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Setting

Compact groups K are relatively easy. . .
Noncompact groups G are relatively hard.
Harish-Chandra et al. idea:

understand π ∈ Ĝf understand π|K

(nice compact subgroup K ⊂ G).

Get an invariant of a repn π ∈ Ĝ:

mπ : K̂ → N, mπ(µ) = mult of µ in π|K .

1. What’s the support of mπ? (subset of K̂ )
2. What’s the rate of growth of mπ?
3. What functions on K̂ can be mπ?
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Where can you do this?

Get an invariant of a repn π ∈ Ĝ:

mπ : K̂ → N, mπ(µ) = mult of µ in π|K .

1. What’s the support of mπ? (subset of K̂ )
2. What’s the rate of growth of mπ?
3. What functions on K̂ can be mπ?

I look at G = G(R) real reductive, K = K (R) max cpt.

Questions are just as interesting, and much less
understood, for G p-adic, K compact open.
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What’s an answer look like?

Seek to understand mult of µ in π|K (π irr of G, µ irr of K ).

mπ is an N-valued function on an infinite countable set.

One kind of answer:

1. find family {Sp | p ∈ P} of functions Sp : K̂ → Z.
2. find nice interpretation of each Sp.
3. find algorithm to write mπ =

∑
p∈P ap

πSp (finite sum).
4. find algorithm to compute each Sp.

(3) + (4) computes mπ, (2) gives meaning to answer.

Today P = { tempered reps of real infl char }, Sp = mp
(branching rule for tempered p).
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Examples
1. G = GL(n,C), K = U(n). Typical restriction to K is

π|K = IndU(n)
U(1)n(γ) =

∑
µ∈Û(n)

mµ(γ)γ (γ ∈ Û(1)n) :

mπ(µ) = mult of µ is mµ(γ) = dim of γ wt space.

2. G = GL(n,R), K = O(n). Typical restriction to K is

π|K = IndO(n)
O(1)n(γ) =

∑
µ∈Ô(n)

mµ(γ) :

mπ(µ) = mult of µ in π is mµ(γ) = mult of γ in µ|O(1)n .

3. G split of type E8, K = Spin(16). Typical res to K is

π|Spin(16) = IndSpin(16)
M (γ) =

∑
µ∈ ̂Spin(16)

mµ(γ)γ;

here M ⊂ Spin(16) subgp of order 512, central ext of (Z/2Z)8.

Moral: The hard work of computing mπ takes place inside
the world of compact groups.
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Lowest K -types for Sp(4,R)
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Representations of maximal com-
pact K = U(2) for G = Sp(4,R),
parametrized by pairs of integers
a ≥ b. Grouped in families as low-
est K -types of a particular series
of representations, one for each
KGB element x with no complex
descents.
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Branching law for ONE tempered rep
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In blue are K -types of the tempered rep-
resentation induced from the first holo-
morphic discrete series on the long root
Levi. Changing first to k th again gives
an infinite triangle, bounded on the left
by the line (k + 1, ∗) and above by the
edge of the dominant chamber.
Multiplicities are shown in red next to
each U(2)-representation.
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How do you do that?

Main ideas are due to Harish-Chandra, Langlands,
Schmid, and Knapp-Zuckerman.

Description below makes it sound like they’re due to me.

Reason: (given my age) I interpreted the topic as What I did.

Start with preorder on K̂ , roughly length of highest weight.

Every rep π ∈ Ĝ has one or more lowest K -types µ.
Study all G-reps π of lowest K -type µ.
Find: lowest K -type condition =⇒ Lie alg cohom(π) , 0.
WHICH Lie alg cohom depends on how singular µ is.

Gives the eight familes in picture of LKT’s for Sp(4,R).

More generic µ better cohom fewer π with LKT µ.

Most generic µ unique (“discrete series”) rep of G with LKT µ.
Four red regions in K̂ in Sp(4,R) picture.

Least generic µ rkG-param fam (“princ ser”) reps with LKT µ.
Black region of five K -types in Sp(4,R) picture.
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What do those methods tell you?

Theorem (Langlands) Reductive G ⊃ K max compact.

1. µ ∈ K̂  H(R) = TA ⊂ G Cartan subgroup.
2. T = H ∩ K compact, A

exp
' a0 split vector group.

3. µ ∈ K̂  λ ∈ T̂ . Precisely: genuine char of T̃ρ, M-regular.

4. Put P = MAN (cuspidal) parabolic,

δ ∈ M̂ discrete series with HC param λ.

5. ν ∈ a∗  , std rep I(λ, ν) = IndG
P (δ ⊗ ν ⊗ 1)

6. I(λ, ν) has µ as a LKT, multiplicity one.
7. I(λ, ν) has unique irr J(λ, ν)(µ) ∈ Ĝ containing µ.
8. Every π ∈ Ĝ of LKT µ is J(λ, ν)(µ), some ν ∈ a∗.
9. If ν = 0, µ is the unique LKT of J(λ,0)(µ).

Consequence: reps of LKT µ indexed by cplx vec space a∗.
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Composition series and characters

Prev slide exactly right; this slide needs care with lim disc ser.

Theory of lowest K types start with preorder on K̂ .

Langlands classification gives bijection K̂ ↔ (T , λ).

 preorder on pairs (T , λ), inherited by params (TA, λ, ν).

Each std has finite comp series I(λ, ν) =
∑
λ′ ,ν′ m

λ′ ,ν′

λ,ν J(λ′, ν′).
Nonnegative integer coeffs mλ′ ,ν′

λ,ν , (λ′, ν′) ≥ (λ, ν).
Equality in preorder only if (λ′, ν′) = (λ, ν), and then mλ′ ,ν′

λ,ν = 1.

Each irr has finite char formula J(λ, ν) =
∑
λ′ ,ν′ M

λ′ ,ν′

λ,ν I(λ′, ν′).
Integer coeffs Mλ′ ,ν′

λ,ν , (λ′, ν′) ≥ (λ, ν).
Equality in preorder only if (λ′, ν′) = (λ, ν), and then Mλ′ ,ν′

λ,ν = 1.

Matrices mλ′ ,ν′

λ,ν and Mλ′ ,ν′

λ,ν are integer, upper triang, 1s on diag.
They are inverse to each other.

Mλ′ ,ν′

λ,ν is computed by Kazhdan-Lusztig theory.
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Restriction to K

Recall that plan to compute π|K was to write multiplicity
function mπ as finite sum of nice functions Mp.

We’ve done that:

π =
∑
λ′,ν′

Mλ′,ν′

π I(λ′, ν′)

π|K =
∑
λ′,ν′

Mλ′,ν′

π I(λ′, ν′)|K =
∑
λ′,ν′

Mλ′,ν′

π I(λ′,0)|K

π|K =
∑
λ′

aλ
′

π I(λ′,0)|K .

Here aλ′π =
∑
ν′ M

λ′ ,ν′

π , and {I(λ′,0)} =
{

tempered, real infl char
}
.

Remains to compute I(λ′,0)|K . A great story, not told today.
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What good is this?

Original problem for inf-diml reps: which π ∈ Ĝ(R) are unitary?

Knapp and Zuckerman: which π admit invt Hermitian form 〈, 〉π.

If form exists, and K rep µ has multiplicity mπ(µ), then “form
restricted to µ gives signature (pπ(µ),qπ(µ)).

Find in this way two new functions pπ, qπ from K̂ to N.

Like mπ, pπ, qπ = finite integer combs of I(λ′,0)|K .

Compute signature! compute finitely many integers.

This sounds like a job for a computer.

[Adams/van Leeuwen/Trapa/DV], Astérisque 417: it is.
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How do you compute these things really?

A lot of this mathematics is twentieth century.
Around 2000, Jeffrey Adams set out to make
software implementing all these algorithms.
He succeeded, mostly because he managed to
interest Fokko du Cloux and Marc van Leeuwen.
Software is at www.liegroups.org/.
enter any real reductive G, any parameter p.
Then can type

composition_series(p)
character_formula(p)
print_branch_irr(p,[height])
is_unitary(p)

. . . and much more.
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Plan for today

Remaining slides (not presented): work with Jeff Adams
to compute associated varieties of G representations.

Work with real reductive Lie group G(R).
Describe (old) associated cycle AC(π) for irr rep
π ∈ Ĝ(R): geometric shorthand for approximating
restriction to K (R) of π.
Describe algorithm with Adams to compute AC(π).
A real algorithm is one that’s been implemented on a
computer. This one has been, by Adams in the atlas

software.
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Assumptions

G(C) = G = cplx conn reductive alg gp.
G(R) = group of real points for a real form.
Could allow fin cover of open subgp of G(R), so allow nonlinear.

K (R) ⊂ G(R) max cpt subgp; K (R) = G(R)θ.
θ = alg inv of G; K = Gθ possibly disconn reductive.
Harish-Chandra idea:
∞-diml reps of G(R)! alg gp K y cplx Lie alg g

(g,K )-module is vector space V with
1. repn πK of algebraic group K : V =

∑
µ∈K̂ mV (µ)µ

2. repn πg of cplx Lie algebra g
3. dπK = πg|k, πK (k)πg(X )πK (k−1) = πg(Ad(k)X ).

In module notation, cond (3) reads k · (X · v) = (Ad(k)X ) · (k · v).
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Geometrizing representations
G(R) real reductive, K (R) max cpt, g(R) Lie alg
N∗ = cone of nilpotent elements in g∗.
N∗R = N∗ ∩ ig(R)∗, finite # G(R) orbits.
N∗θ = N∗ ∩ (g/k)∗, finite # K orbits.
Goal 1: Attach orbits to representations in theory.
Goal 2: Compute them in practice.
“In theory there is no difference between theory and practice. In
practice there is.” Jan L. A. van de Snepscheut (or not).

(π,Hπ) irr rep of G(R) HK
π irr (g,K )-module−
→ Howe wavefront
−
→ assoc var of gr

WF(π) = G(R) orbs on N∗R AC(π) = K orbits on N∗θ

Columns related by HC, Kostant-Rallis, Sekiguchi, Schmid-Vilonen.

So Goal 1 is completed. Turn to Goal 2. . .
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Associated varieties
F (g,K ) = finite length (g,K )-modules. . .

noncommutative world we care about.

C(g,K ) = f.g. (S(g/k),K )-modules, support ⊂ N∗θ . . .

commutative world where geometry can help.

F (g,K )
gr
 C(g,K )

gr not quite a functor (choice of good filts), but

Prop. gr induces surjection of Grothendieck groups
KF (g,K )

gr
−→ KC(g,K );

image records restriction to K of HC module.
So restrictions to K of HC modules sit in equivariant
coherent sheaves on nilp cone in (g/k)∗

KC(g,K ) =def K K (N∗θ ),

equivariant K -theory of the K -nilpotent cone.
Goal 2: compute K K (N∗θ ) and the map Prop.
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Equivariant K -theory

Setting: (complex) algebraic group K acts on
(complex) algebraic variety X .
Originally K -theory was about vector bundles, but for
us coherent sheaves are more useful.
CohK (X ) = abelian categ of coh sheaves on X with K action.

K K (X ) =def Grothendieck group of CohK (X ).

Example: CohK (pt) = Rep(K ) (fin-diml reps of K ).

K K (pt) = R(K ) = rep ring of K ; free Z-module, basis K̂ .

Example: X = K /H; CohK (K /H) ' Rep(H)

E ∈ Rep(H) E =def K ×H E eqvt vector bdle on K /H

K K (K /H) = R(H).
Example: X = V vector space.
E ∈ Rep(K ) proj module OV (E) =def OV ⊗ E ∈ CohK (X )

proj resolutions =⇒ K K (V ) ' R(K ), basis
{
OV (τ)

}
.
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Doing nothing carefully
Suppose K y X with finitely many orbits:

X = Y1 ∪ · · · ∪ Yr , Yi = K · yi ' K /K yi .

Orbits partially ordered by Yi ≥ Yj if Yj ⊂ Yi .

(τ,E) ∈ K̂ yi  E(τ) ∈ CohK (Yi).

Choose (always possible) K -eqvt coherent extension

Ẽ(τ) ∈ CohK (Yi) [Ẽ] ∈ K K (Yi).

Class [Ẽ] on Y i unique modulo K K (∂Yi).

Set of all [Ẽ(τ)] (as Yi and τ vary) is basis of K K (X ).

Suppose M ∈ CohK (X ); write class of M in this basis

[M] =
r∑

i=1

∑
τ∈K̂ yi

nτ(M)[Ẽ(τ)].

Maxl orbits in Supp(M) = maxl Yi with some nτ(M) , 0.

Coeffs nτ(M) on maxl Yi ind of choices of exts Ẽ(τ).
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Our story so far

We have found
1. homomorphism

virt G(R) reps KF (g,K )
gr
−→ K K (N∗θ ) eqvt K -theory

2. geometric basis
{
[Ẽ(τ)]

}
for K K (N∗θ ), indexed by irr

reps of isotropy gps

3. expression of [gr(π)] in geom basis AC(π).

Problem is expressing ourselves. . .
Teaser for the next section: Kazhdan and Lusztig
taught us how to express π using std reps I(γ):

[π] =
∑
γ

mγ(π)[I(γ)], mγ(π) ∈ Z.{
[gr I(γ)]

}
is another basis of K K (N∗θ ).

Last goal is compute change of basis matrix.
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The last goal

Studying cone N∗θ = nilp lin functionals on g/k.

Found (for free) basis
{
[Ẽ(τ)]

}
for K K (N∗θ ), indexed by

orbit K /K i and irr rep τ of K i .
Found (by rep theory) second basis

{
[gr I(γ)]

}
,

indexed by (parameters for) std reps of G(R).
To compute associated cycles, enough to write

[gr I(γ)] =
∑

orbits

∑
τ irr for
isotropy

Nτ(γ)[Ẽ(τ)].

Equivalent to compute inverse matrix

[Ẽ(τ)] =
∑
γ

nγ(τ)[gr I(γ)].

Need to relate geom of nilp cone to geom std reps:
parabolic subgroups. Use Springer resolution.
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Introducing Springer
g = k ⊕ s Cartan decomp, N∗θ ' Nθ =def N ∩ s nilp cone in s.
Kostant-Rallis, Jacobson-Morozov: nilp X ∈ s Y ∈ s, H ∈ k

[H ,X ] = 2X , [H ,Y ] = −2Y , [X ,Y ] = H ,

g[k ] = k[k ] ⊕ s[k ] (ad(H) eigenspace).
 g[≥0] =def q = l+ u θ-stable parabolic.

Theorem (Kostant-Rallis) Write O = K · X ⊂ Nθ.
1. µ : OQ =def K ×Q∩K s[≥2]→ O, (k ,Z ) 7→ Ad(k)Z is

proper birational map onto O.

2. K X = (Q ∩ K )X = (L ∩ K )X (U ∩ K )X is a Levi
decomp; so K̂ X = [(L ∩ K )X ] .̂

So have resolution of singularities of O:
K ×Q∩K s[≥2]

vec bdle
↙ ↘

µ

K /Q ∩ K O

Use it (i.e., copy McGovern, Achar) to calculate
equivariant K -theory. . .
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Using Springer to calculate K -theory

X ∈ Nθ represents O = K · X .
µ : OQ =def K ×Q∩K s[≥2]→ O Springer resolution.

Theorem Recall K̂ X = [(L ∩ K )X ]̂ .

1. K K (OQ) has basis of eqvt vec bdles:
(σ,F ) ∈ Rep(L ∩ K ) F (σ).

2. Get extension of E(σ|(L∩K )X ) on O

[F (σ)] =def

∑
i

(−1)i [R iµ∗(F (σ))] ∈ K K (O).

3. Compute (very easily) [F (σ)] =
∑
γ nγ(σ)[gr I(γ)].

4. Each irr τ ∈ [(L ∩ K )X ]̂ extends to (virtual) rep σ(τ)
of L ∩ K ; can choose F (σ(τ)) as extension of E(τ).
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Now we’re done

Recall X ∈ Nθ  O = K · X ; τ ∈ [(L ∩ K )X ]̂ .
Now we know formulas

[Ẽ(τ)] = [F (σ(τ))] =
∑
γ

nγ(τ)[gr I(γ)].

Here’s why this does what we want:

1. inverting matrix nγ(τ) matrix Nτ(γ) writing [Ẽ(τ)] in
terms of [gr I(γ)].

2. multiplying Nτ(γ) by Kazhdan-Lusztig matrix mγ(π)

 matrix nτ(π) writing [gr π] in terms of [Ẽ(τ)].

3. Nonzero entries nτ(π) AC(π).

Side benefit: algorithm (for G(R) cplx) also computes
bijection (conj by Lusztig, estab by Bezrukavnikov)

(dom wts)↔ (pairs (τ,O))
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