

Recall that plan to compute $\left.\pi\right|_{K}$ was to write multiplicity function m_{π} as finite sum of nice functions M_{p}.

We've done that:

$$
\begin{aligned}
\pi & =\sum_{\lambda^{\prime}, v^{\prime}} M_{\pi}^{\lambda^{\prime}, v^{\prime}} I\left(\lambda^{\prime}, v^{\prime}\right) \\
\left.\pi\right|_{K} & =\left.\sum_{\lambda^{\prime}, v^{\prime}} M_{\pi}^{\lambda^{\prime}, v^{\prime}} I\left(\lambda^{\prime}, v^{\prime}\right)\right|_{K}=\left.\sum_{\lambda^{\prime}, v^{\prime}} M_{\pi}^{\lambda^{\prime}, v^{\prime}} I\left(\lambda^{\prime}, 0\right)\right|_{K} \\
\left.\pi\right|_{K} & =\left.\sum_{\lambda^{\prime}} a_{\pi}^{\lambda^{\prime}} I\left(\lambda^{\prime}, 0\right)\right|_{K}
\end{aligned}
$$

Here $a_{\pi}^{\lambda^{\prime}}=\sum_{v^{\prime}} M_{\pi}^{\lambda^{\prime}, v^{\prime}}$, and $\left\{I\left(\lambda^{\prime}, 0\right)\right\}=\{$ tempered, real infl char $\}$.
Remains to compute $\left.I\left(\lambda^{\prime}, 0\right)\right|_{K}$. A great story, not told today.

What good is this?

Original problem for inf-diml reps: which $\pi \in \widehat{G}(\mathbb{R})$ are unitary?
Knapp and Zuckerman: which π admit invt Hermitian form \langle,\rangle_{π}.
If form exists, and K rep μ has multiplicity $m_{\pi}(\mu)$, then "form restricted to μ gives signature $\left(p_{\pi}(\mu), q_{\pi}(\mu)\right.$).

Find in this way two new functions p_{π}, q_{π} from \widehat{K} to \mathbb{N}.
Like $m_{\pi}, p_{\pi}, q_{\pi}=$ finite integer combs of $\left.I\left(\lambda^{\prime}, 0\right)\right|_{K}$.
Compute signature $\leadsto \rightarrow$ compute finitely many integers.
This sounds like a job for a computer.
[Adams/van Leeuwen/Trapa/DV], Astérisque 417: it is.

How do you compute these things really?

A lot of this mathematics is twentieth century. Around 2000, Jeffrey Adams set out to make software implementing all these algorithms.
He succeeded, mostly because he managed to interest Fokko du Cloux and Marc van Leeuwen.

Software is at www. liegroups.org/. enter any real reductive G, any parameter p.
Then can type

```
composition_series(p)
character_formula(p)
print_branch_irr(p,[height])
is_unitary(p)
```

... and much more.

Plan for today

Remaining slides (not presented): work with Jeff Adams to compute associated varieties of G representations.

Work with real reductive Lie group $G(\mathbb{R})$.
Describe (old) associated cycle $\mathcal{A C}(\pi)$ for irr rep $\pi \in \widehat{G(\mathbb{R})}$: geometric shorthand for approximating restriction to $K(\mathbb{R})$ of π.
Describe algorithm with Adams to compute $\mathcal{A C}(\pi)$. A real algorithm is one that's been implemented on a computer. This one has been, by Adams in the at las software.

Assumptions

$G(\mathbb{C})=G=$ cplx conn reductive alg gp.
$G(\mathbb{R})=$ group of real points for a real form.
Could allow fin cover of open subgp of $G(\mathbb{R})$, so allow nonlinear.
$K(\mathbb{R}) \subset G(\mathbb{R})$ max cpt subgp; $K(\mathbb{R})=G(\mathbb{R})^{\theta}$.
$\theta=$ alg inv of $G ; K=G^{\theta}$ possibly disconn reductive.
Harish-Chandra idea:
∞-diml reps of $G(\mathbb{R}) \leadsto$ alg gp $K \curvearrowright$ cplx Lie alg \mathfrak{g}
(g, K)-module is vector space V with

1. repn π_{K} of algebraic group $K: V=\sum_{\mu \in \overparen{K}} m_{V}(\mu) \mu$
2. repn π_{g} of cplx Lie algebra g
3. $d \pi_{K}=\pi_{\mathrm{g}} \mid \mathrm{t}, \quad \pi_{K}(k) \pi_{\mathrm{g}}(X) \pi_{K}\left(k^{-1}\right)=\pi_{\mathrm{g}}(\operatorname{Ad}(k) X)$.

In module notation, cond (3) reads $k \cdot(X \cdot v)=(\operatorname{Ad}(k) X) \cdot(k \cdot v)$.

Geometrizing representations

$G(\mathbb{R})$ real reductive, $K(\mathbb{R})$ max cpt, $g(\mathbb{R})$ Lie alg $\mathcal{N}^{*}=$ cone of nilpotent elements in \mathfrak{g}^{*}.
$\mathcal{N}_{\mathbb{R}}^{*}=\mathcal{N}^{*} \cap i \mathfrak{g}(\mathbb{R})^{*}$, finite $\# G(\mathbb{R})$ orbits.
$\mathcal{N}_{\theta}^{*}=\mathcal{N}^{*} \cap(\mathrm{~g} / \mathrm{f})^{*}$, finite \# K orbits.
Goal 1: Attach orbits to representations in theory.
Goal 2: Compute them in practice.
"In theory there is no difference between theory and practice. In practice there is." Jan L. A. van de Snepscheut (or not).

$$
\begin{array}{ll}
\left(\pi, \mathcal{H}_{\pi}\right) \text { irr rep of } G(\mathbb{R}) & \mathcal{H}_{\pi}^{K} \text { irr }(\mathfrak{g}, K) \text {-module } \\
\downarrow \text { Howe wavefront } & \downarrow \text { assoc var of gr } \\
W F(\pi)=G(\mathbb{R}) \text { orbs on } \mathcal{N}_{\mathbb{R}}^{*} & \mathcal{A C} C(\pi)=K \text { orbits on } \mathcal{N}_{\theta}^{*}
\end{array}
$$

Columns related by HC, Kostant-Rallis, Sekiguchi, Schmid-Vilonen. So Goal 1 is completed. Turn to Goal 2...

Associated varieties

$\mathcal{F}(\mathfrak{g}, K)=$ finite length (\mathfrak{g}, K)-modules...
noncommutative world we care about.
$C(\mathfrak{g}, K)=\mathrm{f} . \mathrm{g} .(S(\mathfrak{g} / \mathrm{f}), K)$-modules, support $\subset \mathcal{N}_{\theta}^{*} \ldots$ commutative world where geometry can help.

$$
\mathcal{F}(\mathfrak{g}, K) \stackrel{\mathrm{gr}}{\leadsto} C(\mathfrak{g}, K)
$$

gr not quite a functor (choice of good filts), but
Prop. gr induces surjection of Grothendieck groups

$$
K \mathcal{F}(\mathfrak{g}, K) \xrightarrow{\mathrm{gr}} K C(\mathfrak{g}, K) ;
$$

image records restriction to K of HC module.
So restrictions to K of HC modules sit in equivariant coherent sheaves on nilp cone in $(\mathfrak{g} / \mathfrak{f})^{*}$

$$
K C(\mathfrak{g}, K)==_{\operatorname{def}} K^{K}\left(\mathcal{N}_{\theta}^{*}\right)
$$

equivariant K-theory of the K-nilpotent cone.
Goal 2: compute $K^{K}\left(\mathcal{N}_{\theta}^{*}\right)$ and the map Prop.

Equivariant K-theory

Setting: (complex) algebraic group K acts on (complex) algebraic variety X.
Originally K-theory was about vector bundles, but for us coherent sheaves are more useful.
$\operatorname{Coh}^{K}(X)=$ abelian categ of coh sheaves on X with K action.
$K^{K}(X)={ }_{\text {def }}$ Grothendieck group of $\operatorname{Coh}^{K}(X)$.
Example: $\operatorname{Coh}^{K}(\mathrm{pt})=\operatorname{Rep}(K)($ fin-diml reps of $K)$.
$K^{K}(\mathrm{pt})=R(K)=$ rep ring of K; free \mathbb{Z}-module, basis \widehat{K}.
Example: $X=K / H ; \operatorname{Coh}^{K}(K / H) \simeq \operatorname{Rep}(H)$
$E \in \operatorname{Rep}(H) \rightsquigarrow \mathcal{E}={ }_{\operatorname{def}} K \times_{H} E$ eqvt vector bdle on K / H
$K^{K}(K / H)=R(H)$.
Example: $X=V$ vector space.
$E \in \operatorname{Rep}(K) \rightsquigarrow$ proj module $O_{V}(E)=\operatorname{def} O_{V} \otimes E \in \operatorname{Coh}^{K}(X)$ proj resolutions $\Longrightarrow K^{K}(V) \simeq R(K)$, basis $\left\{O_{V}(\tau)\right\}$.

Doing nothing carefully

Suppose $K \curvearrowright X$ with finitely many orbits:

$$
X=Y_{1} \cup \cdots \cup Y_{r}, \quad Y_{i}=K \cdot y_{i} \simeq K / K^{y_{i}}
$$

Orbits partially ordered by $Y_{i} \geq Y_{j}$ if $Y_{j} \subset \overline{Y_{i}}$.
$(\tau, E) \in \widehat{K^{y_{i}}} \rightsquigarrow \mathcal{E}(\tau) \in \operatorname{Coh}^{K}\left(Y_{i}\right)$.
Choose (always possible) K-eqvt coherent extension

$$
\widetilde{\mathcal{E}}(\tau) \in \operatorname{Coh}^{K}\left(\overline{Y_{i}}\right) \rightsquigarrow[\widetilde{\mathcal{E}}] \in K^{K}\left(\overline{Y_{i}}\right) .
$$

Class [$\widetilde{\mathcal{E}}]$ on \bar{Y}_{i} unique modulo $K^{K}\left(\partial Y_{i}\right)$.
Set of all $[\widetilde{\mathcal{E}}(\tau)]$ (as Y_{i} and τ vary) is basis of $K^{K}(X)$.
Suppose $M \in \operatorname{Coh}^{K}(X)$; write class of M in this basis

$$
[M]=\sum_{i=1}^{r} \sum_{\tau \in \widetilde{K^{y_{i}}}} n_{\tau}(M)[\widetilde{\mathcal{E}}(\tau)] .
$$

Maxl orbits in $\operatorname{Supp}(M)=\operatorname{maxl} Y_{i}$ with some $n_{\tau}(M) \neq 0$.
Coeffs $n_{\tau}(M)$ on maxl Y_{i} ind of choices of exts $\widetilde{\mathcal{E}}(\tau)$.

Our story so far

We have found

1. homomorphism
$\operatorname{virt} G(\mathbb{R})$ reps $K \mathcal{F}(\mathrm{~g}, K) \xrightarrow{\mathrm{gr}} K^{K}\left(\mathcal{N}_{\theta}^{*}\right)$ eqvt K-theory
2. geometric basis $\{[\widetilde{\mathcal{E}(\tau)}]\}$ for $K^{K}\left(\mathcal{N}_{\theta}^{*}\right)$, indexed by irr reps of isotropy gps
3. expression of $[\operatorname{gr}(\pi)]$ in geom basis $\rightsquigarrow \leadsto \mathcal{A C}(\pi)$.

Problem is expressing ourselves...
Teaser for the next section: Kazhdan and Lusztig taught us how to express π using std reps $I(\gamma)$:

$$
[\pi]=\sum_{\gamma} m_{\gamma}(\pi)[I(\gamma)], \quad m_{\gamma}(\pi) \in \mathbb{Z}
$$

$\{[\operatorname{gr} I(\gamma)]\}$ is another basis of $K^{K}\left(\mathcal{N}_{\theta}^{*}\right)$.
Last goal is compute change of basis matrix.

The last goal

Studying cone $\mathcal{N}_{\theta}^{*}=$ nilp lin functionals on $\mathfrak{g} / \mathfrak{f}$.
Found (for free) basis $\{[\widetilde{\mathcal{E}(\tau)}]\}$ for $K^{K}\left(\mathcal{N}_{\theta}^{*}\right)$, indexed by orbit K / K^{i} and irr rep τ of K^{i}.
Found (by rep theory) second basis $\{[\operatorname{gr} I(\gamma)]\}$, indexed by (parameters for) std reps of $G(\mathbb{R})$.
To compute associated cycles, enough to write

$$
[\operatorname{gr} I(\gamma)]=\sum_{\text {orbits }} \sum_{\substack{\tau \text { irr for } \\ \text { isotropy }}} N_{\tau}(\gamma)[\widetilde{\mathcal{E}}(\tau)] .
$$

Equivalent to compute inverse matrix

$$
[\widetilde{\mathcal{E}}(\tau)]=\sum_{\gamma} n_{\gamma}(\tau)[\operatorname{gr} I(\gamma)]
$$

Need to relate geom of nilp cone to geom std reps: parabolic subgroups. Use Springer resolution.

Introducing Springer

$\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{s}$ Cartan decomp, $\mathcal{N}_{\theta}^{*} \simeq \mathcal{N}_{\theta}={ }_{\text {def }} \mathcal{N} \cap \mathfrak{s}$ nilp cone in \mathfrak{s}. Kostant-Rallis, Jacobson-Morozov: nilp $X \in \mathfrak{s} \leadsto Y \in \mathfrak{s}, H \in \mathfrak{f}$

$$
\begin{aligned}
{[H, X] } & =2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H \\
\mathfrak{g}[k] & =\mathfrak{f}[k] \oplus \mathfrak{s}[k] \quad(\operatorname{ad}(H) \text { eigenspace })
\end{aligned}
$$

$\leadsto \mathfrak{g}[\geq 0]=_{\text {def }} \mathfrak{q}=\mathfrak{I}+\mathfrak{u} \quad \theta$-stable parabolic.
Theorem (Kostant-Rallis) Write $O=K \cdot X \subset \mathcal{N}_{\theta}$.

1. $\mu: O_{Q}={ }_{\text {def }} K \times_{Q \cap K} \mathfrak{s}[\geq 2] \rightarrow \bar{O}, \quad(k, Z) \mapsto \operatorname{Ad}(k) Z$ is proper birational map onto \bar{O}.
2. $K^{X}=(Q \cap K)^{X}=(L \cap K)^{X}(U \cap K)^{X}$ is a Levi decomp; so $\widehat{K^{X}}=\left[(L \cap K)^{X}\right]^{-}$.
So have resolution of singularities of \bar{O} :

$$
\begin{array}{cc}
\text { vec bdle } \swarrow & K \times_{Q \cap K} s[\geq 2] \\
K / Q \cap K & \searrow^{\mu} \\
\hline & \bar{O}
\end{array}
$$

Use it (i.e., copy McGovern, Achar) to calculate equivariant K-theory. . .

Using Springer to calculate K-theory

$X \in \mathcal{N}_{\theta}$ represents $O=K \cdot X$.
$\mu: O_{Q}=_{\text {def }} K \times_{Q \cap K} \mathfrak{s}[\geq 2] \rightarrow \bar{O}$ Springer resolution.
Theorem Recall $\widehat{K^{X}}=\left[(L \cap K)^{X}\right]^{-}$.

1. $K^{K}\left(O_{Q}\right)$ has basis of eqvt vec bdles:

$$
(\sigma, F) \in \operatorname{Rep}(L \cap K) \rightsquigarrow \mathcal{F}(\sigma) .
$$

2. Get extension of $\mathcal{E}\left(\left.\sigma\right|_{\left.(L \cap K)^{x}\right)}\right.$ on O

$$
[\overline{\mathcal{F}}(\sigma)]==_{\operatorname{def}} \sum_{i}(-1)^{i}\left[R^{i} \mu_{*}(\mathcal{F}(\sigma))\right] \in K^{K}(\bar{O})
$$

3. Compute (very easily) $[\overline{\mathcal{F}}(\sigma)]=\sum_{\gamma} n_{\gamma}(\sigma)[\operatorname{gr} I(\gamma)]$.
4. Each $\operatorname{irr} \tau \in\left[(L \cap K)^{X}\right]^{-}$extends to (virtual) rep $\sigma(\tau)$ of $L \cap K$; can choose $\overline{\mathcal{F}(\sigma(\tau))}$ as extension of $\mathcal{E}(\tau)$.

Now we're done

Recall $X \in \mathcal{N}_{\theta} \rightsquigarrow O=K \cdot X ; \tau \in\left[(L \cap K)^{X}\right]^{\sim}$.
Now we know formulas

$$
[\widetilde{\mathcal{E}}(\tau)]=[\overline{\mathcal{F}(\sigma(\tau))}]=\sum_{\gamma} n_{\gamma}(\tau)[\operatorname{gr} I(\gamma)]
$$

Here's why this does what we want:

1. inverting matrix $n_{\gamma}(\tau) \rightsquigarrow$ matrix $N_{\tau}(\gamma)$ writing $[\widetilde{\mathcal{E}}(\tau)]$ in terms of $[\mathrm{gr} I(\gamma)]$.
2. multiplying $N_{\tau}(\gamma)$ by Kazhdan-Lusztig matrix $m_{\gamma}(\pi)$ \leadsto matrix $n_{\tau}(\pi)$ writing $[\mathrm{gr} \pi]$ in terms of $[\widetilde{\mathcal{E}}(\tau)]$.
3. Nonzero entries $n_{\tau}(\pi) \rightsquigarrow \mathcal{A C}(\pi)$.

Side benefit: algorithm (for $G(\mathbb{R}) \mathrm{cplx}$) also computes bijection (conj by Lusztig, estab by Bezrukavnikov)

$$
\text { (dom wts) } \leftrightarrow(\text { pairs }(\tau, O))
$$

