Signatures of Hermitian forms and unitary representations

Jeffrey Adams Marc van Leeuwen Peter Trapa
David Vogan Wai Ling Yee

Taipei Conference on Representation Theory,
December 20, 2010
Outline

Introduction

Character formulas

Hermitian forms

Character formulas for invariant forms

Computing easy Hermitian KL polynomials

Unitarity algorithm
Introduction

\(G(\mathbb{R}) = \) real points of complex connected reductive alg \(G \)

Problem: find \(\hat{G}(\mathbb{R})_u = \) irr unitary reps of \(G(\mathbb{R}) \).

Harish-Chandra: \(\hat{G}(\mathbb{R})_u \subset \hat{G}(\mathbb{R}) = \) quasisimple irr reps.

Unitary reps = quasisimple reps with pos def invt form.

Example: \(G(\mathbb{R}) \) compact \(\Rightarrow \hat{G}(\mathbb{R})_u = \hat{G}(\mathbb{R}) = \) discrete set.

Example: \(G(\mathbb{R}) = \mathbb{R} \);
\[
\hat{G}(\mathbb{R}) = \{ \chi_z(t) = e^{zt} \ (z \in \mathbb{C}) \} \simeq \mathbb{C}
\]
\[
\hat{G}(\mathbb{R})_u = \{ \chi_{i\xi} \ (\xi \in \mathbb{R}) \} \simeq i\mathbb{R}
\]

Suggests: \(\hat{G}(\mathbb{R})_u = \) real pts of cplx var \(\hat{G}(\mathbb{R}) \). Almost . . .

\(\hat{G}(\mathbb{R})_h = \) reps with invt form: \(\hat{G}(\mathbb{R})_u \subset \hat{G}(\mathbb{R})_h \subset \hat{G}(\mathbb{R}) \).

Approximately (Knapp): \(\hat{G}(\mathbb{R}) = \) cplx alg var, real pts \(\hat{G}(\mathbb{R})_h \); subset \(\hat{G}(\mathbb{R})_u \) cut out by real algebraic ineqs.

Today: algorithm making inequalities computable.
Example: $SL(2, \mathbb{R})$ spherical reps

$G(\mathbb{R}) = SL(2, \mathbb{R})$ acts on upper half plane $\mathbb{H} \sim \text{repn } E(\nu)$ on $\nu^2 - 1$ eigenspace of Laplacian $\Delta_{\mathbb{H}}$.

Unique $SO(2)$-invt eigenfunction ϕ_ν equal 1 at i.

Even for $\nu \in i\mathbb{R}$, $E(\nu)$ too fat to carry invt Herm form. Better: $I(\nu) = C^\infty_c(\mathbb{H})/(\text{image of } \Delta_{\mathbb{H}} - (\nu^2 - 1))$.

Have G-eqvt linear map $I(\nu) \xrightarrow{A(\nu)} E(\nu)$,

$$A(\nu)f(y) = \int_{\mathbb{H}} f(x)\phi_\nu(x^{-1}y) \, dy.$$

Proposition

For $\nu^2 - 1$ real, $I(\nu)$ admits non-zero invt Herm form

$$\langle f_1, f_2 \rangle = \int_{\mathbb{H}} (A(\nu)f_1(y))\overline{f_2(y)} \, dy$$

radical of form $= \ker A(\nu) = \text{max proper submod of } I(\nu)$.

Define $J(\nu) = I(\nu)/\ker A(\nu)$ (all $\nu \in \mathbb{C}$).
Calculating signatures

Adams et al.

Introduction

Character formulas

Hermitian forms

Char formulas for invt forms

Easy Herm KL polys

Unitarity algorithm

SL(2, ℝ) spherical hermitian dual

\[
I(\nu) = C_c(\mathbb{H})/(\text{im} \Delta_{\mathbb{H}} - (\nu^2 - 1)), \quad J(\nu) = I(\nu)/\ker A(\nu)
\]

\[
J(\nu) \simeq J(\nu') \iff \nu = \pm \nu' \Rightarrow \hat{G}(\mathbb{R})_{sph} = \{J(\nu)\} \simeq \mathbb{C}/\pm 1.
\]

Cplx conj for real form of \(\hat{G}(\mathbb{R})_{sph} \) is \(\nu \mapsto -\nu \); real pts

\[
\hat{G}(\mathbb{R})_{sph,h} \simeq (i\mathbb{R} \cup \mathbb{R})/\pm 1 \subset \mathbb{C}/\pm 1
\]

These are sph Herm reps. Which are unitary?

Need “signature” of Herm form on inf-diml space \(I(\nu) \).

Harish-Chandra idea: \(\hat{K} = SO(2) \leadsto 1\)-diml subspaces

\[
I(\nu)_{2m} = \{ f \in I(\nu) \mid \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot f = e^{2im\theta} f \}.
\]

\[
I(\nu) \supset \sum_m I(\nu)_{2m}, \quad \text{(dense subspace)}
\]

Decomp is orthogonal for any invariant Herm form.

Signature + or − or 0 for each \(m \). Form analytic in \(\nu \), so changes in signature \(\leadsto \) orders of vanishing.
Deforming signatures for $SL(2, \mathbb{R})$

Here’s how signatures of the reps $I(\nu)$ change with ν.

$\nu \in i\mathbb{R}$, $I(\nu)$ “⊂” $L^2(\mathbb{H})$: unitary, signature positive.

$0 < \nu < 1$, $I(\nu)$ irr: signature remains positive.

$\nu = 1$, form pos on quotient $J(1) \leftarrow I(1) \leftrightarrow SO(2)$ rep 0.

$\nu = 1$, form has simple zero, pos “residue” on ker $A(1)$.

$1 < \nu < 3$, across zero at $\nu = 1$, signature changes.

$\nu = 3$, form $- + -$ on $J(3) \leftarrow I(3)$.

$\nu = 3$, form has simple zero, neg “residue” on ker $A(3)$.

$3 < \nu < 5$, across zero at $\nu = 3$, signature changes. ETC.

Conclude: $J(\nu)$ unitary, $\nu \in [0, 1]$; nonunitary, $\nu \in (1, \infty)$.

<table>
<thead>
<tr>
<th>ν</th>
<th>$\nu = 0$</th>
<th>$0 < \nu < 1$</th>
<th>$\nu = 1$</th>
<th>$1 < \nu < 3$</th>
<th>$\nu = 3$</th>
<th>$3 < \nu < 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
Spherical unitary dual for $SL(2, \mathbb{R})$...

...and a preview of more general groups.

Bargmann picture for $SL(2, \mathbb{R})$

\[\begin{array}{ccc}
-i\infty & 1 & i\infty \\
-1 & & \\
\end{array} \]

\[
SL(2, \mathbb{R}) \quad G(\mathbb{R})
\]

- $l(\nu), \nu \in \mathbb{C}$
- $l(\nu), \nu \in i\mathbb{R}$
- $l(\nu) \rightarrow J(\nu)$
- $[-1, 1]$ polytope in $\mathfrak{a}_\mathbb{R}^*$

Will deform Herm forms
unitary axis $i\mathfrak{a}_\mathbb{R}^* \leftrightarrow$
real axis $\mathfrak{a}_\mathbb{R}^*$.

Deformed form pos \leftrightarrow unitary rep.

Reps appear in families, param by ν in cplx vec space \mathfrak{a}^*.

Pure imag params $\leftrightarrow L^2$ harm analysis \leftrightarrow unitary.

Each rep in family has distinguished irr quotient $J(\nu)$.

Difficult unitary reps \leftrightarrow deformation in real param.
Categories of representations

G cplx reductive alg $\supset G(\mathbb{R})$ real form $\supset K(\mathbb{R})$ max cpt.

Rep theory of $G(\mathbb{R})$ modeled on Verma modules . . .

$H \subset B \subset G$ maximal torus in Borel subgp,

$\mathfrak{h}^* \leftrightarrow$ highest weight reps

$M(\lambda)$ Verma of hwt $\lambda \in \mathfrak{h}^*$, $L(\lambda)$ irr quot

Put cplxification of $K(\mathbb{R}) = K \subset G$, reductive algebraic.

(\mathfrak{g}, K)-mod: cplx rep V of \mathfrak{g}, compatible alg rep of K.

Harish-Chandra: irr (\mathfrak{g}, K)-mod \leftrightarrow “arb rep of $G(\mathbb{R})$.”

X parameter set for irr (\mathfrak{g}, K)-mods

$I(x)$ std (\mathfrak{g}, K)-mod $\leftrightarrow x \in X$ $J(x)$ irr quot

Set X described by Langlands, Knapp-Zuckerman: countable union (subspace of \mathfrak{h}^*)/(subgroup of W).
Character formulas

Can decompose Verma module into irreducibles

\[M(\lambda) = \sum_{\mu \leq \lambda} m_{\mu, \lambda} L(\mu) \quad (m_{\mu, \lambda} \in \mathbb{N}) \]

or write a formal character for an irreducible

\[L(\lambda) = \sum_{\mu \leq \lambda} M_{\mu, \lambda} M(\mu) \quad (M_{\mu, \lambda} \in \mathbb{Z}) \]

Can decompose standard HC module into irreducibles

\[I(x) = \sum_{y \leq x} m_{y, x} J(y) \quad (m_{y, x} \in \mathbb{N}) \]

or write a formal character for an irreducible

\[J(x) = \sum_{y \leq x} M_{y, x} I(y) \quad (M_{y, x} \in \mathbb{Z}) \]

Matrices \(m \) and \(M \) upper triang, ones on diag, mutual inverses. Entries are KL polynomials eval at 1.
Forms and dual spaces

V cplx vec space (or alg rep of K, or (g, K)-mod).

Hermitian dual of V

$$V^h = \{ \xi : V \to \mathbb{C} \text{ additive} \mid \xi(zv) = \overline{z}\xi(v) \}$$

(If V is K-rep, also require ξ is K-finite.)

Sesquilinear pairings between V and W

$$\text{Sesq}(V, W) = \{ \langle, \rangle : V \times W \to \mathbb{C}, \text{lin in } V, \text{conj-lin in } W \}$$

$$\text{Sesq}(V, W) \simeq \text{Hom}(V, W^h), \quad \langle v, w \rangle_T = (Tv)(w).$$

Cplx conj of forms is (conj linear) isom

$$\text{Sesq}(V, W) \simeq \text{Sesq}(W, V).$$

Corr (conj linear) isom is Hermitian transpose

$$\text{Hom}(V, W^h) \simeq \text{Hom}(W, V^h), \quad (T^hw)(v) = (Tv)(w).$$

Sesq form \langle, \rangle_T Hermitian if

$$\langle v, v' \rangle_T = \overline{\langle v', v \rangle_T} \iff T^h = T.$$
Defining a rep on V^h

Suppose V is a (g, K)-module. Write π for repn map.

Want to construct functor

$$\text{cplx linear rep } (\pi, V) \leadsto \text{cplx linear rep } (\pi^h, V^h)$$

using Hermitian transpose map of operators. **REQUIRES** twisting by conjugate linear automorphism of g.

Assume

$$\sigma : G \to G \text{ antiholom aut}, \quad \sigma(K) = K.$$

Define (g, K)-module $\pi^{h,\sigma}$ on V^h,

$$\pi^{h,\sigma}(X) \cdot \xi = \left[\pi(-\sigma(X))\right]^h \cdot \xi \quad (X \in g, \xi \in V^h).$$

$$\pi^{h,\sigma}(k) \cdot \xi = \left[\pi(\sigma(k)^{-1})\right]^h \cdot \xi \quad (k \in K, \xi \in V^h).$$

Traditionally use

$$\sigma_0 = \text{ real form with complexified maximal compact } K.$$

We need also

$$\sigma_c = \text{ compact real form of } G \text{ preserving } K.$$
Invariant Hermitian forms

\[V = (g, K) \text{-module}, \sigma \text{ antihol aut of } G \text{ preserving } K. \]

A \(\sigma \)-invt sesq form on \(V \) is sesq pairing \(\langle , \rangle \) such that

\[\langle X \cdot v, w \rangle = \langle v, -\sigma(X) \cdot w \rangle, \quad \langle k \cdot v, w \rangle = \langle v, \sigma(k^{-1}) \cdot w \rangle \]

\[(X \in g; k \in K; v, w \in V).\]

Proposition

\(\sigma \)-invt sesq form on \(V \) \(\iff \) \((g, K) \)-map \(T : V \to V^{h,\sigma} : \)

\[\langle v, w \rangle_t = (Tv)(w). \]

Form is Hermitian iff \(T^h = T \).

Assume \(V \) is irreducible.

\[V \cong V^{h,\sigma} \iff \exists \text{ invt sesq form } \iff \exists \text{ invt Herm form } \]

A \(\sigma \)-invt Herm form on \(V \) is unique up to real scalar.

\[T \to T^h \iff \text{ real form of cplx line } \text{Hom}_{g,K}(V, V^{h,\sigma}). \]
Invariant forms on standard reps

Recall multiplicity formula

\[I(x) = \sum_{y \leq x} m_{y,x} J(y) \quad (m_{y,x} \in \mathbb{N}) \]

for standard \((g, K)-\)mod \(I(x)\).

Want parallel formulas for \(\sigma\)-invt Hermitian forms.

Need forms on standard modules.

Form on irr \(J(x)\) \(\xrightarrow{\text{deformation}}\) Jantzen filt \(I_n(x)\) on std, nondeg forms \(\langle \cdot, \cdot \rangle_n\) on \(I_n/I_{n+1}\).

Details (proved by Beilinson-Bernstein):

\[I(x) = I_0 \supset I_1 \supset I_2 \supset \cdots, \quad I_0/I_1 = J(x) \]

\(I_n/I_{n+1}\) completely reducible

\([J(y): I_n/I_{n+1}] = \text{coeff of } q^{(\ell(x) - \ell(y) - n)/2} \text{ in KL poly } Q_{y,x}\)

Hence \(\langle \cdot, \cdot \rangle_{I(x)} \overset{\text{def}}{=} \sum_n \langle \cdot, \cdot \rangle_n\), nondeg form on gr \(I(x)\).

Restricts to original form on irr \(J(x)\).
Virtual Hermitian forms

\[Z = \text{Groth group of vec spaces.} \]
These are mults of irr reps in virtual reps.
\[Z[X] = \text{Groth grp of finite length reps.} \]

For invariant forms...
\[W = Z \oplus Z = \text{Groth grp of fin diml forms.} \]

Ring structure
\[(p, q)(p', q') = (pp' + qq', pq' + q'p).\]

Mult of irr-with-forms in virtual-with-forms is in \(W \):
\[W[X] \approx \text{Groth grp of fin lgth reps with invt forms.} \]

Two problems: invt form \(\langle \cdot, \cdot \rangle_J \) may not exist for irr \(J \);
and \(\langle \cdot, \cdot \rangle_J \) may not be preferable to \(-\langle \cdot, \cdot \rangle_J\).
Hermitian KL polynomials: multiplicities

Fix σ-invt Hermitian form $\langle , \rangle_{J(x)}$ on each irr admitting one; recall Jantzen form \langle , \rangle_n on $I(x)_n/I(x)_{n+1}$. MODULO problem of irrs with no invt form, write

$$(I_n/I_{n-1}, \langle , \rangle_n) = \sum_{y \leq x} w_{y,x}(n)(J(y), \langle , \rangle_{J(y)}),$$

coeffs $w(n) = (p(n), q(n)) \in \mathbb{W}$; summand means

$$p(n)(J(y), \langle , \rangle_{J(y)}) \oplus q(n)(J(y), -\langle , \rangle_{J(y)}).$$

Define Hermitian KL polynomials

$$Q_{y,x}^\sigma = \sum_n w_{y,x}(n)q^{(I(x)-I(y)-n)/2} \in \mathbb{W}[q]$$

Eval in \mathbb{W} at $q = 1 \iff$ form $\langle , \rangle_{I(x)}$ on std.

Reduction to $\mathbb{Z}[q]$ by $\mathbb{W} \to \mathbb{Z} \iff$ KL poly $Q_{y,x}$.
Hermitian KL polynomials: characters

Matrix $Q_{y,x}^\sigma$ is upper tri, 1s on diag: INVERTIBLE.

$$P_{x,y}^\sigma \overset{\text{def}}{=} (-1)^{l(x)-l(y)}((x, y) \text{ entry of inverse}) \in \mathbb{W}[q].$$

Definition of $Q_{x,y}^\sigma$ says

$$(\text{gr } l(x), \langle \cdot , \cdot \rangle_{l(x)}) = \sum_{y \leq x} Q_{x,y}^\sigma(1)(J(y), \langle \cdot , \cdot \rangle_{J(y)});$$

inverting this gives

$$(J(x), \langle \cdot , \cdot \rangle_{J(x)}) = \sum_{y \leq x} (-1)^{l(x)-l(y)} P_{x,y}^\sigma(1)(\text{gr } l(y), \langle \cdot , \cdot \rangle_{l(y)});$$

Next question: how do you compute $P_{x,y}^\sigma$?
Herm KL polys for σ_c

$\sigma_c = \text{cplx conj for cpt form of } G, \sigma_c(K) = K.$

Plan: study σ_c-invt forms, relate to σ_0-invt forms.

Proposition

Suppose $J(x)$ irr (\mathfrak{g}, K)-module, real infl char. Then $J(x)$ has σ_c-invt Herm form $\langle \cdot, \cdot \rangle^c_{J(x)}$, characterized by $\langle \cdot, \cdot \rangle^c_{J(x)}$ is pos def on the lowest K-types of $J(x)$.

Proposition \implies Herm KL polys $Q^\sigma_{x,y}, P^\sigma_{x,y}$ well-def.

Coefs in $\mathbb{W} = \mathbb{Z} \oplus s\mathbb{Z}; s = (0, 1) \leftrightarrow \text{one-diml neg def form.}$

Conj: $Q^\sigma_{x,y}(q) = s \frac{\ell_o(x) - \ell_o(y)}{2} Q_{x,y}(qs), \quad P^\sigma_{x,y}(q) = s \frac{\ell_o(x) - \ell_o(y)}{2} P_{x,y}(qs)$.

Equiv: if $J(y)$ appears at level n of Jantzen filt of $I(x)$, then Jantzen form is $(-1)^{(l(x)-l(y)-n)/2}$ times $\langle \cdot, \cdot \rangle_{J(y)}$.

Conjecture is false... but not seriously so. Need an extra power of s on the right side.
Orientation number

Conjecture \leftrightarrow KL polys \leftrightarrow *integral* roots.

Simple form of Conjecture \Rightarrow Jantzen-Zuckerman translation across non-integral root walls preserves signatures of (σ_c-invariant) Hermitian forms.

It ain’t necessarily so.

$SL(2, \mathbb{R})$: translating spherical principal series from (real non-integral positive) ν to (negative) $\nu - 2m$ changes sign of form iff $\nu \in (0, 1) + 2\mathbb{Z}$.

Orientation number $\ell_o(x)$ is

1. # pairs $(\alpha, -\theta(\alpha))$ cplx nonint, pos on x; PLUS
2. # real β s.t. $\langle x, \beta^\vee \rangle \in (0, 1) + \epsilon(\beta, x) + 2\mathbb{N}$.

$\epsilon(\beta, x) = 0$ spherical, 1 non-spherical.
Deforming to $\nu = 0$

Have computable formula (omitting ℓ_o)

$$\langle J(x), \langle , \rangle^c_{J(x)} \rangle = \sum_{y \leq x} (-1)^{l(x) - l(y)} P_{x,y}(s)(\text{gr } l(y), \langle , \rangle^c_{l(y)})$$

for σ^c-invt forms in terms of forms on stds, same inf char.

Polys $P_{x,y}$ are KL polys, computed by atlas software.

Std rep $l = l(\nu)$ deps on cont param ν. Put $l(t) = l(t\nu)$, $t \geq 0$.

If std rep $l = l(\nu)$ has σ-invt form so does $l(t)$ ($t \geq 0$).

(signature for $l(t)$) = (signature on $l(t + \epsilon)$), $\epsilon \geq 0$ suff small.

Sig on $l(t)$ differs from $l(t - \epsilon)$ on odd levels of Jantzen filt:

$$\langle , \rangle_{\text{gr } l(t - \epsilon)} = \langle , \rangle_{\text{gr } l(t)} + (s - 1) \sum_m \langle , \rangle_{l(t)_{2m+1}/l(t)_{2m+2}}.$$

Each summand after first on right is known comb of stds, all with cont param strictly smaller than $t\nu$. ITERATE...

$$\langle , \rangle^c_{J} = \sum_{\text{std at } \nu' = 0} v_{J,\nu'} \langle , \rangle^c_{l'_{(0)}} \quad (v_{J,\nu'} \in \mathbb{W}).$$
From σ_c to σ_0

Cplx conjs σ_c (compact form) and σ_0 (our real form) differ by Cartan involution θ: $\sigma_0 = \theta \circ \sigma_c$.

$Irr (g, K)$-mod $J \sim J^\theta$ (same space, rep twisted by θ).

Proposition

J admits σ_0-invt Herm form if and only if $J^\theta \subset J$. If $T_0: J \sim J^\theta$, and $T_0^2 = \text{Id}$, then

$$\langle v, w \rangle^0_J = \langle v, T_0 w \rangle^c_J.$$

$T: J \sim J^\theta \Rightarrow T^2 = z \in \mathbb{C} \Rightarrow T_0 = z^{-1/2} T \sim \sigma$-invt Herm form.

To convert formulas for σ_c invt forms \sim formulas for σ_0-invt forms need intertwining ops $T_J: J \sim J^\theta$, consistent with decomp of std reps.
Equal rank case

\[\text{rk } K = \text{rk } G \Rightarrow \text{Cartan inv inner: } \exists \tau \in K, \text{Ad}(\tau) = \theta. \]

\[\theta^2 = 1 \Rightarrow \tau^2 = \zeta \in Z(G) \cap K. \]

Study reps \(\pi \) with \(\pi(\zeta) = z \). Fix square root \(z^{1/2} \).

If \(\zeta \) acts by \(z \) on \(V \), and \(\langle , \rangle^c_V \) is \(\sigma_c \)-invt form, then
\[\langle v, w \rangle^0_J \overset{\text{def}}{=} \langle v, z^{-1/2} \tau \cdot w \rangle^c_V \]

is \(\sigma_0 \)-invt form.

\[\langle , \rangle^c_J = \sum_{l'(0) \text{ std at } \nu' = 0} v_{J,l'} \langle , \rangle^c_{l'(0)} \quad (v_{J,l'} \in W). \]

translates to
\[\langle , \rangle^0_J = \sum_{l'(0) \text{ std at } \nu' = 0} v_{J,l'} \langle , \rangle^0_{l'(0)} \quad (v_{J,l'} \in W). \]

\(l' \) has LKT \(\mu' \Rightarrow \langle , \rangle^0_{l'(0)} \) \text{ definite, sign } z^{-1/2} \mu'(\tau). \)

J unitary \(\Leftrightarrow \) each summand on right pos def.
General case

Fix “distinguished involution” δ_0 of G inner to θ
Define extended group $G^\Gamma = G \rtimes \{1, \delta_0\}$.
Can arrange $\theta = \text{Ad}(\tau \delta_0)$, some $\tau \in K$.
Define $K^\Gamma = \text{Cent}_{G^\Gamma}(\tau \delta_0) = K \rtimes \{1, \delta_0\}$.
Study (g, K^Γ)-mods $\leftrightarrow (g, K)$-mods V with
$D_0 : V \xrightarrow{\sim} V^{\delta_0}$, $D_0^2 = \text{Id}$.

Beilinson-Bernstein localization: (g, K^Γ)-mods \leftrightarrow action of δ_0 on K-eqvt perverse sheaves on G/B.

Should be computable by mild extension of Kazhdan-Lusztig ideas. Not done yet!

Now translate σ_c-invt forms to σ_0 invt forms

$$\langle v, w \rangle^0_V \overset{\text{def}}{=} \langle v, z^{-1/2} \tau \delta_0 \cdot w \rangle^c_V$$

on (g, K^Γ)-mods as in equal rank case.
Possible unitarity algorithm

Hope to get from these ideas a computer program; enter

- real reductive Lie group $G(\mathbb{R})$
- general representation π

and ask whether π is unitary.

Program would say either

- π has no invariant Hermitian form, or
- π has invt Herm form, indef on reps μ_1, μ_2 of K, or
- π is unitary, or
- I’m sorry Dave, I’m afraid I can’t do that.

Answers to finitely many such questions \leadsto complete description of unitary dual of $G(\mathbb{R})$.

This would be a good thing.