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1 Basic Concepts

In this talk we consider only vector spaces V of positive even dimension.

Definition. A nondegenerate alternate form B on V is called a symplectic form
on V .

Note: It is the desire for the symplectic form to be nondegenerate which
forces V to have even dimension.

Definition. A hyperbolic pair in V is an ordered pair (u, v) of vectors (neces-
sarily linearly independent) with B(u, v) = 1.

Definition. An ordered set {u1, v1...um, vm} is a symplectic basis for V.

With respect to a symplectic basis, then, the matrix of B is











0 1 0 0 . . .

−1 0 1 0
0 −1 0 0
...

. . .











.

Definition. An invertible linear transformation τ of V is said to be symplectic
if B(τa, τb) = B(a, b).

The set of all such linear maps is closed under composition and thus forms
a subgroup of GL(V ) called the symplectic group on V and denoted Sp(V ). As
we’ve seen already in similar situations, Sp(V ) does not depend which form we
chose on V because every symplectic form is equivalent on V . However, if we
do fix a basis (equivalent to choosing a form) we see that B(τa, τb) = B(a, b) is
equivalent to the matrix equation T tBT = B where T is the matrix of τ with
respect to the chosen basis.

2 Transvections

The best way to picture a transvection is as a shear - you fix some hyperplane,
and take the orthogonal vector to that hyperplane and apply a shear, so that
it makes an angle θ 6= 90◦ with the hyperplane. But enough of pictures, let us
give a real definition.

1



Definition. A linear map τ : V → V is a transvection with fixed hyperplane W
if τ |W = IdW and τv − v ∈ W for all v ∈ V .

Given a vector u and a scalar a, we can construct a transvection τu,a by
τu,a(v) = v + aB(v, u)u. This is a transvection because it fixes the hyperplane
u⊥ and τu,a(v)− v = aB(v, u)u is a scalar multiple of u, which is in u⊥. In fact,
every transvection can be expressed in this way for some u ∈ V and some scalar
a. This is shown in Grove.

3 The Main Result

Today’s main result is that Sp(V ) is generated by symplectic transvections. The
proof will be done in three parts.

Proof. Denote by T the group generated by all transvections τ . We will show
that T = Sp(V ).
Part (a): T acts transitively on V \{0}.

Take v 6= w ∈ V \{0}.
Case 1. B(v, w) 6= 0. Set a = 1

B(v,w) and u = v − w. Then τu,a(v) =

v + aB(v, u)u = v + B(v,v−w)
B(v,w) (v − w) = v − (v − w) = w.

Case 2. B(v, w) = 0. We want a vector z such that B(v, z) 6= 0 6= B(w, z).
This is possible because in our basis of hyperbolic vectors, v =

∑n
1 aivi + biui

and w =
∑n

1 civi + diui. If for some i, ai or bi 6= 0 and ci or di 6= 0, some linear
combination of vi and ui satisfies our requirement for z. Otherwise, for all i if
ai or bi 6= 0 then ci and di = 0 and vice versa. Since neither v nor w is zero,
there is a nonzero coefficient αi of v, where α can be a or b and nonzero γj with
γ as c or d, and i 6= j. Then we can take z to be an appropriate nonzero linear
combination of vi and ui plus an appropriate nonzero linear combination of vj

and uj .
Having constructed the desired vector z, we can now use Case 1 to construct

τ1 and τ2 such that τ1(v) = z, τ2(z) = w and thus τ2τ1(v) = w.
Part (b): T is transitive on hyperbolic pairs.

We want to show that there is a product of transvections which maps (u1, v1)
to (u2, v2). By part (a), there is a transvection τ mapping u1 to u2. Thus
τ : (u1, v1) → (u2, τ(v1)). Let us denote τ(v1 by v3 We want σ ∈ T such that
σ(u2) = u2 and σ(v3) = v2.

Note 1. Note that if B(α, β) 6= 0, if we set γ = α− β and aγ = 1
B(α,β) , then if

B(u2, γ) = 0, then by Part (a), τγ,aγ
(u2) = u2 and τγ,aγ

(α) = β.

Case 1. B(v3, v2) 6= 0.
Then let γ = v3 − v2. By Note 1, τγ,aγ

(u2) = u2 and τγ,aγ
(v3) = v2, as

desired.
Case 2. B(v3, v2) = 0
In this case, B(v3, u2 + v3) = −1. Also, B(u2 + v3, v2) = B(u2, v2) 6= 0

Moreover, B(u2,−u2) = 0 = B(u2, u2 + v3 − v2 So, by Note 1, we can construct
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σ1 and σ2 respectively such that both fix u2 and sigma1(v3) = u2 + v3 and
sigma2(u2 +v3) = v2. Thus σ2σ1τ ∈ T and σ2σ1τ(u1, v1) = (u2, v2), as desired.
Part (c) The symplectic group Sp(V ) is generated by symplectic transvections.

We prove the result by induction on m, where 2m = n = dimV . The case
m = 1 is follows from the fact that for m = 1, Sp(V ) = Sl(V )and the fact that
Sl(V ) is generated by transvections.

The inductive step: Chose a hyperbolic pair (u, v) in V and let W be the
hyperbolic plane they span. Then V = W

⊕

W⊥. Take any σ ∈ Sp(V ). Then
(σu, σv) is a hyperbolic pair, and by Part (b), there exists τ ∈ T with τσu = u

and τσv = v, so τσ|W = IdW . Moreover, τσ|W⊥ ∈ Sp(W⊥). By induction,
τσ|W⊥ is a product of symplectic transvections on W⊥. Since any transvection
on (W⊥) can be extended to a transvection on V which includes W in the fixed
hyperplane, we see that in V , τσ ∈ T and hence σ ∈ T .

3


