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Symplectic groups

These notes cover most of what I did in the seminar on March 14, in a slightly
more coordinate-free way. The general setting is

(1)(a) V = 2n-dimensional vector space over a field F ,

(1)(b) B = non-degenerate symplectic form on V .

(1)(c) Sp(V ) = {g ∈ GL(V ) | B(gv, gw) = B(v, w) (v, w ∈ V )}.

This is the symplectic group of the form B.
The goal is to work out the structure of certain subgroups of Sp(V ), and to use

that structure to calculate the orders of symplectic groups over finite fields.
Recall first of all the projective space

(2) P(V ) = set of lines in V .

If u is a non-zero vector in V , we write [u] = {au | a ∈ F} for the line through u.
The group Sp(V ) (like any subgroup of GL(V )) acts on P(V ).

Lemma 3 (text, Proposition 3.2). The action of Sp(V ) on V −{0} is transitive;
consequently the action on P(V ) is transitive as well.

From now on we fix a non-zero vector u ∈ V . (Such a vector exists if n ≥ 1.)
The goal is to understand the group

StabSp(V )([u]) = {g ∈ Sp(V ) | g[u] = [u]}(4)

= {g ∈ Sp(V ) | gu = ku, some k ∈ F×}.

There at least three reasons to understand this group. First, when F is a finite
field we can use the formula

(5) |Sp(V )| = |P(V )| · | StabSp(V )([u])|

to compute the order of the symplectic group. Second, we’ll be able to use the
structure of this group together with Iwasawa’s theorem to deduce that PSp(V )
(the quotient of Sp(V ) by its center) is almost always a simple group. Third, the
structure of the stabilizer is interesting for its own sake: this is a group that plays
an important part in lots of current mathematics.

So here we go. In order to work out the structure of the stabilizer of the line [u],
we’re going to write down lots of linear transformations in the stabilizer. In order
to do that, we need to make one more choice. Because B is non-degenerate and u
is non-zero, we can choose a vector v so that

(5)(a) B(u, v) = 1.
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Because the form B is symplectic, we deduce that

(5)(b) B(u, u) = B(v, v) = 0, B(u, v) = −B(v, u) = 1.

This means that the vectors u and v span a hyperbolic plane. The matrix of the form

B on this plane is

(

0 1
−1 0

)

, which has determinant +1; so B is non-degenerate

on this plane. Define

(6)(a) W = {w ∈ V | B(u, w) = B(v, w) = 0} = span(u, v)⊥.

According to Proposition 2.9 of the text,

(6)(b) BW = restriction of B to W

is a non-degenerate symplectic form on the (2n − 2)-dimensional vector space W ,
and

(6)(c) V = span(u, v) ⊕ W.

I am going to describe a lot of linear transformations on V with three pieces of
information: what happens to u; what happens to v; and what happens to vectors
in W . Formally, this means that I’ll specify the linear transformation T on V by
specifying

(1) the vector T (u);
(2) the vector T (v); and
(3) the linear transformation TW = restriction of T to W , which is a linear map

from W to V .

If we were to choose a basis {w1, . . . , w2n−2} of W and think in terms of matrices
(in the basis {u, v, w1, . . . , w2n−2} of V ), then Tu is the first column of the matrix
of T ; Tv is the second column; and TW is the last 2n − 2 columns. In order to
check whether T ∈ Sp(V ), we have to check

B(T (u), T (v)) = B(u, v);(7)(a)

B(T (u), TW (w)) = B(T (v), TW (w)) = 0 (w ∈ W );(7)(b)

B(TW (w), TW (w′)) = B(w, w′) (w, w′ ∈ W ).(7)(c)

So here are some easy elements in the stabilizer of [u]; I apologize that the
notation doesn’t match what I used in class. For any non-zero k ∈ F , we have

(8) Ak(u) = ku, Ak(v) = k−1v, Ak(w) = w (w ∈ W ).

The relations in (7) are easy to check: (7)(c) is trivial, (7)(b) is nearly trivial, and
for (7)(a), we have

B(Ak(u), Ak(v)) = B(ku, k−1v) = k · k−1 · B(u, v) = B(u, v).

So Ak belongs to StabSp(V )([u]).
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For any x ∈ F , we can define

(9) Zx(u) = u, Zx(v) = v + xu, Zx(w) = w (w ∈ W ).

Here again conditions (7)(c) and (7)(b) are almost obvious. For (7)(a),

B(Zx(u), Zx(v)) = B(u, v + xu) = B(u, v) + xB(u, u) = B(u, v)

since B(u, u) = 0. So Zx belongs to StabSp(V )([u]).
The next elements require a little more thought. If u is mapped to itself by a

symplectic map, then v must be mapped to some v′ such that B(u, v′) = 0. In Zx

we chose v′ to be v plus a multiple of u. In the next elements, we’ll choose v′ to be
v plus something in W . The complication now arises in trying to arrange (7)(b).
Here are the maps. For any w ∈ W , define

(10) Nw1
(u) = u, Nw1

(v) = v + w1, Nw1
(w) = w + B(w1, w)u (w ∈ W ).

Conditions (7)(a) and (7)(c) are very simple to check. For (7)(b), we compute (for
any w ∈ W )

B(Nw1
(u), Nw1

(w)) = B(u, w + B(w1, w)u)

= B(u, w) + B(w1, w)B(u, u)

= B(u, w) = 0,

since B(u, u) = 0 and B(u, w) = 0. Similarly,

B(Nw1
(v), Nw1

(w)) = B(v + w1, w + B(w1, w)u)

= B(v, w) + B(w1, w)B(v, u) + B(w1, w) + B(w1, w)B(w1, u)

= −B(w1, w) + B(w1, w) + B(w1, w) · 0 = 0.

At the last step we use B(v, u) = −1 (cf. (5)(a)). Therefore Nw1
belongs to

StabSp(V )([u]).
The final class of elements is a large one, but easy to deal with. Suppose R is

any element of Sp(W ), the symplectic group of the form BW on W . Define

(11) MR(u) = u, MR(v) = v, MR(w) = R(w) (w ∈ W ).

Verification that MR satisfies the conditions (7) is almost trivial; the only interesting
one is (7)(c), and that is just the requirement that R belong to Sp(W ). Therefore
MR belongs to StabSp(V )([u]).

Proposition 12. Suppose that u is a non-zero vector in the symplectic vector
space V . Choose another vector v so that B(u, v) = 1, and let W be the subspace
orthogonal to u and v (see (5) and (6) above). Define elements Ak, Zx, Nw1

, and
MR of StabSp(V )([u]) as in (8)–(11) above.

(1) The collection A of elements {Ak | k ∈ F×} is a subgroup of Sp(V ), iso-
morphic to the multiplicative group F× of F .

(2) The collection Z of elements {Zx | x ∈ F} is a subgroup of Sp(V ), isomor-
phic to the additive group of F .
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(3) The collection N of elements {Nw1
Zx | w ∈ W, x ∈ F} is a subgroup of

Sp(V ). The expression of each element of N as a product Nw1
Zx is unique.

The group law is

(Nw1
Zx1

)(Nw2
Zx2

) = Nw1+w2
Zx1+x2+B(w1,w2).

Consequently Z is a normal subgroup of N (equal to the center of N if the
characteristic is not 2), and the quotient group N/Z is isomorphic to the
additive group of the vector space W .

(4) The collection M of elements {MR | R ∈ Sp(W )} is a subgroup of Sp(V ),
isomorphic to Sp(W ).

(5) The collection L of elements {MRAk | R ∈ Sp(W ), k ∈ F×} is a subgroup
of Sp(V ), isomorphic to the product group Sp(W ) × F×.

(6) The groups A and M act by conjugation on N , according to the formulas

Ak(Nw1
Zx)A−1

k = Nkw1
Zk2x,

MR(Nw1
Zx)M−1

R = NRw1
Zx.

(7) Every element of T ∈ StabSp(V )([u]) has a unique representation as a prod-
uct

T = MRAkNw1
Zx (R ∈ Sp(W ), k ∈ F×, w1 ∈ W, x ∈ F ).

The subgroups N and Z are normal in StabSp(V )([u]). The quotient group
StabSp(V )([u])/N is isomorphic to the product L = A × M .

(8) Suppose that F = Fq. Then

| StabSp(V )([u])| = (q − 1) · q2n−1 · |Sp(W )|;

here 2n is the dimension of V . Furthermore

|Sp(V )| = (q2n − 1) · q2n−1 · |Sp(W )|.

Notice that the collection of elements Nw1
does not constitute a group: it is not

closed under multiplication.

Proof. To prove (1), we just compute from (8) that AkAk′ = Akk′ . Part (2) is
similar. For (3), we calculate

(13)

Nw1
Zx1

(u) = u,

Nw1
Zx1

(v) = Nw1
(v + x1u) = v + w1 + x1u,

Nw1
Zx1

(w) = Nw1
(w) = w + B(w1, w)u.

A first consequence of these formulas is that

Nw1
Zx1

(v) − v = x1u + w1.
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From this formula it is evident that x1 and w1 are determined uniquely by Nw1
Zx1

,
which proves the second claim of (3). To check the displayed formula, it is straight-
forward to compute the action of the linear transformations (Nw1

Zx1
)(Nw2

Zx2
) on

u, v, and an element w ∈ W ; for example,

(Nw1
Zx1

)(Nw2
Zx2

)(v) = (Nw1
Zx1

)(v + w2 + x2u)

= (v + w1 + x1u) + (w2 + B(w1, w2)u) + x2u

= v + (w1 + w2) + (x1 + x2 + B(w1, w2))u.

Now one has only to check that these formulas agree with the ones in (13) for
Nw1+w2

Zx1+x2+B(w1,w2). This is trivial for the action on u (which is fixed in both
cases), and clear for the action on v written above. The case of w ∈ W is similar.
This proves the formula for multiplication. That N is a subgroup follows very
easily. The remaining assertions in (3) are easy consequences of the formula for the
group law.

Parts (4) and (5) are extremely easy. For part (6), we compute the left sides
acting on u, and v, and an element w ∈ W (using (13)), and compare with the
formulas in (13) for the right side. As an example, here is the calculation of the
left side of the second display in (6) on an element w ∈ W :

MR(Nw1
Zx)M−1

R (w) = MR(Nw1
Zx)(R−1w)

= MR

(

R−1w + B(w1, R
−1w)u

)

= w + B(w1, R
−1w)u.

Because R is symplectic, B(w1, R
−1w) = B(Rw1, w). The left side is therefore

w + B(Rw1, w)u = NRw1
Zx(w),

using the formula in (13). This shows that the two sides agree on W . The other
cases are similar but easier.

For part (7), we first address the uniqueness of the decomposition. Using (13),
((11), and (8), we compute

(14)

MRAkNw1
Zx(u) = ku

MRAkNw1
Zx(v) = k−1v + Rw1 + kxu

MRAkNw1
Zx(w) = Rw + kB(w1, w)u

Suppose that we have two decompositions

MRAkNw1
Zx = MR′Ak′Nw′

1
Zx′ .

From the first equation in (14), we deduce that k = k′. From the third we deduce
R = R′. From these two equalities and the second equations in (14), it finally
follows that kx = k′x′ and Rw1 = R′w′

1, so that x = x′ and w1 = w′
1, as we wished

to show.
We now prove the existence of the decomposition. Suppose T ∈ StabSp(V )([u]).

This means that Tu = ku for some non-zero scalar k ∈ F×. Hence

A−1
k Tu = u.
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Now A−1
k T is an element of StabSp(V )([u]) fixing u. It must therefore carry v to

some element v′ such that B(u, v′) = 1. Such an element v′ is necessarily of the
form v + xu + w2, with w2 ∈ W :

A−1
k Tv = v + xu + w2.

From (13) we deduce

[Nw2
Zx]−1A−1

k Tu = u, [Nw2
Zx]−1A−1

k Tv = v.

Now [Nw2
Zx]−1A−1

k T is an element of StabSp(V )([u]) fixing both u and v. As a
consequence of the orthogonal decomposition (6), such a symplectic transformation
must be equal to MR for some R ∈ Sp(W ). That is,

[Nw2
Zx]−1A−1

k T = MR,

or
T = AkNw2

ZxMR.

Set w1 = R−1w2; then according to (6) of the Proposition,

T = MRAkNw1
Zx,

as we wished to show. The normality of N and Z follow easily from this decom-
position and from (6). The decomposition also implies the last isomorphism in
(7).

In part (8), the unique decomposition of (7) lets us count the elements of the
stabilizer of [u]. The formula for |Sp(V )| then follows from Lemma 3 and the
counting formula for group actions. We use also the fact that |P(V )| = (q2n −
1)/(q − 1). �

Corollary 15. Suppose that V is a symplectic vector space of dimension 2n over
a finite field Fq. Then

|Sp(V )| = (q2n − 1)(q2n−2 − 1) · · · (q2 − 1) · qn2

.

W. e can apply the counting formula of Proposition 12(8) for |Sp(V )| again to
Sp(W ), as long as W has dimension greater than 0 (so that we can find a non-zero
vector u to start the argument). In the end we come down to the symplectic group
of the zero vector space, which consists of the identity element alone. The resulting
formula is

|Sp(V )| = (q2n − 1) · q2n−1 · (q2(n−1 − 1) · q2(n−1)−1 · · · (q2 − 1) · q.

The powers of q can be collected, giving a total exponent of

n
∑

k=1

(2k − 1) = n2.

�
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I will just give a few hints about the second application of the structure theorem
for StabSp(V )([u]). We showed that Z is an abelian normal subgroup of the stabi-
lizer. Notice that the elements of Zx of Z are precisely the symplectic transvections
(called τu,x in the text) in the direction u. If T is any element of Sp(V ), then it’s
more or less obvious that

TZT−1 = transvections in the direction Tu.

So the group generated by all conjugates of Z is the group generated by all sym-
plectic transvections. Yaim Cooper showed in her presentation that this is all of
Sp(V ). That is,

Sp(V ) = group generated by all conjugates of Z.

This is one of the requirements for Iwasawa’s Theorem, to try to prove that PSp(V )
is a simple group. The main additional requirement is that Sp(V ) be its own
commutator subgroup.

Theorem 16. Suppose that V is a symplectic vector space of dimension 2n over a
field F .

(1) If |F | ≥ 4, then the derived group of Sp(V ) is equal to Sp(V ).
(2) If dim V ≥ 4 and |F | ≥ 3, then the derived group of Sp(V ) is equal to

Sp(V ).
(3) If dim V ≥ 6, then the derived group of Sp(V ) is equal to Sp(V ).

F. or part (1), suppose u is any non-zero vector in V . Use the notation of (5)–(11)
above. Since |F | ≥ 4, we can choose an element b ∈ F not equal to 0 or to ±1.
It follows that b2 − 1 6= 0. Using the first formula in Proposition 12(6), we can
compute the commutator

AbZx/(b2−1)A
−1
b Z−1Zx/(b2−1) = Zxb2/(b2−1)Z−x/(b2−1) = Zx(b2−1)/(b2−1) = Zx.

This shows that the transvection Zx = τu,x is a commutator. Since u was arbitrary,
every transvection is a commutator. Since the transvections generate Sp(V ), (1)
follows.

Part (2) is done in the text as Proposition 3.8, and part(3) as Proposition 3.9; I
won’t repeat the arguments. �

Corollary 17. Except for the cases |F | = 2 and dim V = 2 or 4, and |F | = 3 and
dim V = 2, the group PSp(V ) (the quotient of Sp(V ) by its center ±I) is a simple
group.

The proof given in the text (Theorem 3.11) works perfectly well for infinite fields
also. I won’t include the details.

The third reason I gave for studying the stabilizer was that the group was simply
interesting. The group N (Proposition 12(3)) is at the heart of that. As a set, it’s
just a the product of a symplectic vector space W and the ground field F ; but the
group structure is very interesting.


